JPS6144131B2 - - Google Patents

Info

Publication number
JPS6144131B2
JPS6144131B2 JP56090605A JP9060581A JPS6144131B2 JP S6144131 B2 JPS6144131 B2 JP S6144131B2 JP 56090605 A JP56090605 A JP 56090605A JP 9060581 A JP9060581 A JP 9060581A JP S6144131 B2 JPS6144131 B2 JP S6144131B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
hot workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56090605A
Other languages
Japanese (ja)
Other versions
JPS57207144A (en
Inventor
Takeo Kudo
Daiji Moroishi
Akio Ikeda
Yasuo Ootani
Yasutaka Okada
Kunihiko Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9060581A priority Critical patent/JPS57207144A/en
Priority to US06/383,630 priority patent/US4400211A/en
Priority to DE3221857A priority patent/DE3221857C2/en
Priority to GB08216701A priority patent/GB2102834B/en
Priority to FR8210117A priority patent/FR2507629B1/en
Priority to SE8203629A priority patent/SE454360C/en
Publication of JPS57207144A publication Critical patent/JPS57207144A/en
Priority to GB8506639A priority patent/GB2154611B/en
Publication of JPS6144131B2 publication Critical patent/JPS6144131B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、優れた耐応力腐食割れ性および熱
間加工性を有し、特に油井管の製造に用いるのに
適した合金に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、かつ湿潤
な硫化水素をはじめ、炭酸ガスや塩化イオンなど
の腐食性成分を含有する苛酷な腐食環境下での石
油および天然ガスの採掘が予儀なくされつつあ
る。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも優
れた耐食性、特に耐応力腐食割れ性が要求される
ようになつてきている。 一方、油井管の一般的腐食対策として、インヒ
ビタと呼ばれる腐食抑制剤を投入する方法が知ら
れているが、この方法は、例えば海上油井などに
は有効に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S−CO2−Cl-の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つていないのが現状である。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S−CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性をもつた油井管
を得べく研究を行なつた結果、 (a) H2S−CO2−Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス
鋼における一般的なそれとは挙動を全く異にす
るものであること。すなわち、一般の応力腐食
割れがCl-の存在と深く係わるものであるのに
対して、上記の油井環境によるものではCl-
さることながら、それ以上にH2Sの影響が大き
いこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S−CO2−Cl-環境での鋼の溶出速度(腐
食速度)は、Cr,Ni,Mo、およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはWの
2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件式を満足すると共に、Ni含有量を30〜
60%、Cr含有量を15〜35%とすると、冷間加
工材であつても、きわめて腐食性の強いH2S−
CO2−Cl-の油井環境下、特に200℃以上の悪環
境において、応力腐食割れに対して優れた抵抗
性を示す表面皮膜が得られること。 (d) Niについて表面皮膜に対する効果だけでな
く、組織的にも応力腐食割れ抵抗性を高める効
果があること。 (e) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、合金の熱間加工性が著しく
改善されるようになること。 (f) 合金成分としてCu:2%以下およびCo:2
%以下のうちの1種または2種を含有させる
と、耐食性がさらに一段と改善されるようにな
ること。 (g) 合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5%
以下、およびCa:0.10%以下のうちの1種ま
たは2種以上を含有させると、熱間加工性がさ
らに一段と改善されるようになること。 以上(a)〜(g)に示される知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、C:0.1%以下、Si:
1.0%以下、Mn:2.0%以下、P:0.030%以下、
S:0.0007%以下、sol.Al:0.5%以下、Ni:30〜
60%、Cr:15〜35%を含有し、Mo:12%以下お
よびW:24%以下のうちの1種または2種を含有
し、さらに必要に応じてCu:2%以下、Co:2
%以下、希土類元素:0.10%以下、Y:0.20%以
下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上を
含有し、残りがFeと不可避不純物からなる組成
(以上重量%、以下%の表示はすべて重量%を表
わす)を有すると共に、 Cr(%)+10Mo(%)+5W%≧110%, 7.5%≦Mo%+1/2W(%)<12%, の条件式を満足し、しかも優れた耐応力腐食割れ
性と熱間加工性を有し、特に200℃以上のきわめ
て腐食性の強いH2S−CO2−Cl-の油井環境下で
使用される油井管の製造に用いるのに適した合金
に特徴を有するものである。 つぎに、この発明の合金において、成分組成範
囲を上記の通りに限定した理由を説明する。 (a) C その含有量が0.10%を越えると、粒界応力腐
食割れが生じやすくなることから、その上限値
を0.10%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、そ
の含有量が1.0%を越えると、熱間加工性が劣
化するようになることから、その上限値を1.0
%と定めた。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、し
かもこの成分は応力腐食割れ性にほとんど影響
を及ぼさない成分であることから、その上限値
を高めの2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含有
量が0.030%を越えると、応力腐食割れ感受性
を高める作用が現われるので、上限値を0.030
%と定めて応力腐食割れ感受性を低位の状態に
保持する必要がある。 (e) S 不可避不純物であるSの含有量を0.0007%以
下に低減すると、熱間加工性が一段と向上する
ようになることから、S含有量の上限値を
0.0007%として、合金が優れた熱間加工性をも
つようにした。このことは、例えばS含有量を
種々変化させた25%Cr−50%Ni−10%Mo系合
金の鋼塊(単重:150Kg)から、熱間加工性を
評価する目的でしばしば採用されているねじり
試験用の試験片(平行部寸法:直径8mmφ×長
さ30mm)を採取し、この試験片を用いて、破断
に至るまでのねじり回数を測定した結果を示す
第1図によつても明らかである。すなわち、第
1図には、0.0007%のS含有量を境にして、こ
れより低いS含有量ではねじり回数が急激に増
大し、熱間加工性の著しく向上がはかられてい
ることが示されている。 (f) Al AlはSiおよびMnと同様に脱酸成分として有
効であり、sol.Al含有量で0.5%まで含有させ
ても合金の特性を何らそこなうものではないこ
とから、その含有量をsol.Al含有量で0.5%以
下と定めた。 (g) Ni Ni成分には合金の耐応力腐食割れ性を向上
させれ作用があるが、その含有量が30%未満で
は所望のすぐれた耐応力腐食割れ性を確保する
ことができず、一方60%を越えて含有させても
耐応力腐食割れ性にさらに一段の向上効果は現
われず、経済性をも考慮して、その含有量を30
〜60%と定めた。 (h) Cr Cr成分は、Ni,Mo、およびW成分との共存
において、耐応力腐食割れ性を著しく改善する
成分であるが、その含有量を15%未満としても
熱間加工性が改善されるようになるものでもな
く、逆に所望の耐応力腐食割れ性を確保するた
めには、MoやWの含有量とそれだけ増加させ
なければならず、経済的に不利となることか
ら、その下限値を15%と定めた。一方、その含
有量が35%を越えると、いくらS含有量を低減
させても熱間加工性の劣化は避けることができ
ないことから、その上限値を35%と定めた。 (i) Moおよびw 上記のように、これらの成分には、Niおよ
びCrとの共存において耐応力腐食割れ性を改
善する均等的作用があるが、それぞれMo:12
%、およびW:24%を越えて含有させても、環
境温度が200℃以上のH2S−CO2−Cl-の腐食環
境でも、さらに一段の改善効果が現われず、経
済性を考慮して、それぞれの含有量の上限値
を、Mo:12%,W:24%と定めた。また、Mo
とWの含有量に関して、条件式:Mo(%)+1/2 W(%)で規定するのは、WがMoに対し原子
量が約2倍で、効果の点では約1/2で均等となる ことからで、この値が7.5%未満では特に200℃以
上の上記悪環境下で所望の耐応力腐食割れ性が得
られず、一方、この値を12%を越えて高くして
も、上記の通り実質的に不必要な量のMoおよび
Wの含有となり、経済的でなく、かかる
点から、Mo(%)+1/2W(%)の値を7.5〜12% と定めた。 (j) CuおよびCo これらの成分には合金の耐食性を向上させる
均等作用があり、かつCoには固溶強化する作
用があるので、特に一段とすぐれた耐食性が要
求される場合に必要に応じて含有されるが、
Cuは2%を越えて含有させると、熱間可加工
性が劣化するようになり、一方Coは2%を越
えて含有させてもより一層の改善効果は現われ
ないことから、その上限値をCu:2%,Co:
2%と定めた。 . 希土類元素,Y,Mg,Ti、およびCa これらの成分には、熱間加工性をさらに改善
する均等的作用があるので、厳しい条件で熱間
加工が行なわれる場合に、必要に応じて含有さ
れるが、それぞれ希土類元素:0.10%,Y:
0.20%,Mg:0.10%,Ti:0.5%、およびCa:
0.10%を越えて含有させても、熱間加工性に改
善効果は見られず、むしろ劣化現象さえ現われ
るようになることから、それぞれの含有量を、
希土類元素:0.10%以下、Y:0.20%以下、
Mg:0.10%以下、Ti:0.5%以下、およびCa:
0.10%以下と定めた。 (l) Cr(%)+10Mo(%)+5W(%) 第2図は厳しい腐食環境下での耐応力腐食割
れ性に関し、Cr(%)+10Mo(%)+5W(%)
とNi(%)との関係を示したものである。す
なわち、Cr,Ni,Mo、およびWの含有量を
種々変化させたCr−Ni−Mo系、Cr−Ni−W
系、およびCr−Ni−Mo−W系の鋼を溶製し、
鋳造し、鍜伸し、熱間圧延して板厚:7mmの板
材とし、ついでこの板材に、温度:1050℃に30
分保持後水冷の溶体処理を施した後、強度向上
の目的で加工率:30%の冷間加工を加え、この
結果得られた鋼板から圧延方向と直角に、厚
さ:2mm×幅:10mm×長さ:75mmの試験片を切
り出し、この試験片について、第3図に示す3
点支持ビーム冶具を用い、前記試験片Sに0.2
%耐力に相当する引張応力に付加した状態で、
10気圧のH2Sおよび10気圧のCO2でH2Sおよび
CO2を飽和させた20%NaCl溶液(温度:300
℃)中に1000時間浸漬の応力腐食割れ試験を行
ない、試験後、前記試験片における割れ発生の
有無を観察した。これらの結果に基き、発明者
等が独自に設定した条件式:Cr(%)+10Mo
(%)+5W(%)とNi含有量との間には、耐応
力腐食割れ性に関して、第2図に示される関係
があることが明確になつたのである。なお、第
2図において、〇印は割れ発生なし、×印は割
れ発生をそれぞれ示すものである。第2図に示
される結果から、Cr(%)+10Mo(%)+5W
(%)の値が110%未満にして、Ni含有量が30
%未満では所望のすぐれた耐応力腐食割れ性は
得られないことが明らかである。 なお、この発明の合金において、不可避不純物
としてB,Sn,Pb、およびZnをそれぞれ0.1%以
下の範囲で含有しても、この発明の合金の特性が
何らそこなわれるものではない。 つぎに、この発明の合金を実施例により比較例
および従来例と対比しながら説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉および脱硫の目的でAr−酸素
脱炭炉(AOD炉)を併用して溶製した後、直
径:500mmφのインゴツトに鋳造し、ついでこの
インゴツトに温度:1200℃で熱間鍜造を施して直
径:150mmφのビレツトを成形し、この場合熱間
加工性を評価する目的でビレツトに割れの発生が
あるか否かを観察し、引続いて前記ビレツトより
熱間押出加工により直径:60mmφ×肉厚:4mmの
素管を成形した後、さらにこれに抽伸加工にて22
%の冷間加工を施して直径:55mmφ×
The present invention relates to an alloy that has excellent stress corrosion cracking resistance and hot workability, and is particularly suitable for use in manufacturing oil country tubular goods. In recent years, due to the deterioration of the energy situation, oil and natural gas wells have tended to become deeper and deeper, and they are exposed to harsh corrosive environments containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide and chloride ions. Extraction of oil and natural gas is becoming more difficult. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are also required to have excellent corrosion resistance, particularly stress corrosion cracking resistance. On the other hand, as a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion inhibitor called an inhibitor, but this method is often not effective for use in offshore oil wells, for example. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. At present, the details of the corrosion behavior of H 2 S−CO 2 −Cl in an oil well environment have not been fully elucidated. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S−CO 2
As a result of research to obtain oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can withstand oil drilling in Cl - oil well environments, we found that (a) H 2 S−CO 2 −Cl -The main type of corrosion in the environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S−CO 2 −Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, and in particular, Mo is 10 times more effective than Cr and twice as effective as W.
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, and the Ni content is 30〜
60%, and the Cr content is 15 to 35%, H 2 S−, which is extremely corrosive, even in cold-worked materials
It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in a CO 2 −Cl oil well environment, especially in a harsh environment of 200°C or higher. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the alloy is significantly improved. (f) Cu: 2% or less and Co: 2 as alloy components
% or less, the corrosion resistance is further improved. (g) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5%
When one or more of the following and Ca: 0.10% or less is contained, hot workability is further improved. The findings shown in (a) to (g) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 0.1% or less, Si:
1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
S: 0.0007% or less, sol.Al: 0.5% or less, Ni: 30~
60%, Cr: 15 to 35%, contains one or two of Mo: 12% or less and W: 24% or less, and if necessary, Cu: 2% or less, Co: 2
% or less, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (the above weight % and the following % are all weight %), and Cr (%) )+10Mo(%)+5W%≧110%, 7.5%≦Mo%+1/2W(%)<12%, and has excellent stress corrosion cracking resistance and hot workability. In particular, the alloy is suitable for use in manufacturing oil country tubular goods used in oil well environments of extremely corrosive H2S - CO2 - Cl- at temperatures above 200°C. Next, the reason why the composition range of the alloy of the present invention is limited as described above will be explained. (a) C If its content exceeds 0.10%, intergranular stress corrosion cracking is likely to occur, so the upper limit was set at 0.10%. (b) Si Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so its upper limit should be set at 1.0%.
%. (c) Mn The Mn component has a deoxidizing effect like Si, and since this component has little effect on stress corrosion cracking resistance, the upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%, so the upper limit should be set at 0.030%.
It is necessary to maintain the stress corrosion cracking susceptibility at a low level by setting the (e) S If the content of S, which is an unavoidable impurity, is reduced to 0.0007% or less, hot workability will be further improved.
0.0007% so that the alloy has excellent hot workability. This is often adopted, for example, for the purpose of evaluating the hot workability of steel ingots (unit weight: 150 kg) of 25% Cr-50% Ni-10% Mo alloys with various S contents. A test piece (parallel part dimensions: diameter 8 mmφ x length 30 mm) was taken for the torsion test, and the number of twists until breakage was measured using this test piece. it is obvious. In other words, Figure 1 shows that with an S content of 0.0007%, the number of twists increases rapidly at lower S contents, and hot workability is significantly improved. has been done. (f) Al Al is effective as a deoxidizing component like Si and Mn, and even if it is included up to 0.5% in sol.Al content, it will not impair the properties of the alloy. .Al content is set at 0.5% or less. (g) Ni The Ni component has the effect of improving the stress corrosion cracking resistance of the alloy, but if its content is less than 30%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 60%, there is no further improvement in stress corrosion cracking resistance, and considering economic efficiency, the content is reduced to 30%.
~60%. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is not improved even if its content is less than 15%. On the contrary, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased by that amount, which is economically disadvantageous, so the lower limit The value was set at 15%. On the other hand, if the S content exceeds 35%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 35%. (i) Mo and w As mentioned above, these components have an equal effect on improving stress corrosion cracking resistance when coexisting with Ni and Cr, but each Mo: 12
%, and W: Even if the content exceeds 24%, even in a corrosive H 2 S−CO 2 −Cl environment with an environmental temperature of 200°C or higher, no further improvement effect will be obtained, and economic considerations will be considered. Therefore, the upper limit values of each content were set as 12% for Mo and 24% for W. Also, Mo
Regarding the content of Therefore, if this value is less than 7.5%, the desired stress corrosion cracking resistance cannot be obtained, especially in the above-mentioned adverse environment of 200℃ or higher.On the other hand, even if this value is increased beyond 12%, the above-mentioned As shown in the figure, Mo and W are contained in substantially unnecessary amounts, which is not economical.From this point of view, the value of Mo (%) + 1/2 W (%) was set at 7.5 to 12%. (j) Cu and Co These components have the same effect of improving the corrosion resistance of the alloy, and Co has the effect of solid solution strengthening, so they can be used as necessary especially when even better corrosion resistance is required. Although it contains
If Cu is contained in an amount exceeding 2%, hot workability will deteriorate, while if Co is contained in an amount exceeding 2%, no further improvement effect will be obtained. Cu: 2%, Co:
It was set at 2%. Rare earth elements, Y, Mg, Ti, and Ca These components have the uniform effect of further improving hot workability, so they may be included as necessary when hot working is performed under severe conditions. However, rare earth elements: 0.10%, Y:
0.20%, Mg: 0.10%, Ti: 0.5%, and Ca:
Even if the content exceeds 0.10%, there will be no improvement effect on hot workability, and even deterioration will appear.
Rare earth elements: 0.10% or less, Y: 0.20% or less,
Mg: 0.10% or less, Ti: 0.5% or less, and Ca:
It was set at 0.10% or less. (l) Cr (%) + 10Mo (%) + 5W (%) Figure 2 shows stress corrosion cracking resistance under severe corrosive environments. Cr (%) + 10Mo (%) + 5W (%)
This shows the relationship between Ni (%) and Ni (%). That is, Cr-Ni-Mo system, Cr-Ni-W system with various contents of Cr, Ni, Mo, and W
system, and Cr-Ni-Mo-W system steel,
It is cast, stretched, and hot rolled into a plate with a thickness of 7 mm, and then this plate is heated at a temperature of 1050℃ for 30 minutes.
After holding for 30 minutes, water-cooling solution treatment was applied, and cold working was applied at a processing rate of 30% for the purpose of improving strength, and the resulting steel plate was processed perpendicularly to the rolling direction to a thickness of 2 mm x width of 10 mm. × Length: Cut out a 75mm test piece, and measure the length of the test piece as shown in Figure 3.
Using a point support beam jig, the test piece S was
When added to the tensile stress equivalent to % proof stress,
H2S and 10 atm H2S and 10 atm CO2
20% NaCl solution saturated with CO2 (temperature: 300
A stress corrosion cracking test was carried out by immersing the test piece in 1,000-hour immersion temperature (°C) for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr (%) + 10Mo
It has become clear that there is a relationship between (%) + 5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 2. In addition, in FIG. 2, the mark ◯ indicates no cracking, and the mark x indicates cracking. From the results shown in Figure 2, Cr (%) + 10Mo (%) + 5W
(%) value is less than 110% and Ni content is 30
%, it is clear that the desired excellent stress corrosion cracking resistance cannot be obtained. Note that even if the alloy of the present invention contains B, Sn, Pb, and Zn as unavoidable impurities in a range of 0.1% or less, the properties of the alloy of the present invention will not be impaired in any way. Next, the alloy of the present invention will be explained using examples while comparing it with comparative examples and conventional examples. Example Molten metals having the respective compositions shown in Table 1 were melted using an ordinary electric furnace and an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization, and then made into ingots with a diameter of 500 mmφ. After casting, this ingot was hot-forged at a temperature of 1200℃ to form a billet with a diameter of 150mmφ.In this case, for the purpose of evaluating hot workability, whether or not cracks occurred in the billet was determined. The billet was then hot extruded to form a raw tube with a diameter of 60 mmφ and a wall thickness of 4 mm, and then drawn into a 22 mm diameter tube.
% cold working diameter: 55mmφ×

【表】【table】

【表】 肉厚:3.1mmの寸法とすることによつて、本発
明合金管材1〜15、比較合金管材1〜4、およ
び従来合金管材1〜3をそれぞれ製造した。 なお、比較合金管材1〜4は、いずれも構成成
分のうちのいずれかの成分の含有量(第1表には
※印を付して表示)がこの発明の範囲から外れた
組成をもつものであり、また従来合金管材1は、
JIS・SUS316に、従来合金管材2はインコロイ8
00に、さらに従来合金管材3はJIS・SUS329JI
にそれぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
15、比較合金管材1〜4、および従来合金管材
1〜3より長さ:20mmの試験片をそれぞれ切出
し、この試験片より長さ方向にそつて60゜に相当
する部分を切落し、この状態の試験片に第4図に
正面図で示されるようにボルトを貫通し、ナツト
でしめつけて管外表面に0.2%耐力に相当する引
張力を付加し、この状態の試験片Sに対して、
H2S分圧をそれぞれ0.1気圧、1気圧、および15
気圧としたH2S−10気圧CO2−20%NaCl溶液(液
温:300℃)中に1000時間浸漬の応力腐食割れ試
験を行ない、試験後における応力腐食割れの有無
を調査した。この結果を、上記の熱間鍜造時の割
れ発生の有無と共に、第1表に合せて示した。な
お、第1表において、〇印はいずれも割れ発生の
ないものを示し、一方×印は割れ発生のあつたも
のを示す。 第1表に示される結果から、比較合金管材1〜
4は、熱間加工性および耐応力腐食割れ性のうち
の少なくともいずれかの性質が劣つたものである
のに対して、本発明合金管材1〜15は、いずれ
もすぐれた熱間加工性および耐応力腐食割れ性を
有し、かつ熱間加工性は良好であるが、相対的に
耐応力腐食割れ性に劣る従来合金管材1〜3と比
較しても一段とすぐれた特性を有することが明ら
かである。 上述のように、この発明の合金は、特に優れた
熱間加工性および耐応力腐食割れ性を有している
ので、これらの特性が要求される苛酷な環境下で
の石油および天然ガス採掘に用いられる油井管と
して、さらに地熱井管として使用した場合にきわ
めて優れた性能を発揮するのである。
[Table] Invention alloy tube materials 1 to 15, comparative alloy tube materials 1 to 4, and conventional alloy tube materials 1 to 3 were manufactured by setting the wall thickness to 3.1 mm. In addition, Comparative Alloy Tube Materials 1 to 4 all have compositions in which the content of one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of this invention. , and the conventional alloy tube material 1 is
JIS/SUS316, conventional alloy tube material 2 is Incoloy 8
00, and the conventional alloy tube material 3 is JIS/SUS329JI.
The compositions correspond to the respective compositions. Next, the resulting alloy tube materials 1 to 1 of the present invention
15. Cut out a test piece with a length of 20 mm from Comparative Alloy Tube Materials 1 to 4 and Conventional Alloy Tube Materials 1 to 3, and cut off a portion corresponding to 60° along the length direction from this test piece. As shown in the front view in Fig. 4, a bolt is passed through the test piece S and tightened with a nut to apply a tensile force equivalent to 0.2% proof stress to the outer surface of the tube, and to the test piece S in this state,
H2S partial pressures are 0.1 atm, 1 atm, and 15, respectively.
A stress corrosion cracking test was carried out by immersion in H 2 S - 10 atm CO 2 - 20% NaCl solution (liquid temperature: 300°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 1 along with the presence or absence of cracking during hot forging. In Table 1, the marks ◯ indicate those with no cracks, while the marks x indicate those with cracks. From the results shown in Table 1, comparative alloy pipe materials 1 to
Alloy tube materials 1 to 15 of the present invention have excellent hot workability and poor stress corrosion cracking resistance. Although it has stress corrosion cracking resistance and good hot workability, it is clear that it has even better properties compared to conventional alloy tube materials 1 to 3, which have relatively poor stress corrosion cracking resistance. It is. As mentioned above, the alloy of the present invention has particularly excellent hot workability and stress corrosion cracking resistance, making it suitable for oil and natural gas extraction in harsh environments where these properties are required. It exhibits extremely excellent performance when used as oil country tubular goods and geothermal country tubular goods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は25%Cr−50%Ni−6%Mo系合金に関
し、S含有量とねじり試験における破断に至るま
でのねじり回数との関係を示した図、第2図は
Cr−Ni−Mo系、Cr−Ni−W系、およびCr−Ni−
Mo−W系の鋼の応力腐食割れ性に関し、Ni含有
量とCr(%)+10Mo(%)+5W(%)との関係を
示した図、第3図および第4図はそれぞれ板状お
よび管状試験片Sに対する応力腐食割れ試験の態
様を示す図である。
Figure 1 shows the relationship between the S content and the number of twists until rupture in a torsion test for a 25%Cr-50%Ni-6%Mo alloy.
Cr-Ni-Mo system, Cr-Ni-W system, and Cr-Ni-
Figures 3 and 4 are diagrams showing the relationship between Ni content and Cr (%) + 10Mo (%) + 5W (%) regarding the stress corrosion cracking resistance of Mo-W steel. It is a figure which shows the aspect of the stress corrosion cracking test on test piece S.

Claims (1)

【特許請求の範囲】 1 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.0007%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜35%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、残りがFeと不可
避不純物からなる組成(以上重量%)を有し、か
つ、 Cr(%)+10Mo(%)+5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性および熱間加工性に優れた油井管用合金。 2 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.0007%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜35%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2
種を含有し、残りがFeと不可避不純物からなる
組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性および熱間加工性に優れた油井管用合金。 3 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.0007%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜35%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらに希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%以
下、Ti:0.5%以下、およびCa:0.10%以下のう
ちの1種または2種以上を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有
し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性および熱間加工性に優れた油井管用合金。 4 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.0007%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜35%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2
種と、希土類元素:0.10%以下、Y:0.20%以
下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上と
を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性および熱間加工性に優れた油井管用合金。
[Claims] 1 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.0007% or less, sol.
Contains Al: 0.5% or less, Ni: 30-60%, Cr: 15-35%, Mo: 12% or less and W: 24% or less, and the rest is Fe. It has a composition (weight%) consisting of unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, An alloy for oil country tubular goods with excellent stress corrosion cracking resistance and hot workability, which satisfies the following conditions. 2 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.0007% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 35%, one or two of Mo: 12% or less and W: 24% or less, and further Cu: 2 %
One or two of the following and Co: 2% or less
It has a composition (more than % by weight) that contains seeds and the rest is Fe and unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 7.5%≦Mo (%) + 1/ An alloy for oil country tubular goods having excellent stress corrosion cracking resistance and hot workability, which satisfies the following conditions: 2W (%)≦12%. 3 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.0007% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 35%, contains one or two of Mo: 12% or less and W: 24% or less, and further contains rare earth elements: A composition containing one or more of the following: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and inevitable impurities. (or more weight%) and satisfy the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%. An alloy for oil country tubular goods with excellent stress corrosion cracking resistance and hot workability. 4 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.0007% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 35%, one or two of Mo: 12% or less and W: 24% or less, and further Cu: 2 %
One or two of the following and Co: 2% or less
Species, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) )≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, an alloy for oil country tubular goods having excellent stress corrosion cracking resistance and hot workability.
JP9060581A 1981-06-10 1981-06-12 Alloy for oil well pipe with superior stress corrosion cracking resistance and hot workability Granted JPS57207144A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9060581A JPS57207144A (en) 1981-06-12 1981-06-12 Alloy for oil well pipe with superior stress corrosion cracking resistance and hot workability
US06/383,630 US4400211A (en) 1981-06-10 1982-06-01 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3221857A DE3221857C2 (en) 1981-06-10 1982-06-09 Iron alloy with increased resistance to stress corrosion cracking
GB08216701A GB2102834B (en) 1981-06-10 1982-06-09 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
FR8210117A FR2507629B1 (en) 1981-06-10 1982-06-10 HIGH-STRENGTH ALLOY TO TENSIO N CORROSION CRACKING, ESPECIALLY FOR THE REALIZATION OF TUBULAR PRODUCTS FOR DEEP WELLS
SE8203629A SE454360C (en) 1981-06-10 1982-06-10 Alloy for deep drilling and use of this for feeding and stirring for deep drilling
GB8506639A GB2154611B (en) 1981-06-10 1985-03-14 Alloy for high strength deep well casing and tubing having improved resistance to stress-corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9060581A JPS57207144A (en) 1981-06-12 1981-06-12 Alloy for oil well pipe with superior stress corrosion cracking resistance and hot workability

Publications (2)

Publication Number Publication Date
JPS57207144A JPS57207144A (en) 1982-12-18
JPS6144131B2 true JPS6144131B2 (en) 1986-10-01

Family

ID=14003100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9060581A Granted JPS57207144A (en) 1981-06-10 1981-06-12 Alloy for oil well pipe with superior stress corrosion cracking resistance and hot workability

Country Status (1)

Country Link
JP (1) JPS57207144A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA832119B (en) * 1982-04-05 1984-04-25 Teledyne Ind Corrosion resistant nickel base alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Also Published As

Publication number Publication date
JPS57207144A (en) 1982-12-18

Similar Documents

Publication Publication Date Title
US4400211A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4400349A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
JPS625977B2 (en)
JPS625976B2 (en)
JPS6144133B2 (en)
JPS6363608B2 (en)
JPS6144135B2 (en)
JPS6362569B2 (en)
JPS6363610B2 (en)
JPS6144126B2 (en)
JPS6363609B2 (en)
JPS6144128B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS6363606B2 (en)
JPS6144125B2 (en)
JPS6144132B2 (en)
JPS6144134B2 (en)
JPH0372698B2 (en)
JPH0371506B2 (en)
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144130B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6144127B2 (en)
JPS6144131B2 (en)