JPS61433A - Waste gas desulfurization - Google Patents

Waste gas desulfurization

Info

Publication number
JPS61433A
JPS61433A JP59120739A JP12073984A JPS61433A JP S61433 A JPS61433 A JP S61433A JP 59120739 A JP59120739 A JP 59120739A JP 12073984 A JP12073984 A JP 12073984A JP S61433 A JPS61433 A JP S61433A
Authority
JP
Japan
Prior art keywords
slurry
redox potential
air
sulfite
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59120739A
Other languages
Japanese (ja)
Other versions
JPH0359731B2 (en
Inventor
Naohiko Ugawa
直彦 鵜川
Atsushi Tatani
多谷 淳
Masakazu Onizuka
鬼塚 雅和
Kenji Inoue
健治 井上
Hiroshi Shimizu
拓 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59120739A priority Critical patent/JPS61433A/en
Publication of JPS61433A publication Critical patent/JPS61433A/en
Publication of JPH0359731B2 publication Critical patent/JPH0359731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To keep desulfurization capacity while reducing the flow amount of air, by continuously detecting redox potential in the recirculation slurry of an absorbing tower and controlling the flow amount of oxygen-containing gas blown in the slurry to perfectly oxidize CaSO3 in the slurry. CONSTITUTION:SO2-containing exhaust gas is brought into contact with a Ca- compound-containing slurry in an absorbing tower 2. Air is blown in the recirculation slurry containing CaSO3 generated by the absorption of SO2 from dispersing nozzles 7 in a liquid sump 5 to form gypsum. The redox potential of the recirculation slurry is detected by an electrode 8 and the opening and closing signal of a control valve 12 is issued by a controller 10 corresponding to the deviation of the detection value and preset redox potential voltage to set the necessary min. amount of air supplied into the liquid sump 5. The redox potential voltage preliminarily inputted to the controller 10 is set from the result of the calibration curve formed by calculating the correlation of sulfite concn. and redox potential.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排煙脱硫方法に関するもので、詳しくは石灰石
や消石灰やドロマイトなどのカルシウム化合物を吸収剤
原料として、燃焼排ガス中のSO2を除去するいわゆる
湿式石灰・石膏法排煙脱硫方法の改良に関するものであ
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a flue gas desulfurization method, and more specifically, it involves removing SO2 from combustion flue gas using calcium compounds such as limestone, slaked lime, and dolomite as absorbent raw materials. This paper concerns improvements to the so-called wet lime/gypsum flue gas desulfurization method.

(従来の技術) 湿式石灰・石膏性排煙脱硫装置での吸収工程では、80
.を含む排ガスと0a(OH)1 、 C1LOO2。
(Conventional technology) In the absorption process in wet lime/gypsum flue gas desulfurization equipment, 80
.. Exhaust gas containing 0a(OH)1, C1LOO2.

C!ILSO3113AH10,C1asO4”2H1
0のような溶解度の小さなカルシウム化合物を含むスラ
リーとを接触させ、排ガスから803を吸収するもので
あるが、そのSo、吸収反応を総括反応式で表わすとS
O2+0a(OH%→C! !L 80B ” %T1
20+%H,OII@11@II (1)S 02 +
 Oa 003 +3AH20→0aSO3”%H,o
 + a o2 −・・・(2)であり、排ガス中の酸
素によって一部は次の酸化反応も生じる。
C! ILSO3113AH10, C1asO4”2H1
This method absorbs 803 from exhaust gas by contacting it with a slurry containing a calcium compound with low solubility such as So, but the absorption reaction can be expressed as S
O2+0a(OH%→C! !L 80B ”%T1
20+%H, OII@11@II (1) S 02 +
Oa 003 +3AH20→0aSO3”%H,o
+ a o2 - (2), and the following oxidation reaction also occurs partially due to oxygen in the exhaust gas.

C! a S OH” 3AH2O+ % OH+ 7
2 Hl O→Oa S 04 ” 2 Hl O” 
” (3)このように総括反応式は単純であるが、実際
の反応メカニズムはかかる単純なものでなく、種々の溶
解イオン、例えばOa”、 MW″“、S9゜+   
 2− Na 、 Bog  、 H8O3、003+ HCO
3−+ H2Someト十− H2003+  CZ ”’ +  F−+  A Z
” +r  Mn  +  820s   +  H+
  OHなどが極めて複雑に関与したものであシ、解明
されていない部分も多い。
C! a S OH” 3AH2O+ % OH+ 7
2 Hl O→Oa S 04 ” 2 Hl O”
(3) Although the overall reaction formula is simple, the actual reaction mechanism is not as simple as this, and involves various dissolved ions such as Oa'', MW'''', S9゜+
2- Na, Bog, H8O3, 003+ HCO
3-+ H2Some To 10- H2003+ CZ ”' + F-+ A Z
” +r Mn + 820s + H+
OH and other factors are involved in an extremely complex manner, and there are many aspects that remain unclear.

従来、酸化カルシウム、水酸化カルシウム、炭酸カルシ
ウムなどを吸収剤としてSo、と反応させ得られた亜硫
酸化合物を酸化して石膏を回収する方法として大別して
以下の通り二種類あることが知られている。
Conventionally, it is known that there are two types of methods for recovering gypsum by oxidizing sulfite compounds obtained by reacting calcium oxide, calcium hydroxide, calcium carbonate, etc. with So as an absorbent, as shown below. .

その一つは、前出(1)および(2)の反応を吸収装置
で行なわせ、得られた亜硫酸カルシウムの酸化反応(3
)は吸収装置とは別個に設けた酸化装置で行なわせる方
法である。また他の方法は吸収装置本体に吸収液を循環
供給する液溜めに空気の微細な気泡を発生する機構を設
けて、吸収液中の亜硫酸カルシウムを酸化する方法であ
る。
One of them is to carry out the reactions (1) and (2) above in an absorption device, and the resulting oxidation reaction (3
) is a method in which the oxidation device is provided separately from the absorption device. Another method is to oxidize calcium sulfite in the absorption liquid by providing a mechanism for generating fine air bubbles in a liquid reservoir that circulates and supplies the absorption liquid to the absorption apparatus main body.

いずれも酸化剤としては一般に空気を利用し酸化装置と
して通気槽を用いるが、酸化速度を向上させ、通気量の
低減を計るため種々の工夫が為されてきた。
In both cases, air is generally used as the oxidizing agent and an aeration tank is used as the oxidizing device, but various efforts have been made to improve the oxidation rate and reduce the amount of aeration.

(酸化装置を別置きする場合には・操作圧力を1〜s 
kg/ alとし、酸素の利用率を高める方法が一般的
である。吸収装置本体で酸化を行なわせる場合には被処
理ガスである排ガスが常圧であることから、加圧下で運
転可能な液溜めを設置することは経済的に不利であるた
め、酸化反応を促進するマンガン等の液相触媒を添加す
る方法等が公知である。
(If the oxidizer is installed separately, the operating pressure should be 1 to s.
kg/al to increase the oxygen utilization rate. When oxidation is performed in the absorber itself, the exhaust gas to be treated is at normal pressure, so it is economically disadvantageous to install a liquid reservoir that can operate under pressure, so the oxidation reaction is promoted. A method of adding a liquid phase catalyst such as manganese is known.

両者に共通する欠点として亜硫酸カルシウムの硫酸カル
シウムへの転換率を連続的かつ簡単に測定する方法が見
当たらず、従って硫酸カルシウムへの転換率を高めに維
持しようとすれば、負荷変動等を考慮して空気流量を常
に過剰に供給せざるを得ないのが現状であった。すなわ
ち循環液を随時サンプリングし、ヨウ素による酸化還元
滴定法により亜硫酸カルシウム濃度を測定し、所定濃度
以下となるよう空気流量を間欠的に調整するが、この際
、亜硫酸カルシウム濃度が増加すると最終副製品である
石膏の品位が低下するとともに、特に前記吸収装置本体
で酸化を行なう方式に於いてはSo、の吸収性能の低下
、吸収剤であるカルシウム化合物との反応性低下等の不
都合がおきることを見い出しておシ前述のとおり通気流
量を過剰供給する必要があつた。通気流量を過剰に供給
することはランニングコストの増大につながり従来の通
気酸化方法の主たる欠点であった。
A common drawback of both methods is that there is no way to continuously and easily measure the conversion rate of calcium sulfite to calcium sulfate. The current situation is that an excessive amount of air flow must always be supplied. In other words, the circulating fluid is sampled from time to time, the concentration of calcium sulfite is measured by redox titration using iodine, and the air flow rate is intermittently adjusted to keep the concentration below a predetermined level. In addition to deteriorating the quality of gypsum, especially in the method in which oxidation is carried out in the absorber body, disadvantages such as a decrease in the absorption performance of So and a decrease in reactivity with the calcium compound that is the absorbent may occur. As mentioned above, it was necessary to supply an excessive amount of ventilation flow. Providing excessive aeration flow rate leads to increased running costs and has been a major drawback of conventional aerobic oxidation methods.

(発明が解決しようとする問題点) 本発明は上記従来法の欠点を一掃するものであり、特に
吸収液循環液溜め内で酸化反応を行なわせる方法に最適
な方法を提案するものである。
(Problems to be Solved by the Invention) The present invention eliminates the drawbacks of the above-mentioned conventional methods, and particularly proposes an optimal method for carrying out an oxidation reaction within the absorption liquid circulation reservoir.

(発明者の知見) 本発明者らは、前記の種々の成分が、脱硫性能へ与える
影響について詳細に実験究明していく過程で、臥収塔循
環スラリーの酸化還元電位(以下、ORPという)とス
ラリー中の亜硫酸カルシウム濃度に一定の関係があるこ
とを見出した。
(Findings of the Inventors) In the process of conducting detailed experimental studies on the effects of the various components mentioned above on desulfurization performance, the present inventors discovered that the oxidation-reduction potential (hereinafter referred to as ORP) of the slurry circulating in the sleeping tower It was found that there is a certain relationship between the concentration of calcium sulfite and the concentration of calcium sulfite in the slurry.

(問題点を解決するだめの手段) 本発明は上記知見によって完成されたものであって、S
O2を含む排ガスを吸収塔にてカルシウム化合物を含む
吸収塔循環スラリーと接触させて脱硫処理する方法に於
いて、該スラリー中に酸素を含む気体を吹き込み、該ス
ラリーの酸化還元電位を連続的に検知することによって
前記酸素を含む気体の流量を制御し、スラリー中の亜硫
酸カルシウムを完全酸化するよう調整することを特徴と
する排煙脱硫方法である。
(Means for solving the problem) The present invention has been completed based on the above knowledge, and
In the method of desulfurization treatment by bringing exhaust gas containing O2 into contact with absorption tower circulation slurry containing calcium compounds in an absorption tower, a gas containing oxygen is blown into the slurry to continuously increase the redox potential of the slurry. This flue gas desulfurization method is characterized in that the flow rate of the oxygen-containing gas is controlled by the detection, and adjusted to completely oxidize calcium sulfite in the slurry.

第1図はBoz 1300 ppmを含む排ガスをカル
シウム化合物を含むスラリーと接触させて脱硫処理した
場合の循環液のORPと亜硫酸濃度の関係につき一例を
示したものである。
FIG. 1 shows an example of the relationship between the ORP and the sulfite concentration of the circulating fluid when exhaust gas containing 1300 ppm of Boz is desulfurized by contacting it with a slurry containing a calcium compound.

液中の亜硫酸濃度にORPは鋭敏に関係し、極く僅かの
亜硫酸が存在してもORPは低値を示す一方、亜硫酸濃
度が下がると急激に高値を示す。
ORP is sensitively related to the sulfite concentration in the liquid, and while ORP shows a low value even in the presence of a very small amount of sulfite, it suddenly shows a high value as the sulfite concentration decreases.

また、循環液中の亜硫酸濃度は吸収塔下部に設けた液溜
めに供給する空気の供給量と第2図に例示したような相
関のある実験結果を得だ。
In addition, we obtained experimental results showing that the sulfite concentration in the circulating fluid is correlated with the amount of air supplied to the liquid reservoir provided at the bottom of the absorption tower, as illustrated in Figure 2.

すなわち、空気流量を増加していくと酸化速度が増加し
、従って亜硫酸濃度が減少し、ついで図中B点を越える
と亜硫酸が消失することを見い出しだ。また第2図に併
記したようにB点までは脱硫率は顕著に向上することが
観察された。
That is, it was discovered that as the air flow rate increases, the oxidation rate increases, and therefore the sulfite concentration decreases, and then, when the point B in the figure is exceeded, the sulfite disappears. Furthermore, as shown in FIG. 2, it was observed that the desulfurization rate significantly improved up to point B.

本発明者らは、第1図と第2図の事実に着目し、本発明
を提案するに至ったものである。すなわち従来第2図の
関係は運転中間欠的に循環液をサンプリングしヨウ素に
よる酸化還元法等の手分析により得ていたため自ずと分
析頻度には限界があった。排ガスの量、S02の濃度等
は排出源であるボイラー等の負荷条件により大幅に異な
りその変化速度も一般に急激である。上述の分析事情か
ら負荷変動等を考慮して脱硫性能を維持するためには、
空気酸化量を第2図のB点より過剰側に設定せざるを得
ないことになり、ランニングコスト上好ましくなかった
The present inventors focused on the facts shown in FIGS. 1 and 2 and came to propose the present invention. That is, conventionally, the relationship shown in FIG. 2 has been obtained by sampling the circulating fluid intermittently during operation and manually analyzing it by oxidation-reduction method using iodine, which naturally limits the frequency of analysis. The amount of exhaust gas, the concentration of S02, etc. vary greatly depending on the load conditions of the boiler, etc. that is the emission source, and the rate of change is generally rapid. Based on the analytical circumstances mentioned above, in order to maintain desulfurization performance in consideration of load fluctuations, etc.
The amount of air oxidation had to be set in excess of point B in FIG. 2, which was unfavorable in terms of running costs.

第1図に示しだORPと亜硫酸濃度の相関関係を一度求
めて検定線を得ておけば、循環液中の亜硫酸濃度が消失
するよう、すなわちORPが第1図中Arn’7と浸る
よう空気流量を連続的に設定することが可能になる。す
なわち、ORPがAInV以下であればその偏差に応じ
て空気流量を一増加1     1、 ORPがAI’
7以上と々つだ場合にはその偏差に応じて空気流量を減
じるいわゆる比例制御が適用可能である。
Once you have determined the correlation between ORP and sulfite concentration shown in Figure 1 and obtained a verification line, you can air air so that the sulfite concentration in the circulating fluid disappears, that is, ORP is submerged with Arn'7 in Figure 1. It becomes possible to set the flow rate continuously. In other words, if ORP is less than AInV, the air flow rate is increased by one according to the deviation1, and ORP is AI'
If the difference is 7 or more, so-called proportional control can be applied to reduce the air flow rate according to the deviation.

第1図、第2図に示しだとおり亜硫酸濃度の低い領域で
は亜硫酸濃度により脱硫性能は著しく影響されるが、こ
の領域では同時にORPの変化も顕著である。従ってO
RPによって亜硫酸濃度の僅かな変化を検知し、前述の
比例制御によシ亜硫酸が消失するのに最小限必要な空気
流量に設定調整することができ、これにより必要な脱硫
性能を保持することが可能となる。
As shown in FIGS. 1 and 2, desulfurization performance is significantly affected by the sulfite concentration in the region where the sulfite concentration is low, but at the same time, the change in ORP is also significant in this region. Therefore O
The RP detects slight changes in the sulfite concentration, and the proportional control described above allows the setting to be adjusted to the minimum air flow rate required for the sulfite to disappear, thereby maintaining the necessary desulfurization performance. It becomes possible.

ORPは電極を循環液に浸すだけで極めて容易に測定で
き、測定時間の遅れもないため、測定の遅れを考慮して
過剰の空気を供給する必要もなく、負荷変動に対する追
従性も良好である。
ORP can be measured extremely easily by simply immersing the electrode in the circulating fluid, and there is no measurement time delay, so there is no need to supply excess air to account for measurement delays, and it follows load fluctuations well. .

常時必要最小限の空気を供給することは、ランニングコ
ストの削減上非常に有利である。
Constantly supplying the minimum amount of air required is very advantageous in terms of reducing running costs.

次に本発明の実施態様を明らかにするため第3図にもと
づいて説明する。
Next, an embodiment of the present invention will be explained based on FIG. 3 in order to clarify the embodiment.

第5図に於いてso2を含む排ガスはダクト1を通って
吸収塔2に導入され、浄化後のガスはダクト3を通って
大気に放出される。
In FIG. 5, exhaust gas containing SO2 is introduced into an absorption tower 2 through a duct 1, and the purified gas is discharged into the atmosphere through a duct 3.

吸収塔2内では排ガスとライン4を通って吸収塔2内に
スプレーされる吸収液が接触し80゜は吸収液中に吸収
され亜硫酸カルシウム(aaso、)となる。Oa S
 03を含む吸収液は、吸収塔2の下部にある循環液留
め5内で、ライン6をとおり分散ノズル7より細かい気
泡となって吹き込まれる空気と接触し、石膏(C!a8
04  )を生成する。
In the absorption tower 2, the exhaust gas and the absorption liquid sprayed into the absorption tower 2 through the line 4 come into contact, and 80° is absorbed into the absorption liquid and becomes calcium sulfite (aaso). OaS
The absorption liquid containing 03 comes into contact with the air that is blown into fine bubbles from the dispersion nozzle 7 through the line 6 in the circulating liquid retainer 5 at the bottom of the absorption tower 2, and forms gypsum (C!A8).
04).

もちろん排ガス中に存在する酸素により吸収塔2内でも
C!aE103の一部が酸化されるが、通常は酸素濃度
が低く、酸化を完了するためには、液留め5内への空気
吹き込みが必要であることが多い。循環液のORPは液
留め5内に設置した電極8によシ検出する。ORPの設
置位置は液留め5内に限定するものではなくライン4の
途中に設置することも、もちろん可能である。電極8と
しては通常使用されている白金電極が適用可能である。
Of course, due to the oxygen present in the exhaust gas, C! Although a portion of the aE 103 is oxidized, the oxygen concentration is usually low and it is often necessary to blow air into the reservoir 5 to complete the oxidation. The ORP of the circulating fluid is detected by an electrode 8 installed in the reservoir 5. The installation position of the ORP is not limited to the inside of the liquid reservoir 5, and it is of course possible to install it in the middle of the line 4. As the electrode 8, a commonly used platinum electrode can be used.

電極8により検知されたORPはライン9によシ調節計
10に送られ、ここであら力)じめ設定されたORP電
圧との偏差に応じてコントロールバルブ12の開閉信号
をライン11を通じて送る。コントロールパルプ12に
よシ液留め5内に供給する必要最小限の空気流量が設定
される。
The ORP detected by the electrode 8 is sent to a controller 10 via a line 9, which sends an opening/closing signal for a control valve 12 via a line 11 depending on the deviation from the previously set ORP voltage. The minimum required air flow rate to be supplied into the liquid retainer 5 by the control pulp 12 is set.

0a803 が酸化消失した吸収液は循環ポンプ14に
よシライン4を通じて再度吸収塔2内にスプレーされる
。吸収液のPHはライン13によシ供給される炭酸カル
シウムスラリーによシ調整され又循環液の一部はライン
15によシ抜き出され石膏を分離される。
The absorption liquid in which Oa803 has been oxidized and disappeared is sprayed into the absorption tower 2 again through the cylinder line 4 by the circulation pump 14. The pH of the absorption liquid is adjusted by calcium carbonate slurry supplied through line 13, and a portion of the circulating liquid is taken out through line 15 to separate the gypsum.

調節計10にはあらかじめORP電圧を入力する必要が
あるが、これは亜硫酸濃度とORPの相関関係を求めて
検量線を作成し、その結果から設定する必要がある。こ
の際ORPは亜硫酸以外の溶解液成分にも多少影響され
るため対象排脱装置固有の検量線を作成する必要がある
It is necessary to input the ORP voltage into the controller 10 in advance, but it is necessary to determine the correlation between the sulfite concentration and ORP, create a calibration curve, and set it based on the results. At this time, since ORP is influenced to some extent by components of the solution other than sulfite, it is necessary to create a calibration curve specific to the target evacuation device.

次に本発明の作用効果を明らかにするため実施例を示す
Next, examples will be shown to clarify the effects of the present invention.

実施例 第3図に示した実施態様に於いて、ボイラー排ガスの一
部を約a o o o m3N/h分取し排ガスを24
時間連続処理したところライン6より供給される空気流
量の平均値は次のとおシであり、負荷追従時も含め、変
動幅は±20m”N/h であった。
Example In the embodiment shown in FIG.
After continuous processing over time, the average value of the air flow rate supplied from line 6 was as follows, and the fluctuation range was ±20 m''N/h, including during load following.

24時間平均の空気流量は579m”H/hであった。The 24-hour average air flow rate was 579 m''H/h.

なお入口EIO,は約2000 ppmで一定であり、
脱硫率は96%以上を維持できた。運転期間中に供給し
た吸収剤である炭酸カルシウムの総量は、排ガスより吸
収したSo、総量の1.04モル比相当であった。
Note that the inlet EIO is constant at about 2000 ppm,
The desulfurization rate was maintained at 96% or higher. The total amount of calcium carbonate as an absorbent supplied during the operation period was equivalent to 1.04 molar ratio of the total amount of So absorbed from the exhaust gas.

又確認のため循環液を1回/ hr  の頻度でサンプ
リングし亜硫酸濃度を測定したところいずれもα5 m
moL/ t 以下であった。
In addition, for confirmation, the circulating fluid was sampled once per hour and the sulfite concentration was measured, and in all cases it was α5 m
It was less than moL/t.

比較例 (第3図に示した実施態様に於いてORPによる空気制
御系すなわち電極8、調節計1,0、ライプ12を手動
により調整し、他は実施例と全く同じ条件で排ガスを処
理したところ24時間平均の空気流量は415 m”l
J/h  であシ変動幅は±60 m”N / hであ
った。なお入口So、は実施例と同じ約2 o o o
 ppmで一定であり、脱硫率は94%以上であった。
Comparative Example (In the embodiment shown in Fig. 3, the ORP air control system, that is, electrode 8, controllers 1 and 0, and pipe 12, were manually adjusted, and the exhaust gas was treated under the same conditions as in the example. However, the 24-hour average air flow rate is 415 m"l.
J/h, the fluctuation range was ±60 m”N/h. The entrance So, was approximately 2 o o o, the same as in the example.
The desulfurization rate was constant at ppm, and the desulfurization rate was 94% or more.

運転期間中に供給した炭酸カルシウムの総量は排ガスよ
り吸収したEIO,総量の1.08モル比相当であった
The total amount of calcium carbonate supplied during the operation period was equivalent to 1.08 molar ratio of the total amount of EIO absorbed from the exhaust gas.

空気流量の調整は循環液を1回/ hr  の頻度でサ
ンプリングし実施したが、亜硫酸濃度の最大値は55 
mmot/ L であった。
The air flow rate was adjusted by sampling the circulating fluid once/hr, but the maximum sulfite concentration was 55.
mmot/L.

以上実施例と比較例よシ、本発明の方法によれば空気流
量の削減と脱硫性能の維持が達成できることが明らかで
ある。
From the above Examples and Comparative Examples, it is clear that the method of the present invention can reduce the air flow rate and maintain desulfurization performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明を提案する根拠となる循環液中
の亜硫酸濃度とORP fiび循環液中の亜硫酸濃度と
液留め供給空気量の関係を示す相関図であり、第3図は
本発明の一実施態様を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 循環液中凭硫酸濃度一阻0”/4!;)辛気イへ給1F
 (オ目討値) 第3図
Figures 1 and 2 are correlation diagrams showing the relationship between the sulfite concentration in the circulating fluid, the ORP fi, the sulfite concentration in the circulating fluid, and the amount of air supplied to the reservoir, which are the basis for proposing the present invention. FIG. 1 is a diagram showing one embodiment of the present invention. Among the sub-agents: 1) Akihabara agent Ryo Hagiwara - Concentration of sulfuric acid in circulating fluid 0"/4! ;) Supply to 1F
(Target value) Figure 3

Claims (1)

【特許請求の範囲】[Claims] SO_2を含む排ガスを吸収塔にてカルシウム化合物を
含む吸収塔循環スラリーと接触させて脱硫処理する方法
に於いて、該スラリー中に酸素を含む気体を吹き込み、
該スラリーの酸化還元電位を連続的に検知することによ
つて前記酸素を含む気体の流量を制御し、スラリー中の
亜硫酸カルシウムを完全酸化するよう調整することを特
徴とする排煙脱硫方法。
In a method of desulfurizing exhaust gas containing SO_2 by contacting it with an absorption tower circulation slurry containing calcium compounds in an absorption tower, blowing a gas containing oxygen into the slurry,
A flue gas desulfurization method characterized in that the flow rate of the oxygen-containing gas is controlled by continuously detecting the redox potential of the slurry so as to completely oxidize calcium sulfite in the slurry.
JP59120739A 1984-06-14 1984-06-14 Waste gas desulfurization Granted JPS61433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120739A JPS61433A (en) 1984-06-14 1984-06-14 Waste gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120739A JPS61433A (en) 1984-06-14 1984-06-14 Waste gas desulfurization

Publications (2)

Publication Number Publication Date
JPS61433A true JPS61433A (en) 1986-01-06
JPH0359731B2 JPH0359731B2 (en) 1991-09-11

Family

ID=14793784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120739A Granted JPS61433A (en) 1984-06-14 1984-06-14 Waste gas desulfurization

Country Status (1)

Country Link
JP (1) JPS61433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250931A (en) * 1986-04-23 1987-10-31 Babcock Hitachi Kk Wet exhaust gas desulfurization control device
JPS62258727A (en) * 1986-05-06 1987-11-11 Chiyoda Chem Eng & Constr Co Ltd Method for desulfurization and dust removal from waste gas
JPH0699021A (en) * 1992-09-18 1994-04-12 Nippon Steel Corp Biological deodorization method
JP2008178785A (en) * 2007-01-24 2008-08-07 Chugoku Electric Power Co Inc:The Method of coping with occurrence of hyperoxidation state in exhaust gas desulfurization apparatus
JP2008178784A (en) * 2007-01-24 2008-08-07 Chugoku Electric Power Co Inc:The Countermeasure against calcium sulfite concentration elevation in flue gas desulfurizer
FR2954177A1 (en) * 2009-12-23 2011-06-24 Inst Francais Du Petrole Absorbing solution acid gas i.e. carbon dioxide, charge rate determining method for monitoring gas charge deacidification process in e.g. petrochemical industry, involves determining acid gas charge rate of absorbent solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250931A (en) * 1986-04-23 1987-10-31 Babcock Hitachi Kk Wet exhaust gas desulfurization control device
JPS62258727A (en) * 1986-05-06 1987-11-11 Chiyoda Chem Eng & Constr Co Ltd Method for desulfurization and dust removal from waste gas
JPH0699021A (en) * 1992-09-18 1994-04-12 Nippon Steel Corp Biological deodorization method
JP2008178785A (en) * 2007-01-24 2008-08-07 Chugoku Electric Power Co Inc:The Method of coping with occurrence of hyperoxidation state in exhaust gas desulfurization apparatus
JP2008178784A (en) * 2007-01-24 2008-08-07 Chugoku Electric Power Co Inc:The Countermeasure against calcium sulfite concentration elevation in flue gas desulfurizer
FR2954177A1 (en) * 2009-12-23 2011-06-24 Inst Francais Du Petrole Absorbing solution acid gas i.e. carbon dioxide, charge rate determining method for monitoring gas charge deacidification process in e.g. petrochemical industry, involves determining acid gas charge rate of absorbent solution

Also Published As

Publication number Publication date
JPH0359731B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
US5560893A (en) Method for controlling the oxidation of sulfites
US5766563A (en) Method for controlling the oxidation of sulfites in a flue gas desulfurization process
EP0815923B1 (en) Method for controlling oxidation in flue gas desulfurization
JPH1170316A (en) Desulfurization method for exhaust gas
EP0224627A1 (en) Method for desulfurizing exhaust gas
JPS61433A (en) Waste gas desulfurization
GB2159508A (en) Method for regulating concentration of sulfite
EP0518585B1 (en) Flue gas desulfurization process
US5879945A (en) Method for measuring oxidation-reduction potential in a flue gas desulfurization process
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JPH027847Y2 (en)
JPH0275322A (en) Operation of wet desulfurization apparatus
JPH0929063A (en) Exhaust gas treatment method and apparatus therefor
DK164489B (en) PROCEDURE FOR SULFUR GAS SULFURATION
JPS5992014A (en) Desulfurization of waste gas
JPH04222620A (en) Tank oxidation type wet desulfurization method
JPH03275122A (en) Wet type stack gas desulfurization plant
JPS6058229A (en) Control of flow amount of compressed air in oxidizing tower
JPS60125232A (en) Method for controlling ph of oxidation tower
JPH057727A (en) Control device of desulfurization equipment
JPH0581287B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term