JPS5992014A - Desulfurization of waste gas - Google Patents

Desulfurization of waste gas

Info

Publication number
JPS5992014A
JPS5992014A JP57202009A JP20200982A JPS5992014A JP S5992014 A JPS5992014 A JP S5992014A JP 57202009 A JP57202009 A JP 57202009A JP 20200982 A JP20200982 A JP 20200982A JP S5992014 A JPS5992014 A JP S5992014A
Authority
JP
Japan
Prior art keywords
slurry
amount
desulfurization
gas
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57202009A
Other languages
Japanese (ja)
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Naohiko Ugawa
直彦 鵜川
Susumu Okino
進 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57202009A priority Critical patent/JPS5992014A/en
Publication of JPS5992014A publication Critical patent/JPS5992014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To adjust a desulfurization factor, by controlling the supply amount of an Mn-compound into a Ca-compound-containing absorbing tower recirculation slurry by detecting the amount to be absorbed into the slurry of O2-gas blown into said slurry. CONSTITUTION:The flow amounts and the SO2-concns. of untreated exhaust gas and desulfurized exhaust gas are detected by detection terminals 2, 4 to calculate an SO2-absorbing amount S. A part of the recirculation slurry of an absorbing tower 3 is guided to an aeration tank 9 and the introducing amount A thereof is detected by a detector 8 while O2-containing gas is blown into the aeration tank 9. The flow amounts and O2-concns. of gases before and after blowing-in are detected by detection terminals 10, 11 to calculate an O2-absorbing amount C. A part of the recirculation slurry is withdrawn out of the system according to mass balance and an outflow amount is detected by a detector 15. When the supply amount of an Mn-compound is adjusted so as to set the value of (200XBXC)/(AXS) to about 5 or less, the control of a desulfurization factor is facilitated.

Description

【発明の詳細な説明】 本発明は排煙脱硫方法に関するもので、詳しくは石灰石
や消石灰やドロマイトなどのカルシウム化合物を吸収剤
原料として、燃焼排ガス中の5o2f除去するいわゆる
湿式石灰・石膏法排轡脱値方法の1−1(良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flue gas desulfurization method, and more specifically to a so-called wet lime/gypsum method for removing 5o2F from combustion flue gas using limestone, slaked lime, dolomite, or other calcium compounds as absorbent raw materials. Devalue method 1-1 (related to good).

湿式石灰・石膏性排煙脱硫装置での吸収工程では、5o
2f含む排ガスとOa (OH) 2 、0aOO3゜
caso3H’/2 H20,CaSO4・2 H20
OJ: ウZ溶解度(7) t’さなカルシウム化合物
を含むスラリーとを接触させ、排ガスからso2.’l
吸収するものであるが、そのSO,吸収反応を総括反応
式で表わすとso、 +0a(OH)2→0a803.
%H,O+%H20、−、・(11so2+aaco3
+y2H20−+ caso3−’72H20+0O2
−(21であり、排ガス中Oct’ll累によって次の
酸化反応も生じる。
In the absorption process of wet lime/gypsum flue gas desulfurization equipment, 5o
Exhaust gas containing 2f and Oa (OH) 2, 0aOO3°caso3H'/2 H20, CaSO4・2 H20
OJ: UZ solubility (7) t' is brought into contact with a slurry containing a calcium compound, and so2. 'l
The SO absorption reaction can be expressed as a general reaction formula: +0a(OH)2→0a803.
%H,O+%H20,-,・(11so2+aaco3
+y2H20-+ caso3-'72H20+0O2
-(21), and the following oxidation reaction also occurs due to Oct'll accumulation in the exhaust gas.

0aSO3,′AH20+%0. +%H20→0aS
O4−2H20(31このように総括反応式は単純であ
るが、実際の反応メカニズムはかがる単純なものでなく
、種々の溶解イオン、例えばOa2+、λ4f2−’、
 so: 、 Na”。
0aSO3,'AH20+%0. +%H20→0aS
O4-2H20 (31) Although the overall reaction formula is simple, the actual reaction mechanism is not as simple as it seems, and involves various dissolved ions such as Oa2+, λ4f2-',
so: , Na”.

so、 、 H80i、 Co3. HCOi、 H2
BO3,H2CO,、Ot−、F−。
so, , H80i, Co3. HCOi, H2
BO3, H2CO,, Ot-, F-.

At”、 IIX’、 820ニー、 H+、 OH−
71トカ%abテ4”l雑に関与したものであり、吸収
工程での脱硫性能に影#を及はす化学的因子tj多種多
様である。このことは現在も尚、いろいろな研究に基づ
いて種々異なった解析が行なゎハ、多様な脱硫方法が開
発されつつあることがらも明らかであり、気−液一固の
3相系でのSO2吸収反応の複雑さに加え、多種多岐に
亘る微量成分のもたらす脱硫性能への影響については解
明さilていないことが多い。微1%成分のうち比較的
良く知られているものに燃焼排ガス中でif: so2
以外にNO,、アンモニア化合物、ハロゲン化合物、ば
いじんなどがあり、またS02の吸収剤として使用され
るOa (OH)2やcaco3は天然に産する石灰岩
やドロマイトから調整される為に、アルミニウム化合物
、ケイ素化合物、鉄化合物、マンガン化合物などを不純
物として含有している。更に湿式法では不可欠の補給水
も不純物を含んでいることは言う壕でもない。
At", IIX', 820 knee, H+, OH-
There are various chemical factors that affect the desulfurization performance in the absorption process.This fact is still being confirmed based on various studies. It is clear that a variety of desulfurization methods are being developed. The influence of trace components on desulfurization performance is often not understood.Among the trace 1% components, one that is relatively well known is IF: SO2 in combustion exhaust gas.
In addition, there are NO, ammonia compounds, halogen compounds, dust, etc. Oa (OH) 2 and caco 3 used as absorbents for S02 are prepared from naturally occurring limestone and dolomite, so aluminum compounds, Contains impurities such as silicon compounds, iron compounds, and manganese compounds. Furthermore, it is no secret that the make-up water, which is essential in the wet method, also contains impurities.

本発明者らは、これらの種々成分の脱硫性能への影響な
どを詳細に調査研究していく過程で、マンガン化合物が
脱硫性能に特異的な影響を与えることを見い出し、本発
明を完成するに至った0 本発明は%  802 k含む排ガス全カルシウム化合
物を含むスラリーと接触させて脱硫処理する方法に於い
て、該スラリーの一部を通気槽に導入し、この通気槽内
のスラリーに酸素を含む気体を吹き込んで、通気槽内で
の酸素の吸収量を検出する機能をもたせ、この酸素吸収
1.を検知することによって前記排ガスと接触させるス
ラリーにマンガン化合物を供給し、脱硫蓋を調整するこ
とを特徴とする排煙脱硫法である。
In the process of conducting detailed research into the effects of these various components on desulfurization performance, the present inventors discovered that manganese compounds have a specific effect on desulfurization performance, and in completing the present invention. The present invention is a method for desulfurization treatment by bringing the exhaust gas into contact with a slurry containing 802% total calcium compounds, in which a part of the slurry is introduced into an aeration tank, and oxygen is introduced into the slurry in the aeration tank. This oxygen absorption 1. This flue gas desulfurization method is characterized by supplying a manganese compound to the slurry that is brought into contact with the exhaust gas and adjusting the desulfurization lid by detecting this.

第1図は、5o2j 200 ppmヲ含むガスをカル
シウム化合物を含むスラリーと接触させて脱硫処理した
場合の脱硫率がスラリー中のマンガン化合物濃度(Mn
  としてmf/l )  によって変化する様子全本
発明者らが見い出t7た結果に基づいて図示したもので
ある。
Figure 1 shows that the desulfurization rate when desulfurization treatment is carried out by contacting a gas containing 200 ppm of 5o2j with a slurry containing calcium compounds depends on the manganese compound concentration (Mn) in the slurry.
The changes depending on mf/l) are all illustrated based on the results found by the present inventors.

第1図から明らかなように、マンガン濃度が増加すると
脱硫率が一旦低下し、次いで向上するという特異的な変
化をする0従って、マンガン濃度を変えることによって
脱硫率をsl’に整する場合、第1図の(1)点か又は
(11)点かでマンガン0度を増やすか減らすという全
く逆の操作をする必要があることを見い出した。
As is clear from FIG. 1, when the manganese concentration increases, the desulfurization rate decreases and then increases in a specific manner. Therefore, when adjusting the desulfurization rate to sl' by changing the manganese concentration, It has been found that it is necessary to perform the exact opposite operation of increasing or decreasing the manganese 0 degrees at point (1) or point (11) in FIG.

マンガン濃度は1 mW/ 1〜1000 mV/lの
微量な濃度範囲であり、スラリー中のカルシウム化合物
濃度が10〜20 wt%程度であるのに比べるとける
かに少ないため、マンガン濃度を連続的に瞬一時測定で
きないから、湿式排煙脱硫装置を運用する為には友だち
にマンガン濃度を予測する手段が必要である0これは第
2図の0)の相関線に示したように、脱硫処理に供して
いるスラリーの一部を通気槽に導入し、この通気構内の
スラリーに酸素を含む気体を吹き込んで通気槽内での酸
素の吸収量を酸素ガスメーターとガス流量計を使用して
検出すれば、その酸素の吸収量はスラリー中のマンガン
濃度と単純な相関関係になることを見い出した0 従って、一度第2図の相関線(B)の検量線を作成して
おけば、後は通気槽での酸素吸収量で、マンガン濃度を
予測することができる。
The manganese concentration is in a very small concentration range of 1 mW/1 to 1000 mV/l, which is much lower than the calcium compound concentration in the slurry, which is about 10 to 20 wt%. Since instantaneous measurement is not possible, a means of predicting the manganese concentration is required in order to operate a wet flue gas desulfurization equipment. This is due to the fact that the concentration of manganese is predicted by the correlation line 0) in Figure 2. A part of the slurry being served is introduced into an aeration tank, a gas containing oxygen is blown into the slurry in the aeration tank, and the amount of oxygen absorbed in the aeration tank is detected using an oxygen gas meter and a gas flow meter. It was discovered that the amount of oxygen absorbed has a simple correlation with the manganese concentration in the slurry. Therefore, once the calibration curve of the correlation line (B) in Figure 2 is created, all that is left is to adjust the aeration tank. Manganese concentration can be predicted by the amount of oxygen absorbed at

酸素吸収量は、市販の酸素ガスメーターとガス流量計を
使用し、通気槽入口ガスと出口ガスの酸素量の差分を計
算すると簡単にしかも連続的に検知し得る。
The amount of oxygen absorbed can be easily and continuously detected by using a commercially available oxygen gas meter and gas flow meter and calculating the difference in the amount of oxygen between the inlet gas and the outlet gas of the aeration tank.

通気セルでの酸素吸収量の大小は、スラリー中の亜硫酸
塩濃度の大小に関連することは前記の(3)式の化学反
応式に基づいて説明さiするが、スラリー中のマンガン
濃度が増えると吸収工程でSO2がスラリーに吸収され
る際に排ガス中の酸素による(3)式の酸化反応も促進
され、スラリー中の亜硫酸塩濃度が少なくなってし1う
為に、通気槽での酸素吸収量が少なくなるものと考えら
れる。
It is explained based on the chemical reaction equation (3) above that the amount of oxygen absorbed in the aeration cell is related to the sulfite concentration in the slurry, but as the manganese concentration in the slurry increases When SO2 is absorbed into the slurry in the absorption process, the oxidation reaction of equation (3) by oxygen in the exhaust gas is also promoted, and the sulfite concentration in the slurry decreases. It is thought that the amount of absorption will decrease.

マンガン化合物は従来から酸化反応を促進する触媒とし
て良く知られており、湿式vト煙脱饋法における吸収工
程にマンガン化合物全供給して酸化による石膏生成全促
進することも公知文献に記載されているが、第1図のよ
うな脱硫率に・特徴的な現象の認められることは全く知
られていない。
Manganese compounds have long been well known as catalysts that promote oxidation reactions, and it is also described in known literature that manganese compounds are fully supplied to the absorption process in the wet vapor dehydration method to fully promote gypsum production through oxidation. However, it is completely unknown that there is a phenomenon characteristic to the desulfurization rate as shown in Figure 1.

本発明は、第1図の現象から脱硫率を調整するのにマン
ガン濃度の調整を行なうことを利月1すること、及び第
2図に示したようにスラリ−中のマンガン濃度の予測を
通気槽での酸素吸収1jを検知することによって行なう
ことを特徴とするものである。
The present invention utilizes the method of adjusting the manganese concentration to adjust the desulfurization rate based on the phenomenon shown in FIG. 1, and the prediction of the manganese concentration in the slurry as shown in FIG. This method is characterized in that it is carried out by detecting oxygen absorption 1j in the tank.

第2図の(B1に示した酸素吸収量とマンガン濃度の相
関線と第1図の脱硫率とマンガン濃度の相関線を合成す
ると第2図の(A)に示したように通気槽での酸素吸収
−itと吸収工程出口排ガス中の802 (JU度の相
関線が得られる。乙の第2図の(A)から明らかなよう
に通気槽での酸素吸収量がゼロに近づくと出ロSO,濃
度も低くなり、最高の脱硫率が得られることが分かる0 従って、通気槽内での酸素吸収足金検出するだけで、吸
収工程での脱硫性能を知ることができる訳である0そし
て、酸素吸収量の調整は第2図(B)の相関に基づきス
ラリー中のマンガン濃度を調整することによって行える
0 通気槽内での酸素吸収量が定常状態に於いて吸収工程で
のSO2吸収量の約5モル襲以下のモル数となるように
、マンガン濃度を調整すれば第2図(A)のピークの左
側で操作できることがわかった。第2図に於いて11通
気41Q1内での酸素ガス吸収量が約5 (mol/h
 )になる所の値が吸収工程でのSO,吸収量の約5モ
ル係に相当する0つまり吸収工程での脱硫率全調整する
のに、吸収工程から通気槽へのスラリー導入6jヲ定常
状態に於いてA(t/b)とし、通気槽での酸素ガス吸
収量’t C(mo’l/h )とし、1だ吸収工程で
の802吸収fj3′、f:定常状態に於いてS (m
o]/h )とし、吸収工程から系外に抜きtJJすス
ラリー流量ヲ定常状態に於いてB (t/h lとする
ととなるようにO−i調整、即ちマンガンa度合調整す
れば良いことを実験的に見い出した。こねによって第1
図の(II)の側だけで操作が可能となり(1)の側に
入ることを阻止することができるようになる。
When the correlation line between oxygen absorption and manganese concentration shown in Figure 2 (B1) is combined with the correlation line between desulfurization rate and manganese concentration in Figure 1, the result in the aeration tank is as shown in Figure 2 (A). A correlation line between oxygen absorption-IT and 802 (JU degree) in the exhaust gas at the exit of the absorption process can be obtained. It can be seen that the highest desulfurization rate can be obtained with a lower SO concentration. Therefore, it is possible to know the desulfurization performance in the absorption process just by detecting the oxygen absorption level in the aeration tank. , the amount of oxygen absorbed can be adjusted by adjusting the manganese concentration in the slurry based on the correlation shown in Figure 2 (B). It was found that by adjusting the manganese concentration so that the number of moles is about 5 moles or less, it is possible to operate on the left side of the peak in Figure 2 (A). Gas absorption amount is approximately 5 (mol/h
) is 0, which corresponds to approximately 5 moles of SO in the absorption process and the absorption amount.In other words, in order to fully adjust the desulfurization rate in the absorption process, it is necessary to introduce slurry from the absorption process to the aeration tank in a steady state. A (t/b) in the aeration tank, the amount of oxygen gas absorbed in the aeration tank 't C (mol/h), and the 802 absorption in the absorption process fj3', f: S in the steady state. (m
o]/h), and the slurry flow rate tJJ extracted from the system from the absorption process is B (t/h l) in a steady state. We experimentally discovered that the first
Operation is possible only on the side (II) in the figure, and it is possible to prevent the operation from entering the side (1).

第5図に上記量論関係を含めた本発明の一実施態様を実
施例によって次に説明する。
An embodiment of the present invention including the above-mentioned stoichiometric relationship shown in FIG. 5 will be described below by way of an example.

実施例1 第5図に於いて約1600 ppmのSO2を含んだ約
2000 m3N/klの排ガス1はガス流量及びSO
2吸収量度を検出する検出端2を有するダクトを通って
吸収塔5に入り、カルシウム化合物を含むスラリーと接
触させて脱硫処理された後、SO□濃度検出端4を有す
るダクトを通って吸収塔から出て行く。検出端2及び4
の信号を演算する機能を備えたSO2吸収量検出器5に
於いてSO2吸収′hLB (mol/h )を求める
ことができる。吸収塔5でHso2吸収箭にはy当量の
aaco3やca (OH) 2などの802吸収剤と
なり得るカルシウム化合物を含むスラリーがライン6か
ら供給され、吸収塔循環ポンプ7を介して多量のスラリ
ーが循環している。この吸収塔循環スラリーの一部が流
量検出器8を介して通気槽9に導かれる。通気′m9で
け酸素ガスを含んだ気体がガス流量及び02 0度を検
出する検出端10を有するライン11全通して槽内のス
ラリーに吹き込1れ、残ガスがガス流量及び02  濃
度を検出する検出端12全有するライン15を介1〜て
排出される。検出端10及び12の信号を演算する酸素
ガス吸収量検出器14に於いて酸素ガス吸収i 0 (
mol/h ) f求めることができる0またS02吸
収量に見合ってライン6から吸収剤が供給されるので、
マスバランスに従って吸収塔循環スラリーの一部を流量
検出器15で流−1Ii全検出しながら吸収塔から抜き
出す0流鼠検出器8及び15によって求められる流栖全
各々A(t/h)及びB (1/h)とすると、前述の
B(mol/h ) 、  C(mo]、/b )の演
p値をハ1いて(200XBXC)/(AXSJ  O
値が求めらhる。
Example 1 In Fig. 5, the exhaust gas 1 of about 2000 m3N/kl containing about 1600 ppm SO2 is
2 It enters the absorption tower 5 through a duct having a detection end 2 for detecting the degree of absorption, and after being brought into contact with a slurry containing a calcium compound and subjected to desulfurization treatment, it passes through a duct having an SO□ concentration detection end 4 to the absorption tower. go out from Detection end 2 and 4
The SO2 absorption 'hLB (mol/h) can be determined in the SO2 absorption amount detector 5 having a function of calculating the signal. In the absorption tower 5, a slurry containing a calcium compound that can be used as an 802 absorbent such as aaco3 or ca (OH) 2 in an amount of y is supplied to the Hso2 absorber from a line 6, and a large amount of the slurry is passed through the absorption tower circulation pump 7. It's circulating. A portion of this absorption tower circulation slurry is led to an aeration tank 9 via a flow rate detector 8 . In the ventilation 'm9, gas containing oxygen gas is blown into the slurry in the tank through the entire line 11 having a detection end 10 for detecting the gas flow rate and 020 degrees, and the remaining gas is used to detect the gas flow rate and 02 concentration. It is discharged through a line 15 having all the detection ends 12 for detection. Oxygen gas absorption i 0 (
mol/h) f can be determined0Also, since absorbent is supplied from line 6 in proportion to the amount of S02 absorbed,
According to the mass balance, a part of the circulating slurry in the absorption tower is extracted from the absorption tower while the flow rate detector 15 detects the entire stream-1Ii. (1/h), the above-mentioned p value of B (mol/h), C (mo], /b) is multiplied by (200XBXC)/(AXSJ O
The value is found.

実施例ではライン16から6ir酸マンガンを供給し、
吸収塔循環スラリー中のマンガン濃度全種々変えて運転
した時の定常状態圧於ける脱(jf率を第1図に示し、
通気槽内での酸素ガス吸収量0 (mol/h )との
相関図を第2図に示した。
In the example, manganese 6ir acid is supplied from line 16,
Figure 1 shows the desorption (jf ratio) under steady state pressure when operating with various manganese concentrations in the circulating slurry of the absorption tower.
A correlation diagram with the amount of oxygen gas absorbed in the aeration tank (0 (mol/h)) is shown in FIG.

第1図の最低脱硫率がイ(Iられた場合のマンガン濃度
は約40 mV/lであり、第2図に於いて出口S02
が最高になった場合と一致し、(200XBXO)/(
AXS)は約5(約5モル%)であツ7(。従って、(
200XBXO)/ (AXS )の値が5以下になっ
ても或い1115以上になっても脱硫率は向上するが、
好ましくFiS以下の領−域、つまりCが小さくなると
脱硫率が向上する領域で吸収操作を行わしめる方がマン
ガン化合物の供給量調整が容易であり、脱硫率をコント
ロールし易い利点がある。すなわち、Mn 濃度を調整
する場合、その鱗度が薄い第2図(A)のピークの右側
の領域では、第2図(A1. (B)から明らかなよう
に、僅かのMn 濃度変動が02  ガス吸収量及び吸
収工程出口排ガス中の5O2a度の大きな変化をもたら
すので、運転操作が難しくなる。一方、第2図(A)の
ピークの左側の領域ではMn  6度調整が比較的大ま
かで連相できる。例えば、五In a度10 mW/ 
lの濃度変化(即ち、添加調整の誤差がt o tn?
/ lあった場合に当る。)に対して、ピーク右1t!
lでは出口SO2が約1100pp変動するが、ピーク
左側では出口SO2が約20 ppm Lか変動しない
ことが分かる。従って、脱偕−81ヲコントロールする
場合、”  ft’に大1かに扱える方が操作がやさし
いのである。
When the lowest desulfurization rate in Figure 1 is set to 1, the manganese concentration is approximately 40 mV/l, and
It corresponds to the case where becomes the highest, and (200XBXO)/(
AXS) is about 5 (about 5 mol%) and 7 (. Therefore, (
The desulfurization rate improves even if the value of 200
It is preferable to carry out the absorption operation in the region below FiS, that is, in the region where the desulfurization rate improves as C decreases, since it is easier to adjust the supply amount of the manganese compound and has the advantage of making it easier to control the desulfurization rate. That is, when adjusting the Mn concentration, in the area to the right of the peak in Figure 2 (A) where the scale is thin, as is clear from Figure 2 (A1. This causes large changes in the gas absorption amount and the 5O2a degree in the exhaust gas at the outlet of the absorption process, making operation difficult.On the other hand, in the region to the left of the peak in Figure 2 (A), the Mn 6 degree adjustment is relatively rough and continuous. For example, 5 Ina degree 10 mW/
The change in the concentration of l (i.e., the error in addition adjustment is t o tn?
/ This is true if there is. ), peak right 1t!
It can be seen that at L, the outlet SO2 fluctuates by about 1100 pp, but on the left side of the peak, the outlet SO2 does not fluctuate by about 20 ppm L. Therefore, when controlling ``81'', it is easier to operate if it can be treated as ``ft''.

実施例2 第4図は酸素ガスを含む気体をライン11を通して吸収
塔循環スラリーに吹き込む場合であり、020度の検出
端12によって該スラリーに含まれる酸素ガス濃度を検
711すれば、吸収塔循環スラリー管を通気槽の代役と
することができた。第5図の如き通気槽を設けない本実
施例2に於いても、実施例1と全く同じように本発明の
作用効果を達成することができた。
Embodiment 2 FIG. 4 shows the case where a gas containing oxygen gas is blown into the absorption tower circulation slurry through the line 11. If the oxygen gas concentration contained in the slurry is detected 711 by the detection end 12 at 020 degrees, the absorption tower circulation The slurry pipe could be used as a substitute for the aeration tank. Even in the second embodiment in which the aeration tank as shown in FIG. 5 was not provided, the effects of the present invention could be achieved in exactly the same way as in the first embodiment.

また、第4図から類推できるように酸素ガス吸収量の検
出は吸収塔内スラリーや吸収塔下部タンクスラリーなと
の吸収塔循環スラリーのどの部分に於いても可能である
から、第5図、第4図に限定されるものでないことは論
を待たない0
Furthermore, as can be inferred from Fig. 4, the amount of absorbed oxygen gas can be detected in any part of the circulating slurry of the absorption tower, such as the slurry inside the absorption tower or the slurry in the lower tank of the absorption tower. It goes without saying that it is not limited to Figure 40

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を提案する根拠となる脱硫率とスラリー
中のマンガン濃度の特異的な相四図を示す図表、第2図
は本発明の手段に利用する通気セルでの酸素ガス吸収量
と吸収工程出口排ガス中の13029度及びスラリー中
のマンガン濃度の相関図を示す図表、第5図及び第4図
は本発明の一実施態様を示す図であるO 復代理人  内 1)  明 蝮代理人  萩 原 亮 − 8C 第2図 第3図 第4図
Figure 1 is a diagram showing a specific phase diagram of desulfurization rate and manganese concentration in slurry, which is the basis for proposing the present invention, and Figure 2 is the amount of oxygen gas absorbed in the aeration cell used in the method of the present invention. Figures 5 and 4 are diagrams showing one embodiment of the present invention. Agent Ryo Hagiwara - 8C Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 5o24含む排ガスを吸収塔にてカルシウム化合物を含
む吸収塔循環スラリーと接触させて脱硫処理する方法に
於いて、該スラリー中に酸素ガスを含む気体を吹き込み
、該気体中の酸素ガスのスラリー中への吸収fif検知
することによって前記排ガスと接触させるスラリー中へ
のマンガン化合物の供給fk制御し、脱硫1°を調整す
ることを特徴とする排煙脱硫法。
In a method of desulfurizing exhaust gas containing 5o24 by contacting it with an absorption tower circulating slurry containing calcium compounds in an absorption tower, a gas containing oxygen gas is blown into the slurry, and the oxygen gas in the gas is introduced into the slurry. A flue gas desulfurization method characterized in that the supply fk of the manganese compound into the slurry that is brought into contact with the exhaust gas is controlled by detecting the absorption fif, and the desulfurization 1° is adjusted.
JP57202009A 1982-11-19 1982-11-19 Desulfurization of waste gas Pending JPS5992014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202009A JPS5992014A (en) 1982-11-19 1982-11-19 Desulfurization of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202009A JPS5992014A (en) 1982-11-19 1982-11-19 Desulfurization of waste gas

Publications (1)

Publication Number Publication Date
JPS5992014A true JPS5992014A (en) 1984-05-28

Family

ID=16450407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202009A Pending JPS5992014A (en) 1982-11-19 1982-11-19 Desulfurization of waste gas

Country Status (1)

Country Link
JP (1) JPS5992014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161018U (en) * 1984-09-28 1986-04-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161018U (en) * 1984-09-28 1986-04-24

Similar Documents

Publication Publication Date Title
JP3268127B2 (en) Method for controlling oxidation of sulfite
JP3573950B2 (en) Exhaust gas desulfurization method
US4696805A (en) Method for desulfurizing exhaust gas
Mendelsohn et al. Enhanced flue-gas denitrification using ferrous. cntdot. EDTA and a polyphenolic compound in an aqueous scrubber system
JPS60226403A (en) Method for adjusting sulfite concentration
GB2159507A (en) Method for regulating concentration of carbonate
JPS5992014A (en) Desulfurization of waste gas
US4151263A (en) Removal of sulfur oxides from gases by scrubbing with ammoniacal solutions
US4533531A (en) Exhaust fume desulfurization process
JPS61433A (en) Waste gas desulfurization
PL189207B1 (en) Method of measuring reduction and oxidation potential in a combustion gase desulphurising process
US4683210A (en) Method for measuring concentrations of CaCO3 and CaSO3 in a slurry
JPS59132921A (en) Apparatus for treating exhaust gas
EP0036411B1 (en) Sulfur oxide removal from gas
JPH0696086B2 (en) Operation control method for wet flue gas desulfurization equipment
JPH0275322A (en) Operation of wet desulfurization apparatus
US4177245A (en) Scale suppression in lime and limestone scrubbers
GB2163139A (en) Exhaust fume desulfurization process
JPH01171622A (en) Wet type exhaust gas desulfurization apparatus
GB2158427A (en) Exhaust fume desulfurization process
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JPH07116457A (en) Method and apparatus for controlling flue gas wet desulfurization treatment
JPS6351054B2 (en)
JPH0929063A (en) Exhaust gas treatment method and apparatus therefor
JPS60125232A (en) Method for controlling ph of oxidation tower