JPH0359731B2 - - Google Patents

Info

Publication number
JPH0359731B2
JPH0359731B2 JP59120739A JP12073984A JPH0359731B2 JP H0359731 B2 JPH0359731 B2 JP H0359731B2 JP 59120739 A JP59120739 A JP 59120739A JP 12073984 A JP12073984 A JP 12073984A JP H0359731 B2 JPH0359731 B2 JP H0359731B2
Authority
JP
Japan
Prior art keywords
slurry
sulfite
orp
calcium
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59120739A
Other languages
Japanese (ja)
Other versions
JPS61433A (en
Inventor
Naohiko Ugawa
Atsushi Tatani
Masakazu Onizuka
Kenji Inoe
Hiroshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59120739A priority Critical patent/JPS61433A/en
Publication of JPS61433A publication Critical patent/JPS61433A/en
Publication of JPH0359731B2 publication Critical patent/JPH0359731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は排煙脱硫方法に関するもので、詳しく
は石灰石や消石灰やドロマイトなどのカルシウム
化合物を吸収剤原料として、燃焼排ガス中のSO2
を除去するいわゆる湿式石灰・石膏法排煙脱硫方
法の改良に関するものである。 (従来の技術) 湿式石灰・石膏法排煙脱硫装置での吸収工程で
は、SO2を含む排ガスとCa(OH)2、CaCO3
CaSO3・1/2H2O、CaSO3・2H2Oのような溶
解度の小さなカルシウム化合物を含むスラリーと
を接触させ、排ガスからSO2を吸収するものであ
るが、そのSO2の吸収反応を総括反応式で表わす
と、 SO2+Ca(OH)2→CaSO3 ・1/2H2O+1/2H2O …(1) SO2+CaCO3+1/2H2O→CaSO3 ・1/2H2O+CO2 … であり、排ガス中の酸素によつて一部は次の酸化
反応も生じる。 CaSO3・1/2H2O+1/2O2+5/2H2O →CaSO4・2H2O …(3) このように総括反応式は単純であるが、実際の
反応メカニズムはかかる単純なものでなく、種々
の溶解イオン、例えばCa2+,Mg2+,SO4 2- 4
Ma+,SO2- 3,HSO- 3,CO2- 3,HCO- 3,H2SO3
H2CO3,Cl-,F-,Al3+,Mn2+,S2O2- 6,H+
OH-などが極めて複雑に関与したものであり、
解明されていない部分も多い。 従来、酸化カルシウム、水酸化カルシウム、炭
酸カルシウムなどを吸収剤としてSO2と反応させ
得られた亜硫酸化合物を酸化して石膏を回収する
方法として大別して以下の通り二種類あることが
知られている。 その一つは、前出(1)および(2)の反応を吸収装置
で行なわせ、得られた亜硫酸カルシウムの酸化反
応(3)は吸収装置とは別個に設けた酸化装置で行な
わせる方法である。また他の方法は吸収装置本体
に吸収液を循環供給する液溜めに空気の微細な気
泡を発生する機構を設けて、吸収液中の亜硫酸カ
ルシウムを酸化する方法である。 いずれも酸化剤としては一般に空気を利用し酸
化装置として通気槽を用いるが、酸化速度を向上
させ、通気量の低減を計るため種々の工夫が為さ
れてきた。 酸化装置を別置きする場合には、操作圧力を1
〜5Kg/cm2とし、酸素の利用率を高める方法が一
般的である。吸収装置本体で酸化を行なわせる場
合には被処理ガスである排ガスが常圧であること
から、加圧下で運転可能な液溜めを設置すること
は経済的に不利であるため、酸化反応を促進する
マンガン等の液相触媒を添加する方法等が公知で
ある。 両者に共通する欠点として亜硫酸カルシウムの
硫酸カルシウムへの転換率を連続的かつ簡単に測
定する方法が見当たらず、従つて硫酸カルシウム
への転換率を高めに維持しようとすれば、負荷変
動等を考慮して空気流量を常に過剰に供給せざる
を得ないのが現状であつた。すなわち循環液を随
時サンプリングし、ヨウ素による酸化還元適定法
により亜硫酸カルシウム濃度を測定し、所定濃度
以下となるように空気流量を間欠的に調整する
が、この際、亜硫酸カルシウム濃度が増加すると
最終副製品である石膏の品位が低下するととも
に、特に前記吸収装置本体で酸化を行なう方式に
於いてはSO2の吸収性能の低下、吸収剤であるカ
ルシウム化合物との反応性低下等の不都合がおき
ることを見い出しており前述のとおり通気流量を
過剰供給する必要があつた。通気流量を過剰に供
給することはランニングコストの増大につながり
従来の通気酸化方法の主たる欠点であつた。 (発明が解決しようとする問題点) 本発明は上記従来法の欠点を一掃するものであ
り、特に吸収液循環液溜め内で酸化反応を行なわ
せる方法に最適な方法を提案するものである。 (発明者の知見) 本発明者らは、前記の種々の成分が、脱硫性能
へ与える影響について詳細に実験究明していく過
程で、吸収塔循環スラリーの酸化還元電位(以
下、ORPという)とスラリー中の亜硫酸カルシ
ウム濃度に一定の関係があることを見出した。 (問題点を解決するための手段) 本発明は上記知見によつて完成されたものであ
つて、SO2を含む排ガスを吸収塔にてカルシウム
化合物を含む吸収塔循環スラリーと接触させて脱
硫処理する方法に於いて、該スラリー中に酸素を
含む気体を吹き込み、該スラリーの酸化還元電位
を連続的に検知することによつて前記酸素を含む
気体の流量を制御し、スラリー中の亜硫酸カルシ
ウムを完全酸化するよう調整することを特徴とす
る排煙脱硫方法である。 第1図はSO21300ppmを含む排ガスをカルシウ
ム化合物を含むスラリーと接触させて脱硫処理し
た場合の循環液のORPと亜硫酸濃度の関係につ
き一例を示したものである。 液中の亜硫酸濃度にORPは鋭敏に関係し、極
く僅かの亜硫酸が存在してもORPは低値を示す
一方、亜硫酸濃度が下がると急激に高値を示す。 また、循環液中の亜硫酸濃度は吸収塔下部に設
けた液溜めに供給する空気の供給量と第2図に例
示したような相関のある実験結果を得た。すなわ
ち、空気流量を増加していくと酸化速度が増加
し、従つて亜硫酸濃度が減少し、ついで図中B点
を越えると亜硫酸が消失することを見い出した。
また第2図に併記したようにB点までは脱硫率は
顕著に向上することが観察された。 本発明者らは、第1図と第2図の事実に着目
し、本発明を提案するに至つたものである。すな
わち従来第2図の関係は運転中間欠点に循環液を
サンプリングしヨウ素による酸化還元法等の手分
析により得ていたため自ずと分析頻度には限界が
あつた。排ガスの量、SO2の濃度等は排出源であ
るボイラー等の負荷条件により大幅に異なりその
変化速度も一般に急激である。上述の分析事情か
ら負荷変動等を考慮して脱硫性能を維持するため
には、空気酸化量を第2図のB点より過剰側に設
定せざるを得ないことになり、ランニングコスト
上好ましくなかつた。 第1図に示したORPと亜硫酸濃度の相関関係
を一度求めて検定線を得ておけば、循環液中の亜
硫酸濃度が消失するよう、すなわちORPが第1
図中Am▽となるよう空気流量を連続的に設定す
ることが可能になる。すなわち、ORPがAm▽以
下であればその偏差に応じて空気流量を増加し
ORPがAm▽以上となつた場合にはその偏差に応
じて空気流量を減じるいわゆる比例制御が適用可
能である。 第1図、第2図に示したとおり亜硫酸濃度の低
い領域ででは亜硫酸濃度により脱硫性能は著しく
影響されるが、この領域では同時にORPの変化
も顕著である。従つてORPによつて亜硫酸濃度
の僅かな変化を検知し、前述の比例制御により亜
硫酸が消失するのに最小限必要な空気流量に設定
調整することができ、これにより必要な脱硫性能
を保持することが可能となる。 ORPは電極を循環液に浸すだけで極めて容易
に測定でき、測定時間の遅れもないため、測定の
遅れを考慮して過剰の空気を供給する必要もな
く、負荷変動に対する追従性も良好である。常時
必要最小限の空気を供給することは、ランニング
コストの削減上非常に有利である。 次に本発明の実施態様を明らかにするため第3
図にもとづいて説明する。 第3図に於いてSO2を含む排ガスはダクト1を
通つて吸収塔2に導入され、浄化後のガスはダク
ト3を通つて大気に放出される。 吸収塔2内では排ガスとライン4を通つて吸収
塔2内にスプレーされる吸収液が接触しSO2は吸
収液中に吸収され亜硫酸カルシウム(CaSO3)と
なる。CaSO3を含む吸収液は、吸収塔2の下部に
ある循環液溜め5内で、ライン6をとおり分散ノ
ズル7より細かい気泡となつて吹き込まれる空気
と接触し、石膏(CaSO4)を生成する。もちろん
排ガス中に存在する酸素により吸収塔2内でも
CaSO3の一部が酸化されるが、通常は酸素濃度が
低く、酸化を完了するためには、液留め5内への
空気吹き込みが必要であることが多い。循環液の
ORPは液留め5内に設置した電極8により検出
する。ORPの設置位置は液留め5内に限定する
ものではなくライン4の途中に設置することも、
もちろん可能である。電極8としては通常使用さ
れている白金電極が適用可能である。電極8によ
り検知されたORPはライン9により調節計10
に送られ、ここであらかじめ設定されたORP電
圧との偏差に応じてコントロールバルブ12の開
閉信号をライン11を通じて送る。コントロール
バルブ12により液留め5内に供給する必要最小
限の空気流量が設定される。 CaSO3が酸化消失した吸収液は循環ポンプ14
によりライン4を通じて再度吸収塔2内にスプレ
ーされる。吸収液のpHはライン13により供給
される炭酸カルシウムスラリーにより調整され又
循環液の一部はライン15により抜き出され石膏
を分離される。 調節計10にはあらかじめORP電圧を入力す
る必要があるが、これは亜硫酸濃度とORPの相
関関係を求めて検量線を作成し、その結果から設
定する必要がある。この際ORPは亜硫酸以外の
溶解液成分にも多少影響されるため対象排脱装置
固有の検量線を作成する必要がある。 次に本発明の作用効果を明らかにするため実施
例を示す。 実施例 第3図に示した実施態様に於いて、ボイラー排
ガスの一部を約8000m3N/h分取し排ガスを24時
間連続処理したところライン6より供給される空
気流量の平均値は次のとおりであり、負荷追従時
も含め、変動幅は±20m3N/hであつた。
(Industrial Application Field) The present invention relates to a flue gas desulfurization method, and more specifically, it uses calcium compounds such as limestone, slaked lime, and dolomite as absorbent raw materials to remove SO 2 from combustion flue gas.
The present invention relates to improvements in the so-called wet lime and gypsum flue gas desulfurization method that removes carbon dioxide. (Conventional technology) In the absorption process in wet lime/gypsum flue gas desulfurization equipment, flue gas containing SO 2 and Ca(OH) 2 , CaCO 3 ,
This method absorbs SO 2 from exhaust gas by contacting it with a slurry containing calcium compounds with low solubility such as CaSO 3・1/2H 2 O and CaSO 32H 2 O. Expressed in the overall reaction formula, SO 2 + Ca(OH) 2 →CaSO 3・1/2H 2 O+1/2H 2 O …(1) SO 2 +CaCO 3 +1/2H 2 O→CaSO 3・1/2H 2 O+CO 2 ..., and some of the following oxidation reactions also occur due to oxygen in the exhaust gas. CaSO 3・1/2H 2 O+1/2O 2 +5/2H 2 O →CaSO 4・2H 2 O …(3) Although the overall reaction formula is simple as above, the actual reaction mechanism is not as simple as this. , various dissolved ions such as Ca 2+ , Mg 2+ , SO 4 2- 4 ,
Ma + , SO 2- 3 , HSO - 3 , CO 2- 3 , HCO - 3 , H 2 SO 3 ,
H 2 CO 3 , Cl - , F - , Al 3+ , Mn 2+ , S 2 O 2- 6 , H + ,
OH - etc. are involved in an extremely complex manner,
There are many parts that are not explained. Conventionally, it is known that there are two types of methods for recovering gypsum by oxidizing sulfite compounds obtained by reacting with SO 2 using absorbents such as calcium oxide, calcium hydroxide, and calcium carbonate, as shown below. . One method is to carry out the reactions (1) and (2) above in an absorption device, and the oxidation reaction (3) of the obtained calcium sulfite to be carried out in an oxidation device installed separately from the absorption device. be. Another method is to oxidize calcium sulfite in the absorption liquid by providing a mechanism for generating fine air bubbles in a liquid reservoir that circulates and supplies the absorption liquid to the absorption apparatus main body. In both cases, air is generally used as the oxidizing agent and an aeration tank is used as the oxidizing device, but various efforts have been made to improve the oxidation rate and reduce the amount of aeration. If the oxidizer is installed separately, the operating pressure should be increased to 1
A common method is to increase the oxygen utilization rate by increasing the oxygen utilization rate to 5 Kg/cm 2 . When oxidation is performed in the absorber itself, the exhaust gas to be treated is at normal pressure, so it is economically disadvantageous to install a liquid reservoir that can operate under pressure, so the oxidation reaction is promoted. A method of adding a liquid phase catalyst such as manganese is known. A common drawback of both is that there is no way to continuously and easily measure the conversion rate of calcium sulfite to calcium sulfate, and therefore, if you want to maintain a high conversion rate of calcium sulfate, it is necessary to take into account load fluctuations, etc. The current situation is that an excessive amount of air flow must always be supplied. In other words, the circulating fluid is sampled from time to time, the calcium sulfite concentration is measured by the redox titration method using iodine, and the air flow rate is intermittently adjusted to keep the concentration below a predetermined concentration. Not only does the quality of the product gypsum deteriorate, but also disadvantages such as a decrease in SO 2 absorption performance and a decrease in reactivity with the calcium compound that is the absorbent occur, especially in the method in which oxidation is performed in the absorption device itself. As mentioned above, it was necessary to supply an excessive amount of ventilation flow. Providing excessive aeration flow rate leads to increased running costs and has been a major drawback of conventional aerobic oxidation methods. (Problems to be Solved by the Invention) The present invention eliminates the drawbacks of the above-mentioned conventional methods, and particularly proposes an optimal method for carrying out an oxidation reaction within the absorption liquid circulation reservoir. (Findings of the Inventor) In the process of conducting a detailed experimental investigation into the effects of the various components mentioned above on desulfurization performance, the present inventors discovered that the oxidation-reduction potential (hereinafter referred to as ORP) of the absorption tower circulating slurry It was found that there is a certain relationship between the calcium sulfite concentration in the slurry. (Means for Solving the Problems) The present invention has been completed based on the above findings, and includes desulfurization treatment by bringing exhaust gas containing SO 2 into contact with absorption tower circulation slurry containing calcium compounds in an absorption tower. In this method, a gas containing oxygen is blown into the slurry, and the flow rate of the gas containing oxygen is controlled by continuously detecting the redox potential of the slurry, and calcium sulfite in the slurry is controlled. This is a flue gas desulfurization method characterized by adjustment to achieve complete oxidation. Figure 1 shows an example of the relationship between the ORP and sulfite concentration of the circulating fluid when exhaust gas containing 1300 ppm SO 2 is desulfurized by contacting it with a slurry containing a calcium compound. ORP is sensitively related to the sulfite concentration in the liquid, and while ORP shows a low value even in the presence of a very small amount of sulfite, it rapidly increases as the sulfite concentration decreases. In addition, experimental results were obtained in which the sulfite concentration in the circulating liquid was correlated with the amount of air supplied to the liquid reservoir provided at the bottom of the absorption tower, as illustrated in FIG. That is, it has been found that as the air flow rate increases, the oxidation rate increases, and therefore the sulfite concentration decreases, and then, when the point B in the figure is exceeded, the sulfite disappears.
Furthermore, as shown in FIG. 2, it was observed that the desulfurization rate significantly improved up to point B. The present inventors have focused on the facts shown in FIGS. 1 and 2, and have proposed the present invention. In other words, the relationship shown in FIG. 2 has conventionally been obtained by sampling the circulating fluid at faults during operation and manually analyzing it using oxidation-reduction methods using iodine, which naturally limits the frequency of analysis. The amount of exhaust gas, the concentration of SO 2 , etc. vary greatly depending on the load conditions of the boiler, etc. that is the emission source, and the rate of change is generally rapid. From the above analytical circumstances, in order to maintain desulfurization performance while taking into account load fluctuations, it is necessary to set the air oxidation amount to an excess level compared to point B in Figure 2, which is unfavorable in terms of running costs. Ta. Once the correlation between ORP and sulfite concentration shown in Figure 1 is determined and a verification line is obtained, it is possible to ensure that the sulfite concentration in the circulating fluid disappears.
It becomes possible to continuously set the air flow rate so that it becomes Am▽ in the figure. In other words, if ORP is less than Am▽, the air flow rate will be increased according to the deviation.
When ORP exceeds Am▽, so-called proportional control can be applied to reduce the air flow rate according to the deviation. As shown in Figures 1 and 2, desulfurization performance is significantly affected by the sulfite concentration in areas where the sulfite concentration is low, but at the same time, ORP changes are also significant in this area. Therefore, ORP can detect slight changes in sulfite concentration, and the aforementioned proportional control can adjust the air flow rate to the minimum required for sulfite to disappear, thereby maintaining the necessary desulfurization performance. becomes possible. ORP can be measured extremely easily by simply immersing the electrode in the circulating fluid, and there is no measurement time delay, so there is no need to supply excess air to account for measurement delays, and it follows load fluctuations well. . Constantly supplying the minimum amount of air required is very advantageous in terms of reducing running costs. Next, in order to clarify the embodiments of the present invention, the third
This will be explained based on the diagram. In FIG. 3, exhaust gas containing SO 2 is introduced into an absorption tower 2 through a duct 1, and the purified gas is discharged into the atmosphere through a duct 3. In the absorption tower 2, the exhaust gas and the absorption liquid sprayed into the absorption tower 2 through the line 4 come into contact, and SO 2 is absorbed into the absorption liquid and becomes calcium sulfite (CaSO 3 ). The absorption liquid containing CaSO 3 comes into contact with the air that is blown in the form of fine bubbles from the dispersion nozzle 7 through the line 6 in the circulating liquid reservoir 5 at the bottom of the absorption tower 2, producing gypsum (CaSO 4 ). . Of course, due to the oxygen present in the exhaust gas,
Although some of the CaSO 3 is oxidized, the oxygen concentration is usually low and air blowing into the reservoir 5 is often necessary to complete the oxidation. of circulating fluid
ORP is detected by an electrode 8 installed in the liquid reservoir 5. The installation position of the ORP is not limited to the liquid reservoir 5, but it can also be installed in the middle of the line 4.
Of course it is possible. As the electrode 8, a commonly used platinum electrode can be used. The ORP detected by electrode 8 is transferred to controller 10 by line 9.
It sends an opening/closing signal for the control valve 12 through the line 11 according to the deviation from the preset ORP voltage. The minimum necessary air flow rate to be supplied into the liquid reservoir 5 is set by the control valve 12. The absorption liquid in which CaSO 3 has been oxidized and disappeared is sent to the circulation pump 14.
The water is then sprayed into the absorption tower 2 again through the line 4. The pH of the absorption liquid is adjusted by the calcium carbonate slurry supplied through line 13, and a portion of the circulating liquid is withdrawn through line 15 to separate the gypsum. It is necessary to input the ORP voltage into the controller 10 in advance, but this needs to be set based on the results of a calibration curve created by determining the correlation between the sulfite concentration and ORP. At this time, since ORP is affected to some extent by dissolved solution components other than sulfite, it is necessary to create a calibration curve specific to the target evacuation device. Next, examples will be shown to clarify the effects of the present invention. Example In the embodiment shown in Fig. 3, a portion of the boiler exhaust gas was fractionated at approximately 8000 m 3 N/h and the exhaust gas was continuously treated for 24 hours. The average value of the air flow rate supplied from line 6 was as follows. The fluctuation range was ±20m 3 N/h, including during load following.

【表】 24時間平均の空気流量は379m3N/hであつた。
なお入口SO2は約2000ppmで一定であり、脱硫率
は96%以上を維持できた。運転期間中に供給した
吸収剤である炭酸カルシウムの総量は、排ガスよ
り吸収したSO2総量の1.04モル比相当であつた。 又確認のため循環液を1回/hrの頻度でサンプ
リングし亜硫酸濃度を測定したところいずれも
0.5mmol/以下であつた。 比較例 第3図に示した実施態様に於いてORPによる
空気制御系すなわち電極8、調節計10、ライン
9及びライン11を排除しコントロールバルブ1
2を手動により調整し、他は実施例と全く同じ条
件で排ガスを処理したところ24時間平均の空気流
量は415m3N/hであり変動幅は±60m3N/hで
あつた。なお入口SO2は実施例と同じ約2000ppm
で一定であり、脱硫率は94%以上であつた。 運転期間中に供給した炭酸カルシウムの総量は
排ガスより吸収したSO2総量の1.08モル比相当で
あつた。 空気流量の調整は循環液を1回/hrの頻度でサ
ンプリングし実施したが、亜硫酸濃度の最大値は
3.5mmol/であつた。 以上実施例と比較例より、本発明の方法によれ
ば空気流量の削減と脱硫性能の維持が達成できる
ことが明らかである。
[Table] The 24-hour average air flow rate was 379 m 3 N/h.
The inlet SO 2 was kept constant at approximately 2000 ppm, and the desulfurization rate was maintained at over 96%. The total amount of calcium carbonate as an absorbent supplied during the operation period was equivalent to 1.04 molar ratio of the total amount of SO 2 absorbed from the exhaust gas. In addition, for confirmation, we sampled the circulating fluid once per hour and measured the sulfite concentration.
It was less than 0.5 mmol/. Comparative Example In the embodiment shown in FIG.
2 was adjusted manually, and the exhaust gas was treated under the same conditions as in the example. The 24-hour average air flow rate was 415 m 3 N/h, and the fluctuation range was ±60 m 3 N/h. Note that the inlet SO 2 is about 2000 ppm, the same as in the example.
The desulfurization rate was 94% or more. The total amount of calcium carbonate supplied during the operation period was equivalent to a 1.08 molar ratio of the total amount of SO 2 absorbed from the exhaust gas. The air flow rate was adjusted by sampling the circulating fluid once/hr, but the maximum value of the sulfite concentration was
It was 3.5 mmol/. From the above Examples and Comparative Examples, it is clear that the method of the present invention can reduce the air flow rate and maintain desulfurization performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明を提案する根拠となる
循環液中の亜硫酸濃度とORP及び循環液中の亜
硫酸濃度と液留め供給空気量の関係を示す相関図
であり、第3図は本発明の一実施態様を示す図で
ある。
Figures 1 and 2 are correlation diagrams showing the relationship between the sulfite concentration in the circulating fluid and ORP, and the sulfite concentration in the circulating fluid and the amount of air supplied to the reservoir, which are the basis for proposing the present invention. FIG. 1 is a diagram showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 SO2を含む排ガスを吸収塔にてカルシウム化
合物を含む吸収塔循環スラリーと接触させて脱硫
処理する方法に於いて、該スラリー中に酸素を含
む気体を吹き込み、該スラリーの酸化還元電位を
連続的に検知することによつて前記酸素を含む気
体の流量を制御し、スラリー中の亜硫酸カルシウ
ムを完全酸化するよう調整することを特徴とする
排煙脱硫方法。
1 In a method of desulfurization treatment by bringing exhaust gas containing SO 2 into contact with absorption tower circulation slurry containing calcium compounds in an absorption tower, a gas containing oxygen is blown into the slurry to continuously maintain the redox potential of the slurry. A flue gas desulfurization method characterized in that the flow rate of the oxygen-containing gas is controlled by detecting the oxygen content and adjusted to completely oxidize calcium sulfite in the slurry.
JP59120739A 1984-06-14 1984-06-14 Waste gas desulfurization Granted JPS61433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120739A JPS61433A (en) 1984-06-14 1984-06-14 Waste gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120739A JPS61433A (en) 1984-06-14 1984-06-14 Waste gas desulfurization

Publications (2)

Publication Number Publication Date
JPS61433A JPS61433A (en) 1986-01-06
JPH0359731B2 true JPH0359731B2 (en) 1991-09-11

Family

ID=14793784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120739A Granted JPS61433A (en) 1984-06-14 1984-06-14 Waste gas desulfurization

Country Status (1)

Country Link
JP (1) JPS61433A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084709B2 (en) * 1986-04-23 1996-01-24 バブコツク日立株式会社 Wet Flue Gas Desulfurization Controller
JPH0767525B2 (en) * 1986-05-06 1995-07-26 千代田化工建設株式会社 Flue gas desulfurization dust removal method
JP2638721B2 (en) * 1992-09-18 1997-08-06 新日本製鐵株式会社 Biological deodorization method
JP5019359B2 (en) * 2007-01-24 2012-09-05 中国電力株式会社 How to cope with increase of calcium sulfite concentration in flue gas desulfurization equipment
JP5019360B2 (en) * 2007-01-24 2012-09-05 中国電力株式会社 How to deal with peroxidation conditions in flue gas desulfurization equipment
FR2954177B1 (en) * 2009-12-23 2012-02-03 Inst Francais Du Petrole METHOD OF DETERMINING AN ACIDIC GAS CHARGE RATE IN AN ABSORBENT SOLUTION AND ITS APPLICATION TO MONITORING A DEACIDIFICATION PROCESS

Also Published As

Publication number Publication date
JPS61433A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
JP3268127B2 (en) Method for controlling oxidation of sulfite
EP0139802A3 (en) Flue gas desulfurization process and apparatus therefor
PL188797B1 (en) Method of controlling the oxidation process while desulphurising combustion gases
JPH1170316A (en) Desulfurization method for exhaust gas
EP0224627A1 (en) Method for desulfurizing exhaust gas
JPH0359731B2 (en)
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
US5266286A (en) Flue gas desulfurization process
JP3254139B2 (en) Redox potential measurement method in flue gas desulfurization method
JPH10128053A (en) Stack gas treating device and treatment of stack gas
CA1115494A (en) Process for the removal of sulfur oxides from exhaust gases using slurry of red mud containing calcium ion
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JPH0696086B2 (en) Operation control method for wet flue gas desulfurization equipment
JP2004243169A (en) Desulfurization method for waste gas by double decomposition method
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization
JPS631090B2 (en)
JPH027847Y2 (en)
JPH0227867Y2 (en)
JPS6012119A (en) Method for controlling flow amount of compressed air of oxidizing tower in wet type waste gas desulfurizing apparatus
JPH0125627Y2 (en)
JPH07116457A (en) Method and apparatus for controlling flue gas wet desulfurization treatment
KR810000946B1 (en) Method for desulfurization from waste gas
JPH0581287B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term