JP5019360B2 - How to deal with peroxidation conditions in flue gas desulfurization equipment - Google Patents
How to deal with peroxidation conditions in flue gas desulfurization equipment Download PDFInfo
- Publication number
- JP5019360B2 JP5019360B2 JP2007013400A JP2007013400A JP5019360B2 JP 5019360 B2 JP5019360 B2 JP 5019360B2 JP 2007013400 A JP2007013400 A JP 2007013400A JP 2007013400 A JP2007013400 A JP 2007013400A JP 5019360 B2 JP5019360 B2 JP 5019360B2
- Authority
- JP
- Japan
- Prior art keywords
- flue gas
- absorption tower
- state
- absorbent slurry
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims description 58
- 239000003546 flue gas Substances 0.000 title claims description 58
- 238000006477 desulfuration reaction Methods 0.000 title claims description 52
- 230000023556 desulfurization Effects 0.000 title claims description 52
- 238000005502 peroxidation Methods 0.000 title claims description 16
- 239000002002 slurry Substances 0.000 claims description 67
- 238000010521 absorption reaction Methods 0.000 claims description 60
- 230000002745 absorbent Effects 0.000 claims description 59
- 239000002250 absorbent Substances 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 44
- 150000002978 peroxides Chemical class 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 22
- 238000000605 extraction Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 239000000428 dust Substances 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 7
- 230000033116 oxidation-reduction process Effects 0.000 claims description 7
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- 235000019738 Limestone Nutrition 0.000 claims description 6
- 239000006028 limestone Substances 0.000 claims description 6
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 239000008235 industrial water Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 230000010485 coping Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 21
- 239000010440 gypsum Substances 0.000 description 16
- 229910052602 gypsum Inorganic materials 0.000 description 16
- 239000007921 spray Substances 0.000 description 11
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 9
- 235000010261 calcium sulphite Nutrition 0.000 description 9
- 230000005856 abnormality Effects 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 6
- 239000000779 smoke Substances 0.000 description 6
- 238000003915 air pollution Methods 0.000 description 5
- 239000003595 mist Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000809 air pollutant Substances 0.000 description 3
- 231100001243 air pollutant Toxicity 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
Description
本発明は、排煙脱硫装置における過酸化状態発生時の対応方法に関し、特に吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収塔で過酸化状態が発生して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における酸化状態を正常の範囲内に戻すことが可能な排煙脱硫装置における過酸化状態発生時の対応方法に関する。 TECHNICAL FIELD The present invention relates to a method for dealing with the occurrence of a peroxide state in a flue gas desulfurization apparatus, and particularly to an absorption tower in a flue gas desulfurization apparatus that absorbs and removes sulfur oxide in flue gas by bringing an absorbent slurry and flue gas into contact with each other. In the case of the occurrence of an over-oxidation condition in the exhaust gas desulfurization unit, the exhaust gas desulfurization unit can be returned to the normal range quickly and efficiently. The present invention relates to a method for dealing with an oxidation state.
近年、各種のプラントや自動車等の排気ガスの影響による大気汚染が深刻化している。このため、大気汚染に関して、国民の健康を保護するとともに、生活環境を保全することを目的として大気汚染防止法が制定されている。また、各地方自治体においても、大気汚染防止のための条例や要綱等を定め、大気汚染物質の排出量を規制している。 In recent years, air pollution due to the influence of exhaust gases from various plants and automobiles has become serious. For this reason, the Air Pollution Control Law has been enacted for the purpose of protecting the health of the people and preserving the living environment with regard to air pollution. Each local government also establishes regulations and outlines for air pollution prevention and regulates the amount of air pollutants emitted.
これに応じて、各企業等では、大気汚染物質の排出を極力抑制して環境保護に努めている。例えば、ボイラユニットを有する発電プラントでは、大気汚染防止法や公害防止協定等に規定された環境基準を遵守するため、ボイラユニットからの排煙中に含まれる煤塵、NOx、SOx等の大気汚染物質を十分に除去してクリーンな排気を行っている。 In response to this, each company is striving to protect the environment by minimizing the emission of air pollutants. For example, in a power plant with a boiler unit, air pollutants such as soot, NOx, SOx, etc. contained in the flue gas from the boiler unit in order to comply with environmental standards stipulated in the Air Pollution Control Act and pollution control agreements, etc. The exhaust is sufficiently removed and clean exhaust is performed.
特に、SOxは環境に重大な影響を及ぼすため、排煙脱硫装置を安定して稼働することが重要な責務となっている。このような状況の中、従来より、排煙脱硫装置を安定して稼働することにより、効率的にSOxの除去を行うための技術が種々開示されている。 In particular, since SOx has a significant impact on the environment, it is an important duty to operate the flue gas desulfurization apparatus stably. Under such circumstances, conventionally, various techniques for efficiently removing SOx by operating a flue gas desulfurization apparatus stably have been disclosed.
例えば、特開平6−238126号公報「湿式排煙脱硫装置の異常診断装置」(特許文献1)に、石膏純度を常に監視し、石膏の品質に影響する要因を診断することにより石膏の品質を保つための最適な各種成分の操作量を支援する技術が開示されている。 For example, in JP-A-6-238126, “Abnormality diagnosis apparatus for wet flue gas desulfurization apparatus” (Patent Document 1), gypsum quality is constantly monitored by diagnosing factors that affect gypsum quality. A technique for supporting the optimum operation amount of various components to maintain is disclosed.
この特許文献1に記載された「湿式排煙脱硫装置の異常診断装置」は、ボイラなどの燃焼装置から排出される排ガス中の硫黄酸化物を吸収塔循環用吸収剤スラリにより気液接触させて吸収除去する湿式排煙脱硫装置に関するものである。この「湿式排煙脱硫装置の異常診断装置」は、以下の手順により、石膏の品質を保つための最適な各種成分の操作量を支援する。 This "abnormality diagnosis device for wet flue gas desulfurization device" described in Patent Document 1 makes sulfur-oxide in exhaust gas discharged from a combustion device such as a boiler gas-liquid contact with an absorbent slurry for absorption tower circulation. The present invention relates to a wet flue gas desulfurization apparatus for absorbing and removing. This “wet flue gas desulfurization apparatus abnormality diagnosis apparatus” supports the operation amounts of various optimum components for maintaining the quality of gypsum by the following procedure.
すなわち、給炭量信号と石炭性状信号と排ガス流量信号を排ガス性状演算器に入力してHCL濃度とHF濃度を算出する。続いて、信号と入口SO2濃度信号と出口SO2濃度信号と入口煤塵濃度信号と吸収剤スラリ流量信号と吸収塔抜出流量信号と酸化用空気流量信号と吸収塔レベル信号と演算器での算出HCL濃度とHF濃度を液性状演算器に入力して吸収液中のCaCO3濃度とCaSO3・1/2H2O濃度とCaSO3・2H2O濃度と不純物濃度とCaF2濃度を算出する。続いて、演算器の算出液性状から石膏純度演算器で石膏純度を算出し、異常診断装置で石膏純度の評価診断を行う。続いて、石膏純度が異常と判定した場合には、純度異常をガイダンスし、正常な状態に戻すための操作量(吸収剤スラリ流量、酸化用空気流量、硫酸流量)を制御装置に出力する。 That is, the HCL concentration and the HF concentration are calculated by inputting the coal supply amount signal, the coal property signal, and the exhaust gas flow rate signal to the exhaust gas property calculator. Subsequently, the signal, the inlet SO 2 concentration signal, the outlet SO 2 concentration signal, the inlet dust concentration signal, the absorbent slurry flow signal, the absorption tower extraction flow signal, the oxidizing air flow signal, the absorption tower level signal, and the calculator The calculated HCL concentration and HF concentration are input to the liquid property calculator to calculate the CaCO 3 concentration, CaSO 3 .1 / 2H 2 O concentration, CaSO 3 .2H 2 O concentration, impurity concentration, and CaF 2 concentration in the absorbing solution. . Subsequently, the gypsum purity calculator calculates the gypsum purity from the calculated liquid properties of the calculator, and the abnormality diagnosis device performs evaluation diagnosis of the gypsum purity. Subsequently, when it is determined that the gypsum purity is abnormal, the operation amount (absorbent slurry flow rate, oxidizing air flow rate, sulfuric acid flow rate) for returning to the normal state is output to the control device.
また、特開平11−244646号公報「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」(特許文献2)に、吸収塔における吸収液の循環量が最大である状態において、万一、吸収塔へ導入される排ガスの流量が過渡的に計画値を超えて上昇したような場合であっても、脱硫率を保持して吸収塔出口SO2濃度を規制値以下に抑え得る技術が開示されている。 Further, in Japanese Patent Laid-Open No. 11-244646 “Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus” (Patent Document 2), in the unlikely event that the absorption liquid circulation amount in the absorption tower is maximum, absorption Even when the flow rate of the exhaust gas introduced into the tower transiently rises above the planned value, a technique is disclosed that can maintain the desulfurization rate and suppress the absorption tower outlet SO 2 concentration below the regulation value. ing.
この特許文献2に記載された「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」は、吸収塔における複数台の循環ポンプが全台運転されており、かつ吸収剤の活性低下が発生していない状態で、吸収塔出口SO2濃度が高設定濃度以上、あるいは脱硫率が低設定脱硫率以下となった異常発生時には、設定pH値を一時的に上昇させ、設定吸収剤スラリ流量を増加させ、吸収剤スラリ流量が設定吸収剤スラリ流量と等しくなるように制御器から流量調整弁へ開度指令を出力するようにしたものである。この「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」によれば、吸収塔における吸収液の循環量が最大である状態において、万一、吸収塔へ導入される排ガスの流量が過渡的に計画値を超えて上昇したような場合であっても、脱硫率を保持して吸収塔出口SO2濃度を規制値以下に抑え得ることができるとしている。 In the “method and apparatus for controlling the amount of absorbent slurry in the flue gas desulfurization apparatus” described in Patent Document 2, all of the circulation pumps in the absorption tower are operated, and the activity of the absorbent is reduced. in not state, the absorption tower outlet sO 2 concentration is high set concentration or more, or at the time of the desulfurization rate abnormality became less low setting desulfurization rate, temporarily increases the set pH value, the setting absorbent slurry flow rate increases The opening command is output from the controller to the flow rate adjustment valve so that the absorbent slurry flow rate becomes equal to the set absorbent slurry flow rate. According to this "method and apparatus for controlling the flow rate of the absorbent slurry in the flue gas desulfurization apparatus", the flow rate of the exhaust gas introduced into the absorption tower should be transient in the state where the circulation amount of the absorption liquid in the absorption tower is maximum. Even if it exceeds the planned value, the desulfurization rate can be maintained and the absorption tower outlet SO 2 concentration can be kept below the regulation value.
しかしながら、上記特許文献1に記載された「湿式排煙脱硫装置の異常診断装置」は、グリッド塔と称される排煙脱硫装置に関する技術であり、この技術をそのまま液注塔と称される排煙脱硫装置に適用することはできない。 However, the “wet flue gas desulfurization device abnormality diagnosis device” described in Patent Document 1 is a technology related to a flue gas desulfurization device called a grid tower, and this technology is directly referred to as a liquid injection tower. It cannot be applied to smoke desulfurization equipment.
また、特許文献2に記載された「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」は、吸収塔における複数台の循環ポンプが全台運転されており、かつ吸収剤の活性低下が発生していない状態を想定したものであり、吸収塔において過酸化状態が発生して排煙脱硫装置を正常運転できない可能性が発生した場合に適用できる技術ではない。 In addition, the “method and apparatus for controlling the flow rate of absorbent slurry in the flue gas desulfurization apparatus” described in Patent Document 2 has a plurality of circulating pumps in the absorption tower operated, and the activity of the absorbent is reduced. This is not a technique that can be applied when a peroxidation state occurs in the absorption tower and there is a possibility that the flue gas desulfurization apparatus cannot be operated normally.
本発明は、上述した事情に鑑み提案されたもので、吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収塔で過酸化状態が発生して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における酸化状態を正常の範囲内に戻すことが可能な排煙脱硫装置における過酸化状態発生時の対応方法を提供することを目的とする。 The present invention has been proposed in view of the above-described circumstances, and in a flue gas desulfurization apparatus that absorbs and removes sulfur oxides in flue gas by bringing an absorbent slurry and flue gas into contact with each other, a peroxidation state is present in an absorption tower. In the event that the flue gas desulfurization unit may not operate normally, the oxidation state in the absorption tower can be quickly and efficiently returned to the normal range. The purpose is to provide a response method.
本発明に係る排煙脱硫装置における過酸化状態発生時の対応方法は、上述した目的を達成するため、以下の特徴点を有している。
すなわち、本発明に係る排煙脱硫装置における過酸化状態発生時の対応方法は、吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において吸収塔で過酸化状態が発生した際の対応方法であって、吸収塔における運転基準値が所定の範囲を超えた場合に、排煙脱硫装置に取り入れる排煙からの煤塵除去量を自動調節する工程と、吸収剤スラリ循環量を自動調節する工程と、吸収塔へ供給する吸収剤スラリ流量を自動調節する工程と、上記工程後に、吸収塔内の酸化還元電位の測定結果に応じて、吸収塔のタンク内のスラリへ酸化空気を供給する空気供給手段により流量制御を行うことにより酸化空気流量を調節する酸化空気流量の減少工程として、酸化還元電位が運転基準値よりも高い第1の状態では、排煙脱硫装置の運転に最低限必要な酸化空気流量となるような調節を行い、該第1の状態と比較して酸化還元電位が運転基準値よりもさらに高い第2の状態では、空気供給手段の運転を停止する酸化空気流量を調節すると共に、吸収塔内に存在する吸収剤スラリの入れ替えによって、吸収塔における液質改善を図ることにより、過酸化状態の解消を試みる脱水機へ供給する吸収剤スラリ流量を増加させる工程と、この工程によっても過酸化状態が回復しない場合、または適正化となるまで時間を要する場合は、抜出ポンプによる脱水機への吸収剤スラリ供給を停止し、抜出ポンプから予備タンクに吸収剤スラリを短時間で大量かつ一時的に受け入れ、そのタンク受入相当分を、液室内に工水を大量に注入して希釈操作を行うことにより、液質改善を図って過酸化状態の解消を試みることにより、液質改善を図り過酸化状態を解消することを特徴とするものである。
In order to achieve the above-described object, the method for dealing with the occurrence of a peroxide state in the flue gas desulfurization apparatus according to the present invention has the following features.
That is, the method for dealing with the occurrence of a peroxide state in the flue gas desulfurization apparatus according to the present invention is an absorption tower in the flue gas desulfurization apparatus that absorbs and removes sulfur oxides in the flue gas by bringing the absorbent slurry into contact with the flue gas. A method of automatically adjusting the amount of dust removal from the flue gas to be taken into the flue gas desulfurization device when the operation reference value in the absorption tower exceeds a predetermined range, , The step of automatically adjusting the amount of absorbent slurry circulating, the step of automatically adjusting the flow rate of the absorbent slurry supplied to the absorption tower, and after the above steps, depending on the measurement result of the oxidation-reduction potential in the absorption tower, In a first state in which the oxidation-reduction potential is higher than the operation reference value as a reduction step of the oxidation air flow rate for adjusting the oxidation air flow rate by performing flow rate control by the air supply means for supplying the oxidation air to the slurry in the tank, Flue gas In the second state where the oxidation-reduction potential is higher than the operation reference value in comparison with the first state, the adjustment is made so that the flow rate of the oxidized air necessary for the operation of the sulfur generator is minimum. Absorbent supplied to the dehydrator that attempts to eliminate the peroxidation state by adjusting the flow rate of oxidizing air to stop operation and improving the liquid quality in the absorption tower by replacing the absorbent slurry present in the absorption tower If the process of increasing the slurry flow rate and this process does not recover the peroxidation state, or if it takes time until optimization, the supply of the absorbent slurry to the dehydrator by the extraction pump is stopped and the extraction is performed. Liquid quality is improved by receiving a large amount of absorbent slurry from the pump into a spare tank in a short time and temporarily diluting the equivalent of tank reception by injecting a large amount of industrial water into the liquid chamber. By attempting to eliminate the peroxide state aim, and is characterized in that to eliminate the peroxide state Ri figure liquid property improvement.
この排煙脱硫装置における過酸化状態発生時の対応方法は、前記吸収剤スラリとして、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリを用いることを特徴とするものである。 A method for dealing with the occurrence of a peroxide state in the flue gas desulfurization apparatus is characterized in that a calcium carbonate slurry using limestone as a solute and water as a solvent is used as the absorbent slurry.
本発明に係る排煙脱硫装置における過酸化状態発生時の対応方法によれば、排煙からの煤塵除去量、吸収剤スラリの循環量、酸化空気流量、吸収剤スラリ流量、脱水機へ供給する吸収剤スラリ流量を調節することにより、吸収塔で過酸化状態が発生して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における過酸化状態を解消することができる。これにより、排煙脱硫装置における脱硫能力を既定値以上に保って、環境基準等に適合したクリーンな排気ガスを排出して環境保護に貢献することが可能となる。 According to the method for dealing with the occurrence of a peroxide state in the flue gas desulfurization apparatus according to the present invention, the amount of soot removed from the flue gas, the circulation amount of the absorbent slurry, the flow rate of the oxidized air, the flow rate of the absorbent slurry, and the dehydrator By adjusting the absorbent slurry flow rate, in the event that there is a possibility that a peroxide state will occur in the absorption tower and the flue gas desulfurization unit cannot be operated normally, the peroxide state in the absorption tower can be quickly and efficiently eliminated. Can do. This makes it possible to contribute to environmental protection by keeping the desulfurization capacity in the flue gas desulfurization apparatus above a predetermined value and discharging clean exhaust gas that meets environmental standards and the like.
以下、図面を参照して、本発明に係る排煙脱硫装置における過酸化状態発生時の対応方法の実施形態を説明する。
排煙脱硫装置では、以下の反応(1)〜(3)を起こさせることにより排ガス中から脱硫を行っている。
すなわち、吸収塔(図1参照)において、
SO2+H2O→H++HSO3 − ・・・ (1)
という反応が生じ、さらに、タンク(図1参照)において
H++HSO3 −+1/2O2→2H++SO4 2− ・・・ (2)
2H++SO4 2−+CaCO3+H2O →CaSO4・2H2O+CO2 ・・・ (3)
という反応が生じることにより、最終生成物である硫酸カルシウム(CaSO4:石膏)が生成される。
Hereinafter, with reference to the drawings, an embodiment of a method for dealing with the occurrence of a peroxide state in the flue gas desulfurization apparatus according to the present invention will be described.
In the flue gas desulfurization apparatus, desulfurization is performed from exhaust gas by causing the following reactions (1) to (3).
That is, in the absorption tower (see FIG. 1),
SO 2 + H 2 O → H + + HSO 3 − (1)
Furthermore, in the tank (see FIG. 1), H + + HSO 3 − + 1 / 2O 2 → 2H + + SO 4 2− (2)
2H + + SO 4 2− + CaCO 3 + H 2 O → CaSO 4 .2H 2 O + CO 2 (3)
As a result of this reaction, the final product calcium sulfate (CaSO 4 : gypsum) is produced.
ところで、本実施形態では、排ガス中のSO2を除去するために石灰石を用いているが、反応の過程においてまず亜硫酸カルシウム(CaSO3)が生成され、この亜硫酸カルシウムが酸化されて最終生成物である石膏(CaSO4)が生成される。そこで、亜硫酸カルシウムを効率良く酸化させて最終生成物である石膏を得るために、空気供給手段を用いて酸化空気を供給している。酸化空気流量の調節は、通常の状態では、ORP(Oxidation Reduction Potential)制御を行って、吸収塔における吸収剤スラリの電位を測定し、所定値となるように酸化空気の供給量を増減することにより行っている。
ところが、吸収塔において過酸化状態が発生すると、液室の固相の亜硫酸カルシウム(CaSO3)は全て石膏(CaSO4)となり、亜硫酸カルシウム(CaSO3)が存在しない状態となってしまう。このため、脱水機の濾布に目詰まりが生じたり、排水処理装置への悪影響が発生するおそれがある。
By the way, in this embodiment, limestone is used to remove SO 2 in the exhaust gas. However, in the course of the reaction, calcium sulfite (CaSO 3 ) is first generated, and this calcium sulfite is oxidized to form a final product. A certain gypsum (CaSO 4 ) is produced. Therefore, in order to efficiently oxidize calcium sulfite to obtain gypsum which is the final product, oxidized air is supplied using an air supply means. In the normal state, the flow rate of the oxidized air is controlled by ORP (Oxidation Reduction Potential), and the potential of the absorbent slurry in the absorption tower is measured, and the supply amount of oxidized air is increased or decreased to a predetermined value. It is done by.
However, when a peroxidized state occurs in the absorption tower, all the solid phase calcium sulfite (CaSO 3 ) in the liquid chamber becomes gypsum (CaSO 4 ), and no calcium sulfite (CaSO 3 ) exists. For this reason, there is a possibility that the filter cloth of the dehydrator may be clogged or adversely affect the waste water treatment apparatus.
本発明に係る排煙脱硫装置における過酸化状態発生時の対応方法は、吸収塔で過酸化状態が発生して排煙脱硫装置を正常運転できない可能性が発生した場合に、過酸化状態を解消するための技術である。 The method for dealing with the occurrence of a peroxide state in the flue gas desulfurization apparatus according to the present invention eliminates the peroxide state when there is a possibility that the exhaust gas desulfurization apparatus cannot be operated normally due to the occurrence of a peroxide state in the absorption tower. It is a technique to do.
<排煙脱硫装置>
図1は、本発明の実施形態に係る亜硫酸カルシウム濃度上昇時の対応方法を適用する排煙脱硫装置の模式図である。
本発明の実施形態に係る亜硫酸カルシウム濃度上昇時の対応方法を適用する排煙脱硫装置は、図1に示すように、吸収剤スラリを排煙と気液接触させる装置であり、さらに酸化空気を接触させるための空気供給手段61を備えている。
<Smoke flue gas desulfurization equipment>
FIG. 1 is a schematic diagram of a flue gas desulfurization apparatus to which a method for dealing with an increase in calcium sulfite concentration according to an embodiment of the present invention is applied.
The flue gas desulfurization apparatus to which the method for dealing with an increase in the concentration of calcium sulfite according to the embodiment of the present invention is an apparatus for bringing the absorbent slurry into gas-liquid contact with the flue gas as shown in FIG. Air supply means 61 for contacting is provided.
気液接触装置10は、吸収剤スラリ(例えば、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリ)が供給されるタンク60と、導入側吸収塔(接触処理塔)70と、導出側吸収塔80とを備えている。
The gas-
導入側吸収塔70は、タンク60の一側部から上方に向かって延設されるとともに、未処理排煙Aを導入するための排煙導入部71がその上端部に形成されており、排煙が下方に向って流れるようになっている。
The introduction
導出側吸収塔80は、タンク60の他側部(図では右側)から上方に向かって延設されるとともに、処理済排煙Bを導出するための排煙導出部81がその上端部に形成されており、導入側吸収塔70を通過しタンク60内上部を経由した排煙が上方に向って流れるようになっている。
The outlet
また、導入側吸収塔70には、スプレーパイプ72が設けられており、スプレーパイプ72には、吸収剤スラリを上方に向って液柱状に噴射するための複数のスプレーノズル73が形成されている。また、タンク60には、タンク60内の吸収剤スラリを吹上げる循環ポンプ74が連通接続されており、供給ヘッダ75を介して吸収剤スラリがスプレーパイプ72に送り込まれ、各スプレーノズル73から噴射されるようになっている。
The introduction
さらに、導出側吸収塔80の後方部には、同伴ミストを捕集除去するためのミストエリミネータ82が設けられている。なお、このミストエリミネータ82で捕集されたミストは、例えば導出側吸収塔80内を滴下することにより直接タンク60内に戻るようになっている。
Further, a
スプレーパイプ72は、詳細には図示しないが、導入側吸収塔70の内部の横方向全域にわたって、平行に複数並べて配設されており、スプレーパイプ72の他端側が供給ヘッダ75の長手方向の複数箇所にそれぞれ接続されている。
Although not shown in detail, a plurality of
この供給ヘッダ75は、スプレーパイプ72が接続された範囲において、閉塞された一端側に向って縮径した先細り形状となっている。この供給ヘッダ75の流路断面積の低下率は、内部の平均流速が長手方向に略一定となるように設定される。
The
また、タンク60内には、空気供給手段61が設けられており、スプレーノズル73から吹上げられた吸収剤スラリは、亜硫酸ガスを吸収しながら流下して、空気供給手段61を用いて吹込んだ空気により酸化し、石膏を生成するようになっている。
An air supply means 61 is provided in the tank 60, and the absorbent slurry blown up from the
なお、本実施形態における空気供給手段61は、アーム回転式となっており、タンク60内に中空回転軸62を用いて支持されたモータ(図示せず)により水平回転するアーム63と、中空回転軸62から延長されるとともに開口端がアーム63の下側に延長された空気供給管64と、中空回転軸62の基端側を空気源に供給するためのロータリージョイント65とを備えている。この空気供給手段61では、ロータリージョイント65から空気Cを圧入しつつ中空回転軸62を回転させて、空気供給管64よりアーム63の回転方向背面側に生じる気相域に空気Cを供給する。さらに、アーム63の回転により生じる渦力により、気相域終縁部の千切れ現象を起こして略均一な微細気泡を多数発生させ、タンク60内で亜硫酸ガスを吸収した吸収剤スラリ溶液と空気とを効率良く接触させるようになっている。
The air supply means 61 in the present embodiment is an arm rotation type, and includes an
そして、タンク60内のスラリ(石膏と吸収剤である少量の石灰石が懸濁または溶存したもの)は、抜出ポンプ20により吸出されて脱水機30に送出され、この脱水機30により濾過されて、水分含有量の少ない石膏(例えば、水分含有率10%程度)として取り出される。一方、脱水機30からの濾液は、スラリ槽40に送出されて、補給水とともに石灰石が加えられ、再び吸収剤スラリとしてスラリポンプ50によりタンク60内に供給される。
Then, the slurry in the tank 60 (in which a small amount of limestone that is gypsum and an absorbent is suspended or dissolved) is sucked out by the
<過酸化状態発生時の対応方法>
以下、図2を参照して、本発明の実施形態に係る過酸化状態発生時の対応方法の手順を説明する。図2は、本発明の実施形態に係る過酸化状態発生時の対応方法の手順を示すフローチャートである。
<Countermeasures when peroxidation occurs>
Hereinafter, with reference to FIG. 2, a procedure of a method for dealing with the occurrence of a peroxide state according to an embodiment of the present invention will be described. FIG. 2 is a flowchart showing a procedure of a method for dealing with the occurrence of a peroxide state according to the embodiment of the present invention.
本発明の実施形態に係る過酸化状態発生時の対応方法では、吸収塔で過酸化状態が発生した可能性がある場合に(例えばORP計器の指示値が120〜130mV程度に上昇し、設定値と指示値との偏差が20〜30mV程度となった場合)、図2に示すように、まず、ORP制御に用いるORP計器の状態が正常であるか否かを判断する(S1)。ここで、ORP計器に異常が発見された場合には、ORP計器計器を校正するとともに、動向を監視し(S2)、過酸化状態が解消されない場合には、速やかに吸収塔過酸化状態解消工程に移行する。 In the method for dealing with the occurrence of a peroxide state according to the embodiment of the present invention, when there is a possibility that a peroxide state has occurred in the absorption tower (for example, the indicated value of the ORP instrument rises to about 120 to 130 mV, the set value As shown in FIG. 2, first, it is determined whether or not the state of the ORP instrument used for the ORP control is normal (S1). Here, when an abnormality is found in the ORP instrument, the ORP instrument is calibrated and the trend is monitored (S2). Migrate to
なお、本実施形態では、例えば、ORP計器の設定値は80mVであり、運用値は60〜120mVとなっている。そして、設定値に対して指示値がプラスとなり、かつ偏差が+20mV以上となった場合に、過酸化状態が発生したとして、本発明の対応方法を実施する。 In the present embodiment, for example, the set value of the ORP instrument is 80 mV, and the operation value is 60 to 120 mV. Then, when the indicated value is positive with respect to the set value and the deviation is +20 mV or more, the countermeasure method of the present invention is carried out assuming that a peroxide state has occurred.
通常の場合、ORP計器の設定値に対して指示値がマイナスとなると、供給される酸化空気流量が増加するようになっているが、ORP計器の指示値が120mVを超えるとともに設定値との偏差が30mVを超えると、液室の固相の亜硫酸カルシウム(CaSO3)は全て石膏(CaSO4)となり、亜硫酸カルシウム(CaSO3)が存在しない状態となってしまう。このため、脱水機の濾布に目詰まりが生じたり、排水処理装置への悪影響が発生するおそれがある。 Normally, when the indicated value becomes negative with respect to the set value of the ORP instrument, the supplied flow rate of the oxidant air increases. However, the indicated value of the ORP instrument exceeds 120 mV and the deviation from the set value. Exceeds 30 mV, all of the solid phase calcium sulfite (CaSO 3 ) in the liquid chamber becomes gypsum (CaSO 4 ) and no calcium sulfite (CaSO 3 ) exists. For this reason, there is a possibility that the filter cloth of the dehydrator may be clogged or adversely affect the waste water treatment apparatus.
一方、ORP計器が正常である場合には、煤塵濃度を自動調節し(S3)、吸収剤スラリ循環量を自動調節し(S4)、吸収塔へ供給する吸収剤スラリ流量を自動調節する(S5)。
煤塵濃度の自動調節工程では、吸収塔の上流側に設けられた電気式集塵機を自動運転し、吸収塔へ送出される排ガス中に含まれる煤塵を除去して、吸収塔入口における煤塵濃度を下げる操作を行う。また、吸収剤スラリ循環量の自動調節工程では、例えば、循環ポンプの動翼開度を自動調節することにより、吸収剤スラリ循環量を変化させる。また、吸収剤スラリ流量の調節工程では、例えば、吸収塔へ吸収剤スラリを供給するためのスラリポンプの流量を自動制御し、吸収塔へ供給する吸収剤スラリ流量の調節を行う。
On the other hand, when the ORP instrument is normal, the dust concentration is automatically adjusted (S3), the absorbent slurry circulation amount is automatically adjusted (S4), and the absorbent slurry flow rate supplied to the absorption tower is automatically adjusted (S5). ).
In the automatic dust concentration adjustment process, the electric dust collector installed upstream of the absorption tower is automatically operated to remove the dust contained in the exhaust gas sent to the absorption tower and lower the dust concentration at the inlet of the absorption tower. Perform the operation. In the automatic adjustment process of the absorbent slurry circulation amount, for example, the absorbent slurry circulation amount is changed by automatically adjusting the moving blade opening of the circulation pump. In the step of adjusting the absorbent slurry flow rate, for example, the flow rate of a slurry pump for supplying the absorbent slurry to the absorption tower is automatically controlled to adjust the flow rate of the absorbent slurry supplied to the absorption tower.
続いて、ORP計器の指示値が所定値(例えば、140mV)を超えているか否かを判断する(S6)。
ここで、ORP計器の指示値が所定値を超えていない場合(例えば130〜140mV未満の場合)には、未だ過酸化状態が発生していないものと判断するが、過酸化状態へ移行する可能性が高いため、吸収塔へ供給する酸化空気量を例えば1000m3N/h前後に調節し、動向を観察することが好ましい(S7)。
Subsequently, it is determined whether or not the indicated value of the ORP instrument exceeds a predetermined value (for example, 140 mV) (S6).
Here, when the indicated value of the ORP instrument does not exceed the predetermined value (for example, less than 130 to 140 mV), it is determined that the peroxidation state has not yet occurred, but it is possible to shift to the peroxidation state. For this reason, it is preferable to observe the trend by adjusting the amount of oxidized air supplied to the absorption tower to, for example, around 1000 m 3 N / h (S7).
一方、ORP計器の指示値が所定値を超えている場合(例えば140〜160mVの場合)には、過酸化状態が深刻化しているため、空気供給手段を停止させて過酸化状態の解消を試みる(S8)。 On the other hand, when the indicated value of the ORP instrument exceeds a predetermined value (for example, 140 to 160 mV), the peroxidation state has become serious, so the air supply means is stopped to try to eliminate the peroxidation state. (S8).
続いて、ORP計器の指示値が降下して、設定値と指示値との偏差が所定の範囲(例えば20mV以内)となったか否かを判断する(S9)。
ここで、ORP計器の指示値が降下して、設定値と指示値との偏差が所定の範囲となった場合には、過酸化状態が解消に向かっているものと判断して、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を自動調節する(S10)。本工程では、脱水機へ吸収剤スラリを供給するための抜出ポンプの流量を制御し、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を調節する。
Subsequently, it is determined whether or not the indicated value of the ORP instrument has fallen and the deviation between the set value and the indicated value is within a predetermined range (for example, within 20 mV) (S9).
Here, when the indicated value of the ORP instrument falls and the deviation between the set value and the indicated value falls within a predetermined range, it is determined that the peroxidation state is going to be resolved, and the dehydrator ( The absorbent slurry flow rate supplied to the belt filter is automatically adjusted (S10). In this step, the flow rate of the extraction pump for supplying the absorbent slurry to the dehydrator is controlled, and the flow rate of the absorbent slurry supplied to the dehydrator (belt filter) is adjusted.
一方、ORP計器の指示値が降下せず、かつ設定値と指示値との偏差が所定の範囲とならない場合には、過酸化状態が継続しているものと判断して、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を増加させる(S11)。本工程では、脱水機へ吸収剤スラリを供給するための抜出ポンプの流量を制御し、吸収塔内に存在する吸収剤スラリの入れ替えによって、吸収塔における液質改善を図ることにより、過酸化状態の解消を試みる。 On the other hand, when the indicated value of the ORP instrument does not decrease and the deviation between the set value and the indicated value does not fall within the predetermined range, it is determined that the peroxidation state continues, and the dehydrator (belt filter) ) Is increased (S11). In this process, the flow rate of the extraction pump for supplying the absorbent slurry to the dehydrator is controlled, and by replacing the absorbent slurry existing in the absorption tower, the liquid quality in the absorption tower is improved, and thus the peroxidation is performed. Try to resolve the condition.
また、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を増加させても過酸化状態が回復しない場合、または適正化となるまで時間を要する場合は、抜出ポンプによる脱水機への吸収剤スラリ供給を停止する(S12)ことが好ましい。この工程では、抜出ポンプから予備タンクに吸収剤スラリを短時間で大量かつ一時的に受け入れ、そのタンク受入相当分(減少分)を、液室内に工水を大量に注入して希釈操作を行うことにより、液質改善を図って過酸化状態の解消を試みる。なお、脱水機への吸収剤スラリ供給を停止することは、石膏の製造中止を意味する。 Also, if the peroxide state does not recover even if the absorbent slurry flow rate to the dehydrator (belt filter) is increased, or if it takes time until optimization, the absorbent to the dehydrator using the extraction pump It is preferable to stop the slurry supply (S12). In this process, a large amount of absorbent slurry is temporarily received from the extraction pump into the reserve tank in a short time, and a portion corresponding to the tank reception (decrease) is injected into the liquid chamber in a large amount for dilution. By trying to improve the liquid quality, try to eliminate the peroxide state. Note that stopping the supply of the absorbent slurry to the dehydrator means that the production of gypsum is stopped.
なお、上述した実施形態で示した具体的数値は一例であり、本実施形態を適用する排煙脱硫装置の形状および規模や、プラントの規模および稼働状態等に応じて、各数値を適宜変更して実施できることは勿論である。 In addition, the specific numerical value shown by embodiment mentioned above is an example, Each numerical value is changed suitably according to the shape and scale of a flue gas desulfurization apparatus to which this embodiment is applied, the scale of a plant, an operating state, etc. Of course, it can be implemented.
本発明に係る排煙脱硫装置における過酸化状態発生時の対応方法は、主として、発電プラント等で使用されている吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収塔で過酸化状態が発生して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における過酸化状態を解消する際に利用することができる。 In the exhaust gas desulfurization apparatus according to the present invention, the method of dealing with the occurrence of the overoxidation state is mainly to absorb and remove sulfur oxides in the exhaust gas by bringing the absorbent slurry used in a power plant or the like into contact with the exhaust gas. In the flue gas desulfurization device, when the peroxide state is generated in the absorption tower and there is a possibility that the flue gas desulfurization device cannot be operated normally, it is used to quickly and efficiently eliminate the peroxide state in the absorption tower be able to.
10 気液接触装置
20 抜出ポンプ
30 脱水機(ベルトフィルタ)
40 スラリ槽
50 スラリポンプ
60 タンク
61 空気供給手段
62 中空回転軸
63 アーム
64 空気供給管
65 ロータリージョイント
70 導入側吸収塔(接触処理塔)
71 排煙導入部
72 スプレーパイプ
73 スプレーノズル
74 循環ポンプ
75 供給ヘッダ
80 導出側吸収塔
81 排煙導出部
82 ミストエリミネータ
10 Gas-
40
71 Smoke
Claims (2)
吸収塔における運転基準値が所定の範囲を超えた場合に、
排煙脱硫装置に取り入れる排煙からの煤塵除去量を自動調節する工程と、
吸収剤スラリ循環量を自動調節する工程と、
吸収塔へ供給する吸収剤スラリ流量を自動調節する工程と、
上記工程後に、吸収塔内の酸化還元電位の測定結果に応じて、吸収塔のタンク内のスラリへ酸化空気を供給する空気供給手段により流量制御を行うことにより酸化空気流量を調節する酸化空気流量の減少工程として、酸化還元電位が運転基準値よりも高い第1の状態では、排煙脱硫装置の運転に最低限必要な酸化空気流量となるような調節を行い、該第1の状態と比較して酸化還元電位が運転基準値よりもさらに高い第2の状態では、空気供給手段の運転を停止する酸化空気流量を調節すると共に、
吸収塔内に存在する吸収剤スラリの入れ替えによって、吸収塔における液質改善を図ることにより、過酸化状態の解消を試みる脱水機へ供給する吸収剤スラリ流量を増加させる工程と、この工程によっても過酸化状態が回復しない場合、または適正化となるまで時間を要する場合は、抜出ポンプによる脱水機への吸収剤スラリ供給を停止し、抜出ポンプから予備タンクに吸収剤スラリを短時間で大量かつ一時的に受け入れ、そのタンク受入相当分を、液室内に工水を大量に注入して希釈操作を行うことにより、液質改善を図って過酸化状態の解消を試みることにより、液質改善を図り過酸化状態を解消することを特徴とする排煙脱硫装置における過酸化状態発生時の対応方法。
In a flue gas desulfurization device that makes an absorbent slurry and flue gas contact to absorb and remove sulfur oxides in the flue gas, a countermeasure method when a peroxide state occurs in the absorption tower,
When the operation reference value in the absorption tower exceeds the specified range,
A process for automatically adjusting the amount of dust removal from the flue gas to be taken into the flue gas desulfurization unit;
A process of automatically adjusting the amount of absorbent slurry circulation;
Automatically adjusting the flow rate of the absorbent slurry supplied to the absorption tower;
After the above steps, the oxidized air flow rate is adjusted by controlling the flow rate by air supply means for supplying oxidized air to the slurry in the tank of the absorption tower according to the measurement result of the oxidation-reduction potential in the absorption tower. In the first state where the oxidation-reduction potential is higher than the operation reference value, the adjustment is performed so that the flow rate of the oxidized air necessary for the operation of the flue gas desulfurization apparatus is the minimum, and compared with the first state. Then, in the second state where the oxidation-reduction potential is higher than the operation reference value, the flow rate of the oxidized air for stopping the operation of the air supply means is adjusted,
By replacing the absorbent slurry existing in the absorption tower, by improving the liquid quality in the absorption tower, the process of increasing the flow rate of the absorbent slurry supplied to the dehydrator attempting to eliminate the peroxidation state, and this process also If the over-oxidation state does not recover or if it takes time until optimization, supply of the absorbent slurry to the dehydrator by the extraction pump is stopped and the absorbent slurry is quickly transferred from the extraction pump to the spare tank. By accepting a large amount and temporarily, and by performing dilution operation by injecting a large amount of industrial water into the liquid chamber, the amount equivalent to the tank reception is attempted by improving the liquid quality and trying to eliminate the peroxidation state. countermeasures against over oxidation state occurs in the flue gas desulfurization apparatus characterized by eliminating FIG Ri peroxide condition improved.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007013400A JP5019360B2 (en) | 2007-01-24 | 2007-01-24 | How to deal with peroxidation conditions in flue gas desulfurization equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007013400A JP5019360B2 (en) | 2007-01-24 | 2007-01-24 | How to deal with peroxidation conditions in flue gas desulfurization equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008178785A JP2008178785A (en) | 2008-08-07 |
JP5019360B2 true JP5019360B2 (en) | 2012-09-05 |
Family
ID=39723094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007013400A Expired - Fee Related JP5019360B2 (en) | 2007-01-24 | 2007-01-24 | How to deal with peroxidation conditions in flue gas desulfurization equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5019360B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2628527T3 (en) | 2010-10-15 | 2019-09-30 | Mitsubishi Hitachi Power Systems, Ltd. | System for processing mercury in exhaust gas |
CN103566748B (en) * | 2013-11-21 | 2015-06-17 | 航天环境工程有限公司 | Stirring wet type exhaust smoke desulfurization device for sintering machine |
JP6985084B2 (en) * | 2017-09-25 | 2021-12-22 | 関西電力株式会社 | Desulfurization method and desulfurization equipment for gases containing sulfur oxides |
CN115025599A (en) * | 2022-03-11 | 2022-09-09 | 华能(浙江)能源开发有限公司玉环分公司 | Method for realizing energy conservation and consumption reduction of desulfurization slurry circulating pump by using desulfurization additive |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61433A (en) * | 1984-06-14 | 1986-01-06 | Mitsubishi Heavy Ind Ltd | Waste gas desulfurization |
-
2007
- 2007-01-24 JP JP2007013400A patent/JP5019360B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008178785A (en) | 2008-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10704835B2 (en) | Method of spray drying and washing and method of controlling air pollution | |
JP6223654B2 (en) | Flue gas desulfurization equipment | |
KR102047196B1 (en) | Wet type flue gas desulfurization device and method for operating wet type flue gas desulfurization device | |
WO2014156985A1 (en) | Seawater flue-gas desulfurization device and method for operating same | |
JP3546160B2 (en) | Mercury removal method | |
JP6230818B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP5717382B2 (en) | Smoke exhaust treatment device and smoke exhaust treatment method | |
WO2014156984A1 (en) | Seawater flue gas desulfurization apparatus and operating method therefor | |
KR0158541B1 (en) | Flue gas treating system | |
JP5953342B2 (en) | Sulphite control to reduce mercury re-emissions | |
JP5019360B2 (en) | How to deal with peroxidation conditions in flue gas desulfurization equipment | |
JP2013086054A (en) | Wet type limestone-gypsum method desulfurization apparatus using seawater | |
JP2007222824A (en) | Gas purification apparatus and exhaust-gas treatment method | |
JP5019359B2 (en) | How to cope with increase of calcium sulfite concentration in flue gas desulfurization equipment | |
TWI531538B (en) | Oxidation tank, seawater desulfurization system and power generation system | |
JP5106479B2 (en) | Method and apparatus for suppressing mercury re-release in desulfurization equipment | |
JP3332678B2 (en) | Wet flue gas desulfurization equipment | |
JP5019361B2 (en) | How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment | |
JP2009172541A (en) | Air supply amount control method for oxidization of wet-type flue gas desulfurization apparatus | |
JP5019358B2 (en) | How to deal with absorption tower deactivation in flue gas desulfurization equipment | |
JP3337382B2 (en) | Exhaust gas treatment method | |
JP5991664B2 (en) | Flue gas desulfurization system | |
JP3572188B2 (en) | Exhaust gas treatment method | |
JPH10118451A (en) | Exhaust gas treatment apparatus and method | |
JP3692219B2 (en) | Smoke exhaust treatment method and smoke exhaust treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120229 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5019360 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |