WO2014156985A1 - Seawater flue-gas desulfurization device and method for operating same - Google Patents

Seawater flue-gas desulfurization device and method for operating same Download PDF

Info

Publication number
WO2014156985A1
WO2014156985A1 PCT/JP2014/057825 JP2014057825W WO2014156985A1 WO 2014156985 A1 WO2014156985 A1 WO 2014156985A1 JP 2014057825 W JP2014057825 W JP 2014057825W WO 2014156985 A1 WO2014156985 A1 WO 2014156985A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
desulfurization
spray nozzle
exhaust gas
sprayed
Prior art date
Application number
PCT/JP2014/057825
Other languages
French (fr)
Japanese (ja)
Inventor
石坂 浩
中本 隆則
浩之 野坂
片川 篤
今田 典幸
佐々木 郷紀
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Publication of WO2014156985A1 publication Critical patent/WO2014156985A1/en
Priority to PH12015501897A priority Critical patent/PH12015501897A1/en
Priority to SA515361204A priority patent/SA515361204B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/04Regenerating the washing fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/08Means for controlling the separation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/10Means for removing the washing fluid dispersed in the gas or vapours
    • B01D2247/106Means for removing the washing fluid dispersed in the gas or vapours using a structured demister, e.g. tortuous channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water

Definitions

  • the present invention relates to a flue gas treatment apparatus for removing sulfur oxides of harmful components in exhaust gas generated from a combustion apparatus such as a boiler installed in a thermal power plant or factory, and in particular, seawater is used as a desulfurization absorption liquid.
  • the present invention relates to a seawater flue gas desulfurization apparatus and its operation method.
  • seawater wet desulfurization device As a flue gas desulfurization device in a thermal power plant, a seawater wet desulfurization device that uses seawater may be used in overseas coastal areas, particularly in Southeast Asia. The cost of equipment can be reduced by a seawater desulfurization method in which seawater is used as an absorbing solution for sulfur oxide in exhaust gas, the seawater after absorbing sulfur oxide is aerated, and then discharged into the ocean.
  • Fig. 4 shows the system of a wet flue gas desulfurization system using seawater of the prior art.
  • a wet flue gas desulfurization apparatus similar to the wet flue gas desulfurization apparatus using seawater shown in FIG. 4 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-234334 (Patent Document 1).
  • This wet desulfurization apparatus is mainly composed of a desulfurization absorption tower 100 for treating sulfur oxide (SOx) in combustion exhaust gas discharged from a boiler, an inlet duct 102 for introducing exhaust gas into the desulfurization absorption tower 100, and a desulfurization absorption tower 100 for SOx.
  • SOx sulfur oxide
  • Combustion exhaust gas discharged from a boiler is introduced from the inlet duct 102 into the desulfurization absorption tower 100 in a substantially horizontal direction by a desulfurization fan (not shown) and discharged from an outlet duct 103 provided at the top of the desulfurization absorption tower 100. .
  • Seawater heated by a boiler condenser (not shown) is sent to the uppermost stream portion of the oxidation tank 114 via the dilution seawater feed pipe L3, and a part of the seawater is pumped up by the seawater pump 118 to be absorbed by the seawater.
  • SOx mainly SO2
  • in the exhaust gas is selectively absorbed and removed on the surface of the absorbing droplets of the desulfurization spray nozzle 109.
  • mist accompanying the flow of the exhaust gas is collected by a mist eliminator 107 installed in the outlet duct 103 at the top of the desulfurization absorption tower 100.
  • the exhaust gas that has passed through the mist eliminator 107 is reheated as necessary, and then discharged into the atmosphere from a chimney (not shown).
  • the seawater that has absorbed SO2 in the exhaust gas becomes sulfite ion-containing seawater and is extracted from the desulfurization absorption tower 1 by the sulfite ion-containing seawater pipe L4 and sent to the oxidation tank 114.
  • the sulfite ion-containing seawater is oxidized by oxygen dissolved from the air (bubbles) sent from the oxidation air blower 116 and ejected from the aeration nozzle 117 while being diluted by the dilution seawater sent from the dilution seawater water pipe L3. And returned to the ocean 12 as treated seawater.
  • This conventional seawater wet desulfurization apparatus has the advantage that there is no need to provide a limestone supply facility and a gypsum recovery facility as in the limestone-gypsum method, and the cost of the desulfurization system can be kept low.
  • the exhaust gas contains soot and heavy metals such as mercury that could not be removed by a dust collector (not shown) and is absorbed and removed by the absorption tower 100 in the same manner as SO2. Therefore, it will be discharged
  • FIG. 2 of Patent Document 2 Japanese Patent Application Laid-Open No. 2001-170444 divides an empty tower part of an absorption tower having an absorption liquid storage part in which an absorption liquid containing limestone is stored at the lower part into upper and lower stages by a collector,
  • the lower stage is configured as a lower absorbent section having a lower spray nozzle that sprays exhaust gas containing limestone circulated and supplied from the absorbent storage section, and the upper stage is an upper absorbent section provided with an upper spray nozzle that sprays seawater. It is disclosed.
  • Part of the used seawater that has come into contact with the exhaust gas in the upper absorption part is collected by the collector and discharged to the outside of the absorption tower, and the used absorption liquid collected in the absorption liquid storage part is replenished with limestone while being replenished in the lower absorption part. Sprayed from the lower spray nozzle and used to absorb exhaust gas.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2008-200699
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2008-200699
  • Japanese Patent Application No. 2012-279808 which is a patent application filed on December 21, 2012 by the present applicant, proposes an exhaust gas treatment apparatus using seawater as shown in FIG.
  • a desulfurization spray nozzle 109 for spraying seawater is installed at the upper part of the desulfurization absorption tower 100, and a partition wall 141 is installed at the lower part of the desulfurization absorption tower 100 to form the inlet side gas flow path 102.
  • a dust removal spray nozzle 108 for spraying seawater in the circulation tank 103 below the absorption tower to absorb and remove sulfur oxides and dust in the exhaust gas is installed in the inlet side gas flow path 102, and further, the upper stage of the dust removal spray nozzle 108 is installed. Is provided with a spray nozzle 143 for cleaning the dust spray nozzle 108.
  • the collector 122 is arranged between the desulfurization spray nozzle 109 and the cleaning spray nozzle 143 of the absorption tower 100 shown in FIG. 5, and a part of the seawater sprayed from the desulfurization spray nozzle 109 is collected by the collector 122 and discharged into the sea. It is.
  • the absorption tower 100 is used as a flue gas desulfurization apparatus that uses an absorbent containing limestone without using seawater, and a dust removing section B at the lower stage.
  • a configuration is shown in which a collector 122 that collects the absorbent after spraying is provided separately in the upper absorption part A.
  • Absorption tower provided with dust removal part circulation tank 103 storing absorption liquid is divided into two upper and lower stages by collector 122, and the upper stage is absorption tower provided with spray nozzle 121 for spraying absorption liquid containing limestone to exhaust gas
  • the absorption section A is the absorption tower dust removal section B in which the absorption liquid from the circulation tank 103 circulates, and the absorption liquid after contacting the exhaust gas collected by the collector 122 is provided separately from the circulation tank 103.
  • a configuration is disclosed in which, after being collected in the circulation tank 118, it is sent to the dust removal part circulation tank 103 and the spray nozzle 121 of the absorption tower absorption part A to be used for desulfurization of exhaust gas.
  • Japanese Patent Application No. 2013-58724 which is a patent application filed on March 21, 2013 by the present applicant, proposes an exhaust gas treatment apparatus using seawater as shown in FIG.
  • a desulfurization liquid spray nozzle 109 for spraying seawater is installed at the upper portion of the desulfurization absorption tower 100, and a collector 122 for collecting the sprayed seawater is provided below the desulfurization spray nozzle 109.
  • a dust removal spray nozzle 108 different from the desulfurization spray nozzle 109 is provided between the exhaust gas inlet duct 102 and the collector 122 located on the side, and dust removal and heavy metals in the exhaust gas are absorbed and removed by the dust removal spray nozzle 108.
  • Seawater stored in the circulation tank 103 below the desulfurization absorption tower 100 is circulated and supplied to the dust removal spray nozzle 108 by a circulation pump 104. Further, the sprayed seawater that has come into contact with the exhaust gas from the collector 122 is sent into the oxidation tank 114 and is oxidized by the oxidation air sucked from the atmosphere through the intake pipe L5 by the microbubble generator 115, and the oxidation air blower 116. Is oxidized and treated by oxygen dissolved from bubbles blown from the air diffuser nozzle 117 and returned to the ocean 12 as seawater.
  • the flue gas desulfurization device described in Patent Document 4 is a flue gas desulfurization device that uses an absorption liquid containing limestone as shown in FIG. 6 without using seawater.
  • the absorption tower 100 is provided with a spray nozzle 121 for spraying the absorption liquid containing limestone to the exhaust gas, and the upper stage is divided into two upper and lower stages by the collector 122.
  • a configuration is shown in which the lower part is a dust removing part B in which the absorption liquid from the circulation tank 103 circulates.
  • the absorption liquid collected by the collector 122 is once stored in the circulation tank 118 of the absorption part A and then circulated and supplied to the absorption part A again.
  • the structure in which the empty tower portion of the absorption tower 100 is divided into upper and lower stages by the collector 122 does not completely separate the absorption tower absorption section A and the absorption tower dust removal section B by the collector 122 but is sprayed by the absorption section A.
  • the absorbed liquid also flows down to the dust removing section B.
  • a part of the circulation tank 103 below the dust removing section B is partitioned, and the liquid reservoir 109 collects gypsum having a large particle diameter as the liquid reservoir 109. It is.
  • the absorption part A and the dust removal part B are not completely functionally separated, and the pump cavitation is exclusively prevented when the slurry is extracted from the circulation tank 103, and the air into the circulation tank 103 is prevented.
  • the purpose is to smoothly oxidize the sulfite by blowing in, and the collector 122 does not completely separate the absorbing part A and the dust removing part B, and the exhaust gas treatment function in the absorbing part A and the dust removing part B is also separated. Not.
  • an absorption part provided with a spray nozzle for spraying the upper stage seawater on the absorption tower to the exhaust gas is provided, and the lower part is seawater or absorbent stored in the circulation tank.
  • a dust removal part is circulated, and the collector is substantially partitioned by a collector.
  • the seawater in the storage section is discharged without purification. It is not possible. If a large amount of seawater flows down from the absorption section A into the seawater accumulated in such a storage section, it cannot be handled with a limited capacity of the absorption tower, so the seawater is discharged into the ocean without purification treatment.
  • the dust removal part B since a part of seawater evaporates with the heat
  • the object of the present invention is to prevent the passage of liquid between a dust removing section for removing soot and heavy metals in exhaust gas and an absorbing section for removing sulfur oxide in exhaust gas in one absorption tower. It is to provide a flue gas desulfurization apparatus and its operation method.
  • the object of the present invention can be achieved by adopting the following constitution.
  • the invention according to claim 1 is provided with an inlet for introducing exhaust gas discharged from a combustion device including a boiler, and a circulation tank for storing seawater provided below the inlet, and repeatedly supplying seawater in the circulation tank.
  • a dust removal spray nozzle that absorbs or contacts and removes dust and heavy metals in the exhaust gas introduced from the inlet, and sprays fresh seawater above the dust removal spray nozzle to remove sulfur oxide in the exhaust gas introduced from the inlet.
  • An absorption tower provided with a desulfurization spray nozzle for absorbing and removing, an absorption tower provided with a collector for recovering seawater sprayed from the desulfurization spray nozzle between the dust removal spray nozzle and the desulfurization spray nozzle, and the sprayed seawater recovered by the collector is introduced to oxidize air Rectifier that rectifies sprayed seawater between collector and desulfurization spray nozzle in seawater flue gas desulfurization device equipped with oxidation tank for supplying
  • a mist eliminator for mist removal is provided between the collector and the dust removal spray nozzle, and the absorption tower is provided with a rectifying member, a collector and a mist eliminator, and an absorption part A having a desulfurization spray nozzle and below the absorption part A.
  • It is a seawater flue gas desulfurization apparatus characterized by being divided into a dust removal part B having a dust removal spray nozzle.
  • the invention according to claim 2 is characterized in that the rectifying member comprises a perforated plate, a plurality of fillers, or a slit plate in which a plurality of plates having a plane in the vertical direction are arranged in parallel. Device.
  • the invention according to claim 3 is a pump that uses potential energy when fresh seawater sprayed from a desulfurization spray nozzle recovered by a collector is supplied to an oxidation tank as a power source of seawater in a circulation tank sprayed from a dust removal spray nozzle.
  • a seawater flue gas desulfurization apparatus according to the first aspect, wherein the lower collectors are arranged in a staggered manner below the gap between the upper collectors using at least two upper and lower collectors. is there.
  • the invention according to claim 5 is the supply amount of the seawater in the circulation tank sprayed from the dust removal spray nozzle in the seawater flue gas desulfurization apparatus according to claim 1 to the exhaust gas amount per unit time, and the fresh seawater sprayed from the desulfurization spray nozzle.
  • the operation method of the seawater flue gas desulfurization apparatus is characterized in that the ratio of the supply amount to the exhaust gas amount per unit time is 1 to 4: 5 to 17. (Function)
  • fresh seawater is sprayed from the desulfurization spray nozzle to the exhaust gas discharged from the combustion device at the absorption part of the absorption tower to absorb and remove sulfur oxides in the exhaust gas.
  • Seawater that has absorbed sulfur oxides in the exhaust gas is rectified by the rectifying member and collected by the collector.
  • the seawater sprayed from the desulfurization spray nozzle flows down while being rectified by the flow straightening member downward in the vertical direction by the collector, so the flow area of the seawater is limited, and all the flowing seawater can be collected by the collector.
  • the fresh seawater sprayed from the desulfurization spray nozzle thus absorbs the sulfur oxides in the exhaust gas, and then all flows down into the oxidation tank provided outside the absorption tower through the collector. Does not flow down.
  • the seawater sprayed by the absorption part can fully absorb and remove sulfur oxides in the exhaust gas by using a large amount of seawater sprayed by the dust removal part.
  • the seawater sprayed in can all flow down into the oxidation tank, and after being purified in the oxidation tank, the seawater can be discharged into the ocean. Since the seawater sprayed in is collected and does not flow down to the dust removal section, even if a large amount of seawater is sprayed in the absorption section, it does not impose a purification treatment load on the dust removal section.
  • mist eliminator provided above the dust removal spray nozzle and below the collector.
  • the invention according to claim 1 is characterized in that the seawater sprayed in the dust removing part and the absorbing part can be treated independently without being mixed by the rectifying member, the collector and the mist eliminator.
  • the feature is that the seawater after purification treatment is clean, and even if a large amount of seawater is sprayed in the absorption section, purification processing of contaminated seawater in the dust removal section It is useful as a flue gas desulfurization device that uses inexpensive seawater without increasing the load.
  • the rectifying member comprises a slit plate in which a porous plate, a plurality of fillers, or a plurality of plates having a plane in the vertical direction are arranged in parallel.
  • fresh sprayed from the desulfurization spray nozzle recovered by the collector as a power source for pumping up seawater in the circulation tank sprayed from the dust removal spray nozzle.
  • the lower collectors are arranged in a staggered manner below the gap of the upper collector.
  • the fresh seawater used in the absorption section will not flow down to the dust removal section, and the amount of seawater used in the dust removal section may be relatively small compared to the seawater used in the absorption section, and purification of contaminated seawater used in the dust removal section Processing becomes easy.
  • the supply amount of the seawater in the circulation tank sprayed from the dust removal spray nozzle of the seawater flue gas desulfurization apparatus according to the first aspect to the exhaust gas amount per unit time and the freshness sprayed from the desulfurization spray nozzle
  • the ratio of fresh seawater to the amount of exhaust gas supplied per unit time is 1 to 4: 5 to 17, which makes it possible to purify exhaust gas using seawater that does not increase the processing load of contaminated seawater.
  • FIG. 1 the system
  • the description of the members having the same reference numerals as those in the wet desulfurization apparatus in FIG. 4 is partially omitted.
  • the seawater wet desulfurization apparatus of this embodiment mainly discharges exhaust gas from a desulfurization absorption tower 1 for treating SOx in combustion exhaust gas from a boiler, an inlet duct 2 for introducing exhaust gas into the desulfurization absorption tower 1, and the desulfurization absorption tower 1.
  • Outlet duct 3 desulfurization spray nozzle 9 for spraying seawater that absorbs SOx in exhaust gas onto exhaust gas, mist eliminator 7 for removing mist accompanying the exhaust gas flow, seawater pump 18 for supplying seawater to desulfurization spray nozzle 9, and SOx
  • the combustion exhaust gas is introduced from the inlet duct 2 into the desulfurization absorption tower 1 in a substantially horizontal direction, and is discharged from the outlet duct 3 provided at the top of the desulfurization absorption tower 1.
  • Seawater heated by a boiler condenser (not shown) is sent to the uppermost stream portion of the oxidation tank 14 through the dilution seawater pipe L3.
  • a part of the seawater is supplied to the seawater pump 18.
  • the fresh water is fed from the seawater feed pipe L7 to the desulfurization spray nozzle 9 and the circulation tank 5 below the desulfurization absorption tower 1 through the absorption seawater feed pipe L2.
  • Fresh seawater sent to the desulfurization spray nozzle 9 is sprayed into the desulfurization absorption tower 1 as fine droplets, and the gas-liquid contact between the seawater and the exhaust gas is performed, so that SOx (mainly SO2) in the exhaust gas is changed. It is selectively absorbed and removed by the absorbing droplet surface of the desulfurization spray nozzle 9.
  • SOx mainly SO2
  • the seawater sprayed from the desulfurization spray nozzle 9 absorbs sulfur oxide in the exhaust gas, and the seawater that has absorbed the sulfur oxide is rectified by the rectifying member 22 and collected by the collector 10.
  • the space between the desulfurization spray nozzle 9 and the collector 10 is referred to as an absorption part A in the desulfurization absorption tower 1.
  • the mist accompanying the flow of the exhaust gas is collected by a first mist eliminator 7 installed in the outlet duct 3 at the top of the desulfurization absorption tower 1.
  • the exhaust gas that has passed through the mist eliminator 7 is reheated as necessary, and then discharged into the atmosphere from a chimney (not shown).
  • the flow area of the seawater is limited. It is important to dispose the liquid receiving area of the collector 10 below the limited seawater flow-down area, and between the collectors 10 as viewed from above and between the collector 10 at both end portions and the wall surface of the absorption tower 1. Since no gap is formed between them, all the seawater flowing down from the rectifying member 22 can be collected by the collector 10.
  • a collecting tank 11 (seawater collecting member) is provided at the most downstream portion of the collector 10 that collects the sprayed seawater, and the liquid level of the circulating tank 5 positioned below the collector 10 and the collecting tank 11
  • a dust removal spray nozzle 8 different from the desulfurization spray nozzle 9 is provided in the dust removal portion B which is a region between the collector 10. Seawater (absorbed liquid) stored in the circulation tank 5 below the desulfurization absorption tower 1 is circulated and supplied to the dust removal spray nozzle 8 by the absorption liquid circulation pump 4.
  • the absorbing liquid (seawater) in the circulation tank 5 is agitated by the agitator 6.
  • the dust and heavy metals in the exhaust gas are absorbed or removed by the absorbing liquid consisting of the dust removing seawater.
  • a part of the absorption liquid consisting of seawater for dust removal in the circulation tank 5 is extracted from the absorption liquid extraction pipe L1 and purified by a method such as pH adjustment, addition of a chelating agent, coagulation sedimentation, etc. in the waste water treatment device 24. Is sent to the oxidation tank 14 through a water pipe L8.
  • a diffuser nozzle 17 is disposed in the oxidation tank 14, and sulfite is supplied by oxygen dissolved from the bubbles supplied from the oxidizer air blower 16 through the air supply pipe L 6 and ejected from the diffuser nozzle 17. Oxidized and processed and returned to the ocean 12 as seawater.
  • a second mist eliminator 23 is arranged between the dust removal spray nozzle 8 and the collector 10 so that a part of the seawater sprayed by the dust removal spray nozzle 8 does not reach the collector 10 and the absorption part A above the collector 10 as mist. ing.
  • a porous plate (perspective view of FIG. 2 (a), cross-sectional view of FIG. 2 (b)), a configuration in which a plurality of fillers (Raschig rings) are stacked, or a plurality of vertical directions as the rectifying member 22
  • the spray seawater spreading in a divergent form from the desulfurization spray nozzle 9 can be flowed downward in the vertical direction and rectified. Sprayed seawater can be reliably collected by the collector 10.
  • a perforated plate is used as the rectifying member 22, as shown in the cross-sectional view of FIG. 2B, a cylindrical portion having a protrusion in the vertical direction is formed below each hole. Only flows down.
  • the lower stage is used as the collector 10 at least under the upper stage 10a using the upper and lower stages.
  • the collectors 10b By arranging the collectors 10b in a staggered manner, a gap is not formed in the projection view of the collector 10 viewed from above.
  • the seawater sprayed from the desulfurization spray nozzle 9 in the absorption section A of the absorption tower 1 is rectified by the rectifying member 22 and flows down while being rectified downward in the vertical direction toward the collector 10, so that the seawater flowing area is limited. For this reason, all the seawater flowing down in the absorption part A can be collected by the collector 10.
  • the fresh seawater sprayed from the desulfurization spray nozzle 9 thus absorbs the sulfur oxides in the exhaust gas, and then all flows down into the oxidation tank 14 provided outside the absorption tower via the collector 10. The seawater sprayed with the does not flow down.
  • the seawater sprayed by the absorption part A can fully absorb and remove the sulfur oxide in the exhaust gas by using a large amount of seawater sprayed by the dust removal part B.
  • the seawater sprayed in the absorption part A can fully absorb and remove the sulfur oxide in the exhaust gas by using a large amount of seawater sprayed by the dust removal part B.
  • all of it flows down into the oxidation tank 14 and is discharged into the ocean 12 after being oxidized in the oxidation tank 14 (this is sometimes referred to as one-through).
  • the seawater sprayed in the absorbing part A by the rectifying member 22 and the collector 10 is collected and does not flow down to the dust removing part B.
  • the seawater stored in the circulation tank 5 is repeatedly sprayed from the dust removal spray nozzle 8, so that dust and heavy metals in the exhaust gas can be absorbed or removed in the sprayed seawater.
  • the seawater repeatedly sprayed from the dust removal spray nozzle 8 is considerably contaminated with dust and the like as compared with the seawater sprayed by the desulfurization spray nozzle 9 of the absorption section A. Therefore, the contaminated seawater is discharged in the waste water treatment tank 24. After the purification treatment, it is discharged to the ocean 12 through the water pipe L8 and the oxidation tank 14.
  • a second mist eliminator 23 is provided above the dust removal spray nozzle 8 and below the collector 10 to remove the mist.
  • the seawater sprayed from the desulfurization spray nozzle 9 of the absorption section A can sufficiently absorb and remove sulfur oxides in the exhaust gas by using a large amount. Even if a large amount of seawater is sprayed from the desulfurization spray nozzle 9 of the absorption part A, all of the seawater flows down into the oxidation tank 14, and after being oxidized in the oxidation tank 14, the seawater is discharged into the ocean 12 and the rectifying member 22 and the collector 10. Thus, the seawater sprayed in the absorption part A is collected and does not flow down to the dust removal part B.
  • the sprayed seawater recovered from the collector 10 is sent into the oxidation tank 14, and the sulfite ion-containing seawater in the oxidation tank 14 is diluted with the dilution seawater sent from the dilution seawater pipe L3, and the oxidation air blower 16 Is oxidized by oxygen dissolved from the air (bubbles) sent from the air diffuser nozzle 17 and returned to the ocean 12 as treated seawater.
  • a part of the seawater in the oxidation tank 14 is replenished to the circulation tank 5 from a water supply pipe L7 having an on-off valve 26 branched from the absorption seawater water supply pipe L2.
  • the ratio is 1 to 4: 5 to 17.
  • the amount of fresh seawater sprayed from the desulfurization spray nozzle 9 with respect to the amount of exhaust gas per unit time is about 1.2 times or more than the amount of circulating seawater sprayed from the dust removal spray nozzle 8 with respect to the amount of exhaust gas per unit time.
  • the sulfur oxide in the exhaust gas can be kept within the range of legal regulations. For this reason, there is an advantage that the amount of seawater spray can be easily set within the framework of the legal regulations concerning the SO 2 concentration according to the SO 2 concentration in the exhaust gas.
  • the seawater sprayed by the dust removing part B and the absorbing part A can be treated independently without being mixed by the rectifying member 22, the collector 10 and the second mist eliminator 23. Moreover, compared with the conventional exhaust gas purification treatment technology using seawater, the seawater after the exhaust gas purification treatment is also relatively clean.
  • the potential energy generated when the seawater sprayed from the desulfurization spray nozzle 9 recovered by the collector 10 as the power source of the pump 4 for pumping up the seawater in the circulation tank 5 sprayed from the dust removal spray nozzle 8 is supplied to the oxidation tank 14.
  • the water wheel 19 By using it through the water wheel 19, it is possible to reduce the cost without using electric power as power used for the dust removal spray nozzle 8.
  • the electric motor is particularly useful when the water wheel 19 is started.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

A seawater flue-gas desulfurization device provided with an absorption tower (1) and an oxidation tank (14). Said absorption tower (1) is provided with the following: dust-removal spray nozzles (8) that repeatedly supply seawater from a circulation tank (5) so as to absorb or catalytically remove soot and heavy metals from an exhaust gas; desulfurization spray nozzles (9), above the dust-removal spray nozzles (8), that spray fresh seawater so as to absorb and thereby remove SOx from the exhaust gas; and two or more collectors (10), laid out in a staggered pattern between the nozzles (8 and 9), that collect all of the seawater sprayed by the desulfurization spray nozzles (9). All of the seawater sprayed by the desulfurization spray nozzles (9) is collected by the collectors (10) and oxidized in the abovementioned oxidation tank (14). In this seawater flue-gas desulfurization device, a flow-control member (22) that controls the flow of the sprayed seawater is laid out between the collectors (10) and the desulfurization spray nozzles (9) and a mist eliminator (23) is laid out between the collectors (10) and the dust-removal spray nozzles (8) so as to prevent any liquid from passing between an absorption section (A) of the absorption tower (1), which contains the desulfurization spray nozzles (9) and removes SOx from the exhaust gas, and a dust-removal section (B) of the absorption tower (1), which contains the dust-removal spray nozzles (8) and removes soot and heavy metals from the exhaust gas. The treatment load associated with purifying contaminated seawater in the dust-removal section (B) is thus reduced.

Description

海水排煙脱硫装置とその運用方法Seawater flue gas desulfurization equipment and its operation method
 本発明は、火力発電所や工場等に設置されるボイラ等の燃焼装置から発生する排ガス中の有害成分の硫黄酸化物を除去する排煙処理装置に係わり、特に、脱硫吸収液として海水を利用する海水排煙脱硫装置とその運用方法に関する。 The present invention relates to a flue gas treatment apparatus for removing sulfur oxides of harmful components in exhaust gas generated from a combustion apparatus such as a boiler installed in a thermal power plant or factory, and in particular, seawater is used as a desulfurization absorption liquid. The present invention relates to a seawater flue gas desulfurization apparatus and its operation method.
 火力発電所における排煙脱硫装置として、海外の沿岸部、特に東南アジアなどでは海水を利用した海水湿式脱硫装置を使用する場合がある。排ガス中の硫黄酸化物の吸収液に海水を使用して、硫黄酸化物を吸収後の海水を曝気した後、海洋に放流する海水脱硫方式により、設備にかかるコストを低減できる。 As a flue gas desulfurization device in a thermal power plant, a seawater wet desulfurization device that uses seawater may be used in overseas coastal areas, particularly in Southeast Asia. The cost of equipment can be reduced by a seawater desulfurization method in which seawater is used as an absorbing solution for sulfur oxide in exhaust gas, the seawater after absorbing sulfur oxide is aerated, and then discharged into the ocean.
 従来技術の海水を利用した湿式排煙脱硫装置の系統を図4に示す。図4に示す海水を利用した湿式排煙脱硫装置に類似した湿式排煙脱硫装置は、例えば特開2010-234334号公報(特許文献1)等に開示されている。 Fig. 4 shows the system of a wet flue gas desulfurization system using seawater of the prior art. A wet flue gas desulfurization apparatus similar to the wet flue gas desulfurization apparatus using seawater shown in FIG. 4 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-234334 (Patent Document 1).
 この湿式脱硫装置は、主にボイラから排出される燃焼排ガス中の硫黄酸化物(SOx)を処理する脱硫吸収塔100、脱硫吸収塔100に排ガスを導入する入口ダクト102、脱硫吸収塔100でSOxが処理された排ガスを排出する出口ダクト103、排ガス中のSOxを吸収する吸収液(海水)を排ガスに噴霧する脱硫(海水)スプレノズル109、排ガスの流れに同伴する微小な液滴(ミスト)を除去するミストエリミネータ107、SOxの吸収によって生じた亜硫酸を酸化処理する酸化槽114、酸化槽114に供給する空気を送る酸化用空気ブロワ116、酸化用空気ブロワ116により送った空気を噴出させる散気ノズル117等から構成される。 This wet desulfurization apparatus is mainly composed of a desulfurization absorption tower 100 for treating sulfur oxide (SOx) in combustion exhaust gas discharged from a boiler, an inlet duct 102 for introducing exhaust gas into the desulfurization absorption tower 100, and a desulfurization absorption tower 100 for SOx. The exhaust duct 103 for discharging the treated exhaust gas, the desulfurization (seawater) spray nozzle 109 for spraying the absorbing liquid (seawater) that absorbs SOx in the exhaust gas onto the exhaust gas, and the fine droplets (mist) accompanying the flow of the exhaust gas Mist eliminator 107 to be removed, oxidation tank 114 for oxidizing sulfurous acid generated by absorption of SOx, oxidation air blower 116 for sending air to be supplied to the oxidation tank 114, and air diffused for jetting air sent by the oxidation air blower 116 It consists of a nozzle 117 and the like.
 図示しないボイラから排出される燃焼排ガスは、図示しない脱硫ファンにより入口ダクト102から脱硫吸収塔100にほぼ水平方向に導入され、脱硫吸収塔100の塔頂部に設けられた出口ダクト103から排出される。 Combustion exhaust gas discharged from a boiler (not shown) is introduced from the inlet duct 102 into the desulfurization absorption tower 100 in a substantially horizontal direction by a desulfurization fan (not shown) and discharged from an outlet duct 103 provided at the top of the desulfurization absorption tower 100. .
 図示しないボイラ復水器で昇温された海水は希釈用海水送水管L3を介して酸化槽114の最上流部に送られ、また海水の一部が海水ポンプ118によって汲み上げられ、吸収用海水送水管L2を介して脱硫スプレノズル109から微細な液滴として噴霧され、この海水と排ガスとの気液接触が行われることで、排ガス中の煤塵や塩化水素(HCl)、フッ化水素(HF)等の酸性ガスと共に、排ガス中のSOx、主にSO2が脱硫スプレノズル109の吸収液滴表面で選択的に吸収、除去される。 Seawater heated by a boiler condenser (not shown) is sent to the uppermost stream portion of the oxidation tank 114 via the dilution seawater feed pipe L3, and a part of the seawater is pumped up by the seawater pump 118 to be absorbed by the seawater. Sprayed as fine droplets from the desulfurization spray nozzle 109 through the water pipe L2, and gas-liquid contact between the seawater and the exhaust gas is performed, so that dust, hydrogen chloride (HCl), hydrogen fluoride (HF), etc. in the exhaust gas In addition to the acidic gas, SOx, mainly SO2, in the exhaust gas is selectively absorbed and removed on the surface of the absorbing droplets of the desulfurization spray nozzle 109.
 そして、脱硫スプレノズル109からの噴霧によって微粒化された海水の中で、排ガスの流れに同伴するミストは脱硫吸収塔100の上部の出口ダクト103に設置されたミストエリミネータ107により捕集される。ミストエリミネータ107を通過した排ガスは、必要により再加熱された後、煙突(図示せず)から大気中に排出される。 In the seawater atomized by spraying from the desulfurization spray nozzle 109, mist accompanying the flow of the exhaust gas is collected by a mist eliminator 107 installed in the outlet duct 103 at the top of the desulfurization absorption tower 100. The exhaust gas that has passed through the mist eliminator 107 is reheated as necessary, and then discharged into the atmosphere from a chimney (not shown).
 排ガス中のSO2を吸収した海水は,亜硫酸イオン含有海水となって亜硫酸イオン含有海水送水管L4によって脱硫吸収塔1から抜き出されて酸化槽114に送られる。ここで亜硫酸イオン含有海水は希釈用海水送水管L3から送られる希釈用海水によって希釈されながら、酸化用空気ブロワ116から送られて散気ノズル117から噴出される空気(気泡)から溶け込む酸素によって酸化され、処理海水として海洋12に戻される。 The seawater that has absorbed SO2 in the exhaust gas becomes sulfite ion-containing seawater and is extracted from the desulfurization absorption tower 1 by the sulfite ion-containing seawater pipe L4 and sent to the oxidation tank 114. Here, the sulfite ion-containing seawater is oxidized by oxygen dissolved from the air (bubbles) sent from the oxidation air blower 116 and ejected from the aeration nozzle 117 while being diluted by the dilution seawater sent from the dilution seawater water pipe L3. And returned to the ocean 12 as treated seawater.
 この従来の海水湿式脱硫装置は、石灰石-石膏法のように石灰石供給設備や石膏回収設備を設ける必要が無く、また、脱硫システムのコストを低く抑えることができるという利点がある。 This conventional seawater wet desulfurization apparatus has the advantage that there is no need to provide a limestone supply facility and a gypsum recovery facility as in the limestone-gypsum method, and the cost of the desulfurization system can be kept low.
 しかしながら、排ガス中にはSO2等の硫黄酸化物以外に、図示していない集塵機で除去しきれなかった煤塵や水銀等の重金属類が含まれており、SO2と同様に吸収塔100で吸収除去されるため、酸化槽114で処理された処理海水と共に海洋12に排出されることになり、海洋汚染の原因となり得る。  However, in addition to sulfur oxides such as SO2, the exhaust gas contains soot and heavy metals such as mercury that could not be removed by a dust collector (not shown) and is absorbed and removed by the absorption tower 100 in the same manner as SO2. Therefore, it will be discharged | emitted by the ocean 12 with the process seawater processed by the oxidation tank 114, and it may become a cause of ocean pollution. *
 特許文献2(特開2001-170444号公報)の図2には、石灰石を含む吸収液を溜めた吸収液貯留部を下部に備えた吸収塔の空塔部をコレクタにより上下二段に分け、下段は前記吸収液貯留部から循環供給される石灰石を含む吸収液を排ガスに噴霧する下部スプレノズルを備えた下部吸収部とし、上段は海水を噴霧する上部スプレノズルを設けた上部吸収部とした構成が開示されている。上部吸収部で排ガスと接触した使用済み海水の一部はコレクタで回収されて吸収塔の外部に放流され、吸収液貯留部に溜まった使用後の吸収液は石灰石を補給されながら下部吸収部の下部スプレノズルから噴霧されて排ガスの吸収に利用される。 FIG. 2 of Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-170444) divides an empty tower part of an absorption tower having an absorption liquid storage part in which an absorption liquid containing limestone is stored at the lower part into upper and lower stages by a collector, The lower stage is configured as a lower absorbent section having a lower spray nozzle that sprays exhaust gas containing limestone circulated and supplied from the absorbent storage section, and the upper stage is an upper absorbent section provided with an upper spray nozzle that sprays seawater. It is disclosed. Part of the used seawater that has come into contact with the exhaust gas in the upper absorption part is collected by the collector and discharged to the outside of the absorption tower, and the used absorption liquid collected in the absorption liquid storage part is replenished with limestone while being replenished in the lower absorption part. Sprayed from the lower spray nozzle and used to absorb exhaust gas.
 特許文献3(特開2008-200619号公報)には、脱硫塔内の上部から海水を流下させ、吸収塔内の下部から上部に向けて排ガスを上昇させて排ガスの脱硫を行うに際して、脱硫塔内の水平断面積を複数に仕切ることにより脱硫塔内での海水の偏流や排ガスの吹き抜けを抑制する構成が開示されている。 In Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-200699), when desulfurizing exhaust gas by flowing seawater from the upper part of the desulfurization tower and raising the exhaust gas from the lower part to the upper part of the absorption tower, The structure which suppresses the drift of the seawater in the desulfurization tower and the blow-off of exhaust gas by partitioning the horizontal cross-sectional area into a plurality is disclosed.
 さらに、本出願人の平成24年12月21日付けの特許出願である特願2012-279808号には図5に示す海水を用いる排ガス処理装置を提案している。図5に示す排ガス処理装置は、脱硫吸収塔100の上部に、海水を噴霧する脱硫スプレノズル109を設置し、脱硫吸収塔100の下部に隔壁141を設置して入口側ガス流路102を形成し、この入口側ガス流路102に、吸収塔下部の循環タンク103内の海水を噴霧して排ガス中の硫黄酸化物及び煤塵を吸収除去する除塵スプレノズル108を設置し、更に、除塵スプレノズル108の上段には除塵スプレノズル108の洗浄用スプレノズル143を設置している。脱硫吸収塔100の下部に隔壁141を設置して吸収塔入口側の排ガス流路を狭めることにより脱硫吸収塔100に導入される排ガスの速度を高めることで、より少ない量の海水を除塵スプレノズル108から噴霧して煤塵の除去効率を良くすることができるというものである。 Further, Japanese Patent Application No. 2012-279808, which is a patent application filed on December 21, 2012 by the present applicant, proposes an exhaust gas treatment apparatus using seawater as shown in FIG. In the exhaust gas treatment apparatus shown in FIG. 5, a desulfurization spray nozzle 109 for spraying seawater is installed at the upper part of the desulfurization absorption tower 100, and a partition wall 141 is installed at the lower part of the desulfurization absorption tower 100 to form the inlet side gas flow path 102. In addition, a dust removal spray nozzle 108 for spraying seawater in the circulation tank 103 below the absorption tower to absorb and remove sulfur oxides and dust in the exhaust gas is installed in the inlet side gas flow path 102, and further, the upper stage of the dust removal spray nozzle 108 is installed. Is provided with a spray nozzle 143 for cleaning the dust spray nozzle 108. By installing a partition wall 141 in the lower part of the desulfurization absorption tower 100 and narrowing the exhaust gas flow path on the inlet side of the absorption tower, the speed of the exhaust gas introduced into the desulfurization absorption tower 100 is increased, so that a smaller amount of seawater is removed from the dust removal spray nozzle 108. It is possible to improve the dust removal efficiency by spraying.
 図5に示す吸収塔100の脱硫スプレノズル109と洗浄用スプレノズル143の間にコレクタ122を配置して、脱硫スプレノズル109から噴霧される海水の一部をコレクタ122で回収して海に放流するという構成である。 The collector 122 is arranged between the desulfurization spray nozzle 109 and the cleaning spray nozzle 143 of the absorption tower 100 shown in FIG. 5, and a part of the seawater sprayed from the desulfurization spray nozzle 109 is collected by the collector 122 and discharged into the sea. It is.
 また、特許文献4(特開昭61-259730号公報)には図6に示すように、海水を使用しないで石灰石を含む吸収液を用いる排煙脱硫装置として吸収塔100を下段の除塵部Bと上段の吸収部Aに分けて、噴霧後の吸収液を回収するコレクタ122を設けた構成を示す。 In addition, as shown in FIG. 6 in Patent Document 4 (Japanese Patent Laid-Open No. 61-259730), the absorption tower 100 is used as a flue gas desulfurization apparatus that uses an absorbent containing limestone without using seawater, and a dust removing section B at the lower stage. A configuration is shown in which a collector 122 that collects the absorbent after spraying is provided separately in the upper absorption part A.
 吸収液を溜めた除塵部循環タンク103を下部に備えた吸収塔の空塔部をコレクタ122により上下二段に分け、上段は石灰石を含む吸収液を排ガスに噴霧するスプレノズル121を備えた吸収塔吸収部Aとし、下段は循環タンク103からの吸収液が循環する吸収塔除塵部Bとし、コレクタ122により回収された排ガスと接触した後の吸収液を循環タンク103とは別に設けられた吸収液循環槽118に集めた後に、除塵部循環タンク103と吸収塔吸収部Aのスプレノズル121に送られて排ガスの脱硫に利用される構成が開示されている。 Absorption tower provided with dust removal part circulation tank 103 storing absorption liquid is divided into two upper and lower stages by collector 122, and the upper stage is absorption tower provided with spray nozzle 121 for spraying absorption liquid containing limestone to exhaust gas The absorption section A is the absorption tower dust removal section B in which the absorption liquid from the circulation tank 103 circulates, and the absorption liquid after contacting the exhaust gas collected by the collector 122 is provided separately from the circulation tank 103. A configuration is disclosed in which, after being collected in the circulation tank 118, it is sent to the dust removal part circulation tank 103 and the spray nozzle 121 of the absorption tower absorption part A to be used for desulfurization of exhaust gas.
 また、本出願人の平成25年3月21日付けの特許出願である特願2013-58724号には図7に示す海水を用いる排ガス処理装置を提案している。図7に示す排ガス処理装置は、脱硫吸収塔100の上部に、海水を噴霧する脱硫液スプレノズル109を設置し、該脱硫スプレノズル109の下方に噴霧海水を回収するコレクタ122を設け、コレクタ122の下側に位置する排ガス入口ダクト102とコレクタ122の間に、脱硫スプレノズル109とは別の除塵スプレノズル108を設け、該除塵スプレノズル108により排ガス中の煤塵及び重金属類を吸収除去する。除塵スプレノズル108には脱硫吸収塔100の下部の循環タンク103に貯留する海水を循環ポンプ104により循環、供給している。また、コレクタ122からの排ガスと接触した噴霧海水は酸化槽114内に送られて、マイクロバブル発生器115により大気から吸気管L5を通じて吸い込まれた酸化用空気により酸化され、また酸化用空気ブロワ116から送られて散気ノズル117から噴出される気泡から溶け込む酸素によって酸化、処理され海水として海洋12に戻される。 Further, Japanese Patent Application No. 2013-58724, which is a patent application filed on March 21, 2013 by the present applicant, proposes an exhaust gas treatment apparatus using seawater as shown in FIG. In the exhaust gas treatment apparatus shown in FIG. 7, a desulfurization liquid spray nozzle 109 for spraying seawater is installed at the upper portion of the desulfurization absorption tower 100, and a collector 122 for collecting the sprayed seawater is provided below the desulfurization spray nozzle 109. A dust removal spray nozzle 108 different from the desulfurization spray nozzle 109 is provided between the exhaust gas inlet duct 102 and the collector 122 located on the side, and dust removal and heavy metals in the exhaust gas are absorbed and removed by the dust removal spray nozzle 108. Seawater stored in the circulation tank 103 below the desulfurization absorption tower 100 is circulated and supplied to the dust removal spray nozzle 108 by a circulation pump 104. Further, the sprayed seawater that has come into contact with the exhaust gas from the collector 122 is sent into the oxidation tank 114 and is oxidized by the oxidation air sucked from the atmosphere through the intake pipe L5 by the microbubble generator 115, and the oxidation air blower 116. Is oxidized and treated by oxygen dissolved from bubbles blown from the air diffuser nozzle 117 and returned to the ocean 12 as seawater.
特開2010-234334号公報JP 2010-234334 A 特開2001-170444号公報JP 2001-170444 A 特開2008-200619号公報Japanese Patent Laid-Open No. 2008-200619 特開昭61-259730号公報JP-A-61-259730
 また、特許文献4(特開昭61-259730号公報)に記載された排煙脱硫装置は、海水を使用しないで、図6に示すように石灰石を含む吸収液を用いる排煙脱硫装置であり、吸収液を溜めた循環タンク103を下部に備えた吸収塔100の空塔部をコレクタ122により上下二段に分け、上段は石灰石を含む吸収液を排ガスに噴霧するスプレノズル121を備えた吸収部Aとし、下段は循環タンク103からの吸収液が循環する除塵部Bとした構成が示されている。コレクタ122で集められた吸収液は吸収部Aの循環タンク118に一旦貯留された後、吸収部Aに再度循環供給される。 Further, the flue gas desulfurization device described in Patent Document 4 (Japanese Patent Laid-Open No. 61-259730) is a flue gas desulfurization device that uses an absorption liquid containing limestone as shown in FIG. 6 without using seawater. The absorption tower 100 is provided with a spray nozzle 121 for spraying the absorption liquid containing limestone to the exhaust gas, and the upper stage is divided into two upper and lower stages by the collector 122. A configuration is shown in which the lower part is a dust removing part B in which the absorption liquid from the circulation tank 103 circulates. The absorption liquid collected by the collector 122 is once stored in the circulation tank 118 of the absorption part A and then circulated and supplied to the absorption part A again.
 この吸収塔100の空塔部をコレクタ122により上下二段に分けた構成は、コレクタ122で吸収塔吸収部Aと吸収塔除塵部Bが完全に分離するものではなく、吸収部Aで噴霧された吸収液は除塵部Bにも流下する構成であり、除塵部Bの下部の循環タンク103の一部を仕切り、液溜部109として、液溜部109で粒径の大きな石膏を回収する構成である。 The structure in which the empty tower portion of the absorption tower 100 is divided into upper and lower stages by the collector 122 does not completely separate the absorption tower absorption section A and the absorption tower dust removal section B by the collector 122 but is sprayed by the absorption section A. The absorbed liquid also flows down to the dust removing section B. A part of the circulation tank 103 below the dust removing section B is partitioned, and the liquid reservoir 109 collects gypsum having a large particle diameter as the liquid reservoir 109. It is.
 すなわち、図6に示す発明では吸収部Aと除塵部Bが完全に機能分離されておらず、専ら循環タンク103からスラリを抜き出す際のポンプのキャビテーションを防止して、循環タンク103中への空気吹き込みによる亜硫酸塩の酸化を円滑に行うことを目的としており、コレクタ122で吸収部Aと除塵部Bが完全に分離しておらず、また吸収部Aと除塵部Bにおける排ガス処理機能も分離されていない。 That is, in the invention shown in FIG. 6, the absorption part A and the dust removal part B are not completely functionally separated, and the pump cavitation is exclusively prevented when the slurry is extracted from the circulation tank 103, and the air into the circulation tank 103 is prevented. The purpose is to smoothly oxidize the sulfite by blowing in, and the collector 122 does not completely separate the absorbing part A and the dust removing part B, and the exhaust gas treatment function in the absorbing part A and the dust removing part B is also separated. Not.
 また、特許文献1、図5、図7に示す発明では、吸収塔の上段の海水を排ガスに噴霧するスプレノズルを備えた吸収部を設け、下段には循環タンク内に貯留された海水又は吸収液が循環する除塵部を設け、両者の間をコレクタで実質的に仕切っている。 Further, in the inventions shown in Patent Document 1, FIG. 5, and FIG. 7, an absorption part provided with a spray nozzle for spraying the upper stage seawater on the absorption tower to the exhaust gas is provided, and the lower part is seawater or absorbent stored in the circulation tank. A dust removal part is circulated, and the collector is substantially partitioned by a collector.
 しかし、特許文献1、図5、図7に示す発明では吸収部Aから流下する海水からなる排ガス吸収液はコレクタで一部は回収されるものの、コレクタの隙間から下段の除塵部Bにかなり流れ込んでしまうので、除塵部Bで循環している石灰石を含む吸収液と海水の混合物又は海水のみに混入することになる。  However, in the inventions shown in Patent Document 1, FIG. 5 and FIG. 7, the exhaust gas absorbing liquid composed of seawater flowing down from the absorption section A is partially collected by the collector, but considerably flows into the lower dust removing section B from the collector gap. Therefore, it mixes only in the mixture of the absorption liquid and seawater containing the limestone circulating in the dust removal part B, or seawater. *
 また、貯留部から除塵部Bに循環する石灰石を含む吸収液と海水の混合物又は海水のみにより、排ガス中の煤塵及び重金属類が吸収除去されるため、貯留部の海水は浄化処理しないまま放流することはできない。このような貯留部に溜まった海水中に吸収部Aから大量の海水が流下すると、限りがある吸収塔の容積では対応できないので浄化処理しないまま海水を海洋に放流することになる。 Moreover, since the dust and heavy metals in the exhaust gas are absorbed and removed only by the mixture of the absorbing liquid containing limestone and the seawater or the seawater that circulates from the storage section to the dust removal section B, the seawater in the storage section is discharged without purification. It is not possible. If a large amount of seawater flows down from the absorption section A into the seawater accumulated in such a storage section, it cannot be handled with a limited capacity of the absorption tower, so the seawater is discharged into the ocean without purification treatment.
 また、除塵部Bでは排ガスからの熱によって海水の一部が蒸発するため常に海水を補給する必要があるが、コレクタの隙間から除塵部Bに流れ込む海水量が除塵部Bに補給される海水量に比べて数倍多くなる場合には水バランスが取れなくなり、貯留部のスペースでは対応不能になる。 Moreover, in the dust removal part B, since a part of seawater evaporates with the heat | fever from exhaust gas, it is necessary to always replenish seawater, but the amount of seawater which flows into the dust removal part B from the clearance gap between collectors is the amount of seawater supplied to the dust removal part B If it is several times larger than the water balance, the water balance cannot be achieved, and the storage space cannot be used.
 また、煤塵及び重金属類を除くための除塵部Bで噴霧される海水の一部がミストとして吸収部Aに流れ込むと、煤塵及び重金属類がコレクタを経由して海洋に放出されることになる。 In addition, when a part of the seawater sprayed in the dust removing section B for removing dust and heavy metals flows into the absorption section A as mist, the dust and heavy metals are released to the ocean through the collector.
 そこで、吸収部Aと除塵部Bを仕切るコレクタ部分で気体である排ガスだけが通過でき、液体が完全に遮断される海水排煙脱硫装置が求められている。
 本発明の課題は、このように一つの吸収塔内で排ガス中の煤塵及び重金属類を除くための除塵部と排ガス中の硫黄酸化物を除く吸収部の間で液体が通過しないようにした海水排煙脱硫装置とその運用方法を提供することである。
Therefore, there is a need for a seawater flue gas desulfurization device that allows only the exhaust gas that is a gas to pass through the collector portion that partitions the absorption portion A and the dust removal portion B and that completely blocks the liquid.
The object of the present invention is to prevent the passage of liquid between a dust removing section for removing soot and heavy metals in exhaust gas and an absorbing section for removing sulfur oxide in exhaust gas in one absorption tower. It is to provide a flue gas desulfurization apparatus and its operation method.
 上記本発明の課題は、下記の構成を採用することにより達成できる。 
 請求項1記載の発明は、ボイラを含む燃焼装置から排出される排ガスを導入する入口と、該入口より下部に設けた海水を貯留する循環タンクを設け、該循環タンク内の海水を繰り返し供給して前記入口から導入される排ガス中の煤塵及び重金属を吸収または接触除去する除塵スプレノズルを設け、該除塵スプレノズルの上方に新鮮な海水を噴霧して前記入口から導入される排ガス中の硫黄酸化物を吸収除去する脱硫スプレノズルを設け、前記除塵スプレノズルと前記脱硫スプレノズルの間に脱硫スプレノズルから噴霧される海水を回収するコレクタを設けた吸収塔と、該コレクタで回収された噴霧海水を導入して酸化空気を供給する酸化槽を備えた海水排煙脱硫装置において、コレクタと脱硫スプレノズルの間に噴霧海水の整流を行う整流部材を設け、コレクタと除塵スプレノズルの間にミスト除去用のミストエリミネータを設け、吸収塔内を整流部材とコレクタとミストエリミネータにより、脱硫スプレノズルを有する吸収部Aと、該吸収部Aの下方に設けた除塵スプレノズルを有する除塵部Bとに分けたことを特徴とする海水排煙脱硫装置である。
The object of the present invention can be achieved by adopting the following constitution.
The invention according to claim 1 is provided with an inlet for introducing exhaust gas discharged from a combustion device including a boiler, and a circulation tank for storing seawater provided below the inlet, and repeatedly supplying seawater in the circulation tank. A dust removal spray nozzle that absorbs or contacts and removes dust and heavy metals in the exhaust gas introduced from the inlet, and sprays fresh seawater above the dust removal spray nozzle to remove sulfur oxide in the exhaust gas introduced from the inlet. An absorption tower provided with a desulfurization spray nozzle for absorbing and removing, an absorption tower provided with a collector for recovering seawater sprayed from the desulfurization spray nozzle between the dust removal spray nozzle and the desulfurization spray nozzle, and the sprayed seawater recovered by the collector is introduced to oxidize air Rectifier that rectifies sprayed seawater between collector and desulfurization spray nozzle in seawater flue gas desulfurization device equipped with oxidation tank for supplying A mist eliminator for mist removal is provided between the collector and the dust removal spray nozzle, and the absorption tower is provided with a rectifying member, a collector and a mist eliminator, and an absorption part A having a desulfurization spray nozzle and below the absorption part A. It is a seawater flue gas desulfurization apparatus characterized by being divided into a dust removal part B having a dust removal spray nozzle.
 請求項2記載の発明は、整流部材が多孔板、複数の充填材又は複数の鉛直方向に平面を有する板材を並列配置したスリット板からなることを特徴とする請求項1記載の海水排煙脱硫装置である。 The invention according to claim 2 is characterized in that the rectifying member comprises a perforated plate, a plurality of fillers, or a slit plate in which a plurality of plates having a plane in the vertical direction are arranged in parallel. Device.
 請求項3記載の発明は、除塵スプレノズルから噴霧する循環タンク内の海水の動力源として、コレクタで回収した脱硫スプレノズルから噴霧した新鮮な海水が酸化槽に供給されるときの位置エネルギーを使用するポンプを用いることを特徴とする請求項1記載の海水排煙脱硫装置である。 The invention according to claim 3 is a pump that uses potential energy when fresh seawater sprayed from a desulfurization spray nozzle recovered by a collector is supplied to an oxidation tank as a power source of seawater in a circulation tank sprayed from a dust removal spray nozzle. The seawater flue gas desulfurization apparatus according to claim 1, wherein:
 請求項4記載の発明は、コレクタは、少なくとも上下2段を用いて上段のコレクタの間隙部の下方に下段のコレクタを千鳥配置することを特徴とする請求項1記載の海水排煙脱硫装置である。 According to a fourth aspect of the present invention, there is provided a seawater flue gas desulfurization apparatus according to the first aspect, wherein the lower collectors are arranged in a staggered manner below the gap between the upper collectors using at least two upper and lower collectors. is there.
 請求項5記載の発明は、請求項1記載の海水排煙脱硫装置における除塵スプレノズルから噴霧する循環タンク内の海水の単位時間当たりの排ガス量に対する供給量と、脱硫スプレノズルから噴霧する新鮮な海水の単位時間当たりの排ガス量に対する供給量との比を1~4:5~17とすることを特徴とする海水排煙脱硫装置の運用方法である。
(作用)
 本発明によれば、吸収塔の吸収部で燃焼装置から排出される排ガスに新鮮な海水を脱硫スプレノズルから噴霧して排ガス中の硫黄酸化物を吸収除去する。排ガス中の硫黄酸化物を吸収した海水は整流部材により整流されて、コレクタで回収される。このとき脱硫スプレノズルから噴霧された海水はコレクタにより鉛直方向下方に整流部材により整流されながら流下するので、海水の流下領域が限定され、流下する海水を全てコレクタで回収することができる。
The invention according to claim 5 is the supply amount of the seawater in the circulation tank sprayed from the dust removal spray nozzle in the seawater flue gas desulfurization apparatus according to claim 1 to the exhaust gas amount per unit time, and the fresh seawater sprayed from the desulfurization spray nozzle. The operation method of the seawater flue gas desulfurization apparatus is characterized in that the ratio of the supply amount to the exhaust gas amount per unit time is 1 to 4: 5 to 17.
(Function)
According to the present invention, fresh seawater is sprayed from the desulfurization spray nozzle to the exhaust gas discharged from the combustion device at the absorption part of the absorption tower to absorb and remove sulfur oxides in the exhaust gas. Seawater that has absorbed sulfur oxides in the exhaust gas is rectified by the rectifying member and collected by the collector. At this time, the seawater sprayed from the desulfurization spray nozzle flows down while being rectified by the flow straightening member downward in the vertical direction by the collector, so the flow area of the seawater is limited, and all the flowing seawater can be collected by the collector.
 こうして脱硫スプレノズルから噴霧した新鮮な海水は排ガス中の硫黄酸化物を吸収した後、全てコレクタを介して吸収塔外に設けた酸化槽内に流れ落ちるので、除塵部には吸収部で噴霧された海水は流れ落ちない。 The fresh seawater sprayed from the desulfurization spray nozzle thus absorbs the sulfur oxides in the exhaust gas, and then all flows down into the oxidation tank provided outside the absorption tower through the collector. Does not flow down.
 また、吸収部で噴霧される海水は除塵部で噴霧される海水に比較して大量に用いることで排ガス中の硫黄酸化物を十分に吸収除去することができる。
 このように吸収部で噴霧される海水は大量であっても、全て酸化槽内に流れ落ち、酸化槽で浄化処理した後に海洋中に海水を放流することができるので、整流部材とコレクタにより吸収部で噴霧された海水は回収され、除塵部に流下することがないので、吸収部で噴霧される海水は大量であっても除塵部に浄化処理負荷を掛けることがない。
Moreover, the seawater sprayed by the absorption part can fully absorb and remove sulfur oxides in the exhaust gas by using a large amount of seawater sprayed by the dust removal part.
In this way, even if a large amount of seawater is sprayed in the absorption section, it can all flow down into the oxidation tank, and after being purified in the oxidation tank, the seawater can be discharged into the ocean. Since the seawater sprayed in is collected and does not flow down to the dust removal section, even if a large amount of seawater is sprayed in the absorption section, it does not impose a purification treatment load on the dust removal section.
 一方、除塵部では循環タンク内に貯留した海水を除塵スプレノズルから繰り返して噴霧することで排ガス中の煤塵及び重金属を噴霧海水中に吸収または接触除去することができる。この除塵スプレノズルから繰り返して噴霧される海水は、吸収部の脱硫スプレノズルで噴霧される海水に比べて、煤塵などでかなり汚染されているので、この汚染された海水は排水処理槽で浄化処理された後に海洋に放流することができる。 On the other hand, by repeatedly spraying the seawater stored in the circulation tank from the dust removal spray nozzle in the dust removal unit, dust and heavy metals in the exhaust gas can be absorbed or removed in the sprayed seawater. Seawater repeatedly sprayed from this dust removal spray nozzle is much more contaminated with soot and dust than the seawater sprayed by the desulfurization spray nozzle of the absorber, so this contaminated seawater was purified in a wastewater treatment tank. Later it can be released into the ocean.
 また、除塵スプレノズルから繰り返して噴霧される海水が吸収部に上昇してしまうと海水で回収した煤塵及び重金属がコレクタ経由で海洋に放出されることになり、海洋汚染の原因となるので、避ける必要がある。そのため除塵スプレノズルの上方であって、コレクタの下方に設けたミストエリミネータでミストを除去する。 In addition, if seawater repeatedly sprayed from the dust removal spray nozzle rises to the absorption section, soot and heavy metals collected in the seawater will be released to the ocean via the collector, which may cause ocean pollution and should be avoided. There is. Therefore, the mist is removed by a mist eliminator provided above the dust removal spray nozzle and below the collector.
 請求項1記載の発明は、除塵部と吸収部でそれぞれ噴霧された海水は整流部材、コレクタ及びミストエリミネータにより混じり合うことなく、それぞれ独立して処理出来ることに大きな特徴があり、また、従来の海水を用いる排ガスの浄化処理技術に比べて、浄化処理後の海水が清浄であることにも特徴があり、吸収部で噴霧される海水は大量であっても除塵部での汚染海水の浄化処理負荷が大きくならず、安価な海水を使用する排煙脱硫装置として有用である。 The invention according to claim 1 is characterized in that the seawater sprayed in the dust removing part and the absorbing part can be treated independently without being mixed by the rectifying member, the collector and the mist eliminator. Compared to the purification treatment technology of exhaust gas using seawater, the feature is that the seawater after purification treatment is clean, and even if a large amount of seawater is sprayed in the absorption section, purification processing of contaminated seawater in the dust removal section It is useful as a flue gas desulfurization device that uses inexpensive seawater without increasing the load.
 請求項2記載の発明によれば、上記請求項1記載の発明の効果に加えて、多孔板、複数の充填材又は複数の鉛直方向に平面を有する板材を並列配置したスリット板からなる整流部材を用いることで、吸収スプレノズルから末広がり状に拡がる噴霧海水を鉛直方向下向きに流下させることができ、整流された噴霧海水をコレクタで確実に回収することができる。 According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, the rectifying member comprises a slit plate in which a porous plate, a plurality of fillers, or a plurality of plates having a plane in the vertical direction are arranged in parallel. By using this, the sprayed seawater that spreads out from the absorption spray nozzle can flow downward in the vertical direction, and the rectified sprayed seawater can be reliably recovered by the collector.
 請求項3記載の発明によれば、上記請求項1記載の発明の効果に加えて、除塵スプレノズルから噴霧する循環タンク内の海水の汲み上げ用動力源としてコレクタで回収した脱硫スプレノズルから噴霧した新鮮な海水が酸化槽に供給される際の位置エネルギーを使用するポンプを用いることで除塵スプレノズルに使用する動力として電力を用いること無く費用の削減が可能となる。 According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 above, fresh sprayed from the desulfurization spray nozzle recovered by the collector as a power source for pumping up seawater in the circulation tank sprayed from the dust removal spray nozzle. By using a pump that uses potential energy when seawater is supplied to the oxidation tank, it is possible to reduce costs without using electric power as power used for the dust removal spray nozzle.
 請求項4記載の発明によれば、上記請求項1記載の発明の効果に加えて、コレクタとして少なくとも上下2段を用いて上段のコレクタの間隙部の下方に下段のコレクタを千鳥配置することにより、吸収部で用いる新鮮な海水が除塵部に流下することがなくなり、吸収部で使用する海水に比較して除塵部で使用する海水が比較的少量で良く、除塵部で使用する汚染海水の浄化処理が容易となる。 According to the invention described in claim 4, in addition to the effect of the invention described in claim 1, by using at least two upper and lower stages as collectors, the lower collectors are arranged in a staggered manner below the gap of the upper collector. The fresh seawater used in the absorption section will not flow down to the dust removal section, and the amount of seawater used in the dust removal section may be relatively small compared to the seawater used in the absorption section, and purification of contaminated seawater used in the dust removal section Processing becomes easy.
 請求項5記載の発明によれば、上記請求項1記載の海水排煙脱硫装置の除塵スプレノズルから噴霧する循環タンク内の海水の単位時間当たりの排ガス量に対する供給量と、脱硫スプレノズルから噴霧する新鮮な海水の単位時間当たりの排ガス量に対する供給量との比は1~4:5~17とすることで、汚染海水の浄化処理負荷を大きくしない海水を用いた排ガスの浄化が可能となり、またそのために脱硫率に関する法規制の枠内で排ガス中のSO濃度に応じて容易に吸収部の海水噴霧量を設定することができる。 According to the fifth aspect of the present invention, the supply amount of the seawater in the circulation tank sprayed from the dust removal spray nozzle of the seawater flue gas desulfurization apparatus according to the first aspect to the exhaust gas amount per unit time and the freshness sprayed from the desulfurization spray nozzle The ratio of fresh seawater to the amount of exhaust gas supplied per unit time is 1 to 4: 5 to 17, which makes it possible to purify exhaust gas using seawater that does not increase the processing load of contaminated seawater. In addition, it is possible to easily set the amount of seawater sprayed in the absorbing portion in accordance with the SO 2 concentration in the exhaust gas within the framework of laws and regulations concerning the desulfurization rate.
本発明の一実施例である海水排煙脱硫装置の系統を示す図である。It is a figure which shows the system | strain of the seawater flue gas desulfurization apparatus which is one Example of this invention. 図1の脱硫吸収塔に配置される整流部材の例である。It is an example of the rectification | straightening member arrange | positioned at the desulfurization absorption tower of FIG. 図1の脱硫吸収塔に配置されるコレクタ部分の縦断面図である。It is a longitudinal cross-sectional view of the collector part arrange | positioned at the desulfurization absorption tower of FIG. 従来技術の海水排煙脱硫装置の系統を示す図である。It is a figure which shows the system | strain of the seawater flue gas desulfurization apparatus of a prior art. 特願2012-279808号(平成24年12月21日付けの特許出願)記載の排ガス処理装置の全体構成図である。1 is an overall configuration diagram of an exhaust gas treatment apparatus described in Japanese Patent Application No. 2012-279808 (patent application dated December 21, 2012). 特開昭61-259730号公報記載の石灰石を含む吸収液を用いる排煙脱硫装置の構成図である。1 is a configuration diagram of a flue gas desulfurization apparatus using an absorbing liquid containing limestone described in Japanese Patent Application Laid-Open No. 61-259730. 特願2013-58724号(平成25年3月21日付けの特許出願)記載の排ガス処理装置の構成図である。1 is a configuration diagram of an exhaust gas treatment apparatus described in Japanese Patent Application No. 2013-58724 (patent application dated March 21, 2013).
 以下に、本発明の実施例について図面を用いて説明する。
 図1には、本発明の一実施例である海水排煙脱硫装置の系統を示す。なお、図1の湿式脱硫装置において、図4の湿式脱硫装置と同じ符号の部材の説明は一部省略している。
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, the system | strain of the seawater flue gas desulfurization apparatus which is one Example of this invention is shown. In the wet desulfurization apparatus in FIG. 1, the description of the members having the same reference numerals as those in the wet desulfurization apparatus in FIG. 4 is partially omitted.
 本実施例の海水湿式脱硫装置は、主にボイラからの燃焼排ガス中のSOxを処理する脱硫吸収塔1、脱硫吸収塔1に排ガスを導入する入口ダクト2、脱硫吸収塔1から排ガスを排出する出口ダクト3、排ガス中のSOxを吸収する海水を排ガスに噴霧する脱硫スプレノズル9、排ガス流れに同伴するミストを除去するミストエリミネータ7、海水を脱硫スプレノズル9に供給するための海水ポンプ18、SOxの吸収によって生じた亜硫酸を酸化処理する酸化槽14、酸化槽14に供給する空気を送る酸化用空気ブロワ16、酸化用空気ブロワ16により送った空気を噴出させる散気ノズル17等から構成される点で、図4の湿式脱硫装置と同じである。 The seawater wet desulfurization apparatus of this embodiment mainly discharges exhaust gas from a desulfurization absorption tower 1 for treating SOx in combustion exhaust gas from a boiler, an inlet duct 2 for introducing exhaust gas into the desulfurization absorption tower 1, and the desulfurization absorption tower 1. Outlet duct 3, desulfurization spray nozzle 9 for spraying seawater that absorbs SOx in exhaust gas onto exhaust gas, mist eliminator 7 for removing mist accompanying the exhaust gas flow, seawater pump 18 for supplying seawater to desulfurization spray nozzle 9, and SOx The point comprised from the oxidation tank 14 which oxidizes the sulfurous acid produced by absorption, the oxidation air blower 16 which sends the air supplied to the oxidation tank 14, the diffuser nozzle 17 which ejects the air sent by the oxidation air blower 16, etc. Thus, it is the same as the wet desulfurization apparatus of FIG.
 燃焼排ガスは、入口ダクト2から脱硫吸収塔1にほぼ水平方向に導入され、脱硫吸収塔1の塔頂部に設けられた出口ダクト3から排出される。
 また、図示しないボイラ復水器で昇温された海水は希釈用海水送水管L3を介して酸化槽14の最上流部に送られ,脱硫吸収塔1では、その海水の一部が海水ポンプ18によって汲み上げられ、吸収用海水送水管L2を介して新鮮な海水として脱硫スプレノズル9と脱硫吸収塔1の下部の循環タンク5に海水送水管L7から送られる。
The combustion exhaust gas is introduced from the inlet duct 2 into the desulfurization absorption tower 1 in a substantially horizontal direction, and is discharged from the outlet duct 3 provided at the top of the desulfurization absorption tower 1.
Seawater heated by a boiler condenser (not shown) is sent to the uppermost stream portion of the oxidation tank 14 through the dilution seawater pipe L3. In the desulfurization absorption tower 1, a part of the seawater is supplied to the seawater pump 18. The fresh water is fed from the seawater feed pipe L7 to the desulfurization spray nozzle 9 and the circulation tank 5 below the desulfurization absorption tower 1 through the absorption seawater feed pipe L2.
 脱硫スプレノズル9に送られた新鮮な海水は微細な液滴として脱硫吸収塔1内に噴霧され、この海水と排ガスとの気液接触が行われることで、排ガス中のSOx(主にSO2)が脱硫スプレノズル9の吸収液滴表面で選択的に吸収、除去される。 Fresh seawater sent to the desulfurization spray nozzle 9 is sprayed into the desulfurization absorption tower 1 as fine droplets, and the gas-liquid contact between the seawater and the exhaust gas is performed, so that SOx (mainly SO2) in the exhaust gas is changed. It is selectively absorbed and removed by the absorbing droplet surface of the desulfurization spray nozzle 9.
 脱硫スプレノズル9から噴霧された海水は、排ガス中の硫黄酸化物を吸収し、該硫黄酸化物を吸収した海水は整流部材22により整流されて、コレクタ10で回収される。なお、脱硫スプレノズル9とコレクタ10の間を脱硫吸収塔1内の吸収部Aということにする。 The seawater sprayed from the desulfurization spray nozzle 9 absorbs sulfur oxide in the exhaust gas, and the seawater that has absorbed the sulfur oxide is rectified by the rectifying member 22 and collected by the collector 10. The space between the desulfurization spray nozzle 9 and the collector 10 is referred to as an absorption part A in the desulfurization absorption tower 1.
 そして、脱硫スプレノズル9からの噴霧によって微粒化された海水の中で、排ガスの流れに同伴するミストは脱硫吸収塔1の上部の出口ダクト3に設置された第1のミストエリミネータ7により捕集される。ミストエリミネータ7を通過した排ガスは、必要により再加熱された後、煙突(図示せず)から大気中に排出される。 In the seawater atomized by spraying from the desulfurization spray nozzle 9, the mist accompanying the flow of the exhaust gas is collected by a first mist eliminator 7 installed in the outlet duct 3 at the top of the desulfurization absorption tower 1. The The exhaust gas that has passed through the mist eliminator 7 is reheated as necessary, and then discharged into the atmosphere from a chimney (not shown).
 また、吸収部Aで脱硫スプレノズル9から噴霧された海水は整流部材22により鉛直方向下方に整流されながら流下するので、海水の流下領域が限定される。前記限定された海水の流下領域の下方にコレクタ10の液受け領域を配置することが重要であり、上方から見てコレクタ10同士の間および両側端部のコレクタ10と吸収塔1の壁面との間には隙間が生じないようにしているので、整流部材22から流下する海水を全てコレクタ10で回収することができる。 Moreover, since the seawater sprayed from the desulfurization spray nozzle 9 in the absorption part A flows down while being rectified downward in the vertical direction by the rectifying member 22, the flow area of the seawater is limited. It is important to dispose the liquid receiving area of the collector 10 below the limited seawater flow-down area, and between the collectors 10 as viewed from above and between the collector 10 at both end portions and the wall surface of the absorption tower 1. Since no gap is formed between them, all the seawater flowing down from the rectifying member 22 can be collected by the collector 10.
 また、噴霧海水を回収するコレクタ10の最下流部には集液樋11(海水回収部材)を設けておき、これらコレクタ10と集液樋11の下側に位置する循環タンク5の液面とコレクタ10との間の領域である除塵部Bには脱硫スプレノズル9とは別の除塵スプレノズル8を設けている。除塵スプレノズル8には脱硫吸収塔1の下部の循環タンク5に貯留する海水(からなる吸収液)を吸収液循環ポンプ4により循環、供給している。 Further, a collecting tank 11 (seawater collecting member) is provided at the most downstream portion of the collector 10 that collects the sprayed seawater, and the liquid level of the circulating tank 5 positioned below the collector 10 and the collecting tank 11 A dust removal spray nozzle 8 different from the desulfurization spray nozzle 9 is provided in the dust removal portion B which is a region between the collector 10. Seawater (absorbed liquid) stored in the circulation tank 5 below the desulfurization absorption tower 1 is circulated and supplied to the dust removal spray nozzle 8 by the absorption liquid circulation pump 4.
 また、循環タンク5内の吸収液(海水)は攪拌機6により攪拌される。除塵用海水(からなる吸収液)を循環させながら除塵スプレノズル8から噴霧することで、排ガス中の煤塵及び重金属類が除塵用海水からなる吸収液に吸収または接触除去される。循環タンク5内の除塵用海水からなる吸収液は一部吸収液抜き出し管L1から抜き出され、排水処理装置24でpH調整、キレート剤添加、凝集沈殿等の方法で浄化処理されて、処理液は送水管L8により酸化槽14に送られる。 Further, the absorbing liquid (seawater) in the circulation tank 5 is agitated by the agitator 6. By spraying from the dust removing spray nozzle 8 while circulating the dust removing seawater (absorbing liquid consisting of), the dust and heavy metals in the exhaust gas are absorbed or removed by the absorbing liquid consisting of the dust removing seawater. A part of the absorption liquid consisting of seawater for dust removal in the circulation tank 5 is extracted from the absorption liquid extraction pipe L1 and purified by a method such as pH adjustment, addition of a chelating agent, coagulation sedimentation, etc. in the waste water treatment device 24. Is sent to the oxidation tank 14 through a water pipe L8.
 そして、酸化槽14内には散気ノズル17が配置され、酸化用空気ブロワ16から大気を、送気管L6を介して供給して散気ノズル17から噴出される気泡から溶け込む酸素によって亜硫酸塩が酸化、処理され海水として海洋12に戻される。 A diffuser nozzle 17 is disposed in the oxidation tank 14, and sulfite is supplied by oxygen dissolved from the bubbles supplied from the oxidizer air blower 16 through the air supply pipe L 6 and ejected from the diffuser nozzle 17. Oxidized and processed and returned to the ocean 12 as seawater.
 除塵スプレノズル8とコレクタ10の間には第2のミストエリミネータ23が配置され、除塵スプレノズル8で噴霧された海水の一部がミストとしてコレクタ10及びコレクタ10より上方の吸収部Aに達しないようにしている。 A second mist eliminator 23 is arranged between the dust removal spray nozzle 8 and the collector 10 so that a part of the seawater sprayed by the dust removal spray nozzle 8 does not reach the collector 10 and the absorption part A above the collector 10 as mist. ing.
 図2に示すように、整流部材22として多孔板(図2(a)の斜視図、図2(b)の断面図)、複数の充填材(ラシヒリング)を積み重ねた構成又は複数の鉛直方向に平面を有する板材を並列配置したスリット板(図2(d))からなる何れかを用いることで、脱硫スプレノズル9から末広がり状に拡がる噴霧海水を鉛直方向下向きに流下させることができ、整流された噴霧海水をコレクタ10で確実に回収することができる。なお、多孔板を整流部材22として用いる場合は、図2(b)の断面図に示すように各孔の下方には鉛直方向に突起がある筒部を形成しているので噴霧海水が鉛直方向にしか流下しない。 As shown in FIG. 2, a porous plate (perspective view of FIG. 2 (a), cross-sectional view of FIG. 2 (b)), a configuration in which a plurality of fillers (Raschig rings) are stacked, or a plurality of vertical directions as the rectifying member 22 By using any one of the slit plates (FIG. 2 (d)) in which flat plates are arranged in parallel, the spray seawater spreading in a divergent form from the desulfurization spray nozzle 9 can be flowed downward in the vertical direction and rectified. Sprayed seawater can be reliably collected by the collector 10. When a perforated plate is used as the rectifying member 22, as shown in the cross-sectional view of FIG. 2B, a cylindrical portion having a protrusion in the vertical direction is formed below each hole. Only flows down.
 図3に上下2段を千鳥配置した上方開放式の樋状コレクタ10の縦断面図を示すように、コレクタ10として、少なくとも上下2段を用いて上段のコレクタ10aの間隙部の下方に下段のコレクタ10bを千鳥配置することにより、コレクタ10を上方から見た投影図において隙間ができないようにしている。 As shown in a vertical cross-sectional view of the upwardly open bowl-shaped collector 10 in which the upper and lower stages are arranged in a staggered manner in FIG. 3, the lower stage is used as the collector 10 at least under the upper stage 10a using the upper and lower stages. By arranging the collectors 10b in a staggered manner, a gap is not formed in the projection view of the collector 10 viewed from above.
 吸収塔1の吸収部Aで脱硫スプレノズル9から噴霧された海水は整流部材22により整流されて、コレクタ10に向けて鉛直方向下方に整流されながら流下するので、海水の流下領域が限定される。このため吸収部Aで流下する海水を全てコレクタ10で回収することができる。 The seawater sprayed from the desulfurization spray nozzle 9 in the absorption section A of the absorption tower 1 is rectified by the rectifying member 22 and flows down while being rectified downward in the vertical direction toward the collector 10, so that the seawater flowing area is limited. For this reason, all the seawater flowing down in the absorption part A can be collected by the collector 10.
 こうして脱硫スプレノズル9から噴霧した新鮮な海水は排ガス中の硫黄酸化物を吸収した後、全てコレクタ10を介して吸収塔外に設けた酸化槽14内に流れ落ちるので、除塵部Bには吸収部Aで噴霧された海水は流れ落ちない。 The fresh seawater sprayed from the desulfurization spray nozzle 9 thus absorbs the sulfur oxides in the exhaust gas, and then all flows down into the oxidation tank 14 provided outside the absorption tower via the collector 10. The seawater sprayed with the does not flow down.
 また、吸収部Aで噴霧される海水は除塵部Bで噴霧される海水に比較して大量に用いることで排ガス中の硫黄酸化物を十分に吸収除去することができる。
 このように吸収部Aで噴霧される海水は大量であっても、全て酸化槽14内に流れ落ち、酸化槽14で酸化処理した後に海洋12中に放流され(このことをワンスルーということがある。)、整流部材22とコレクタ10により吸収部Aで噴霧された海水は回収され、除塵部Bに流下することがない。
Moreover, the seawater sprayed by the absorption part A can fully absorb and remove the sulfur oxide in the exhaust gas by using a large amount of seawater sprayed by the dust removal part B.
Thus, even if a large amount of seawater is sprayed in the absorption part A, all of it flows down into the oxidation tank 14 and is discharged into the ocean 12 after being oxidized in the oxidation tank 14 (this is sometimes referred to as one-through). ), The seawater sprayed in the absorbing part A by the rectifying member 22 and the collector 10 is collected and does not flow down to the dust removing part B.
 一方、除塵部Bでは循環タンク5内に貯留した海水を除塵スプレノズル8から繰り返して噴霧することで、排ガス中の煤塵及び重金属を噴霧海水中に吸収または接触除去することができる。この除塵スプレノズル8から繰り返して噴霧される海水は、吸収部Aの脱硫スプレノズル9で噴霧される海水に比べて、煤塵などでかなり汚染されているので、この汚染された海水は排水処理槽24で浄化処理した後、送水管L8と酸化槽14を経由して海洋12に放流する。 On the other hand, in the dust removal section B, the seawater stored in the circulation tank 5 is repeatedly sprayed from the dust removal spray nozzle 8, so that dust and heavy metals in the exhaust gas can be absorbed or removed in the sprayed seawater. The seawater repeatedly sprayed from the dust removal spray nozzle 8 is considerably contaminated with dust and the like as compared with the seawater sprayed by the desulfurization spray nozzle 9 of the absorption section A. Therefore, the contaminated seawater is discharged in the waste water treatment tank 24. After the purification treatment, it is discharged to the ocean 12 through the water pipe L8 and the oxidation tank 14.
 また、除塵スプレノズル8から繰り返して噴霧される海水の中のミストは、吸収部Aに上昇してしまうとコレクタ10を経由してミスト中に煤塵及び重金属などが海洋12に放出されることになり、海洋汚染の原因となるので、これを避ける必要がある。そのため除塵スプレノズル8の上方であって、コレクタ10の下方に第2のミストエリミネータ23を設けて、ミストを除去する。 Moreover, if the mist in the seawater sprayed repeatedly from the dust removal spray nozzle 8 rises to the absorption part A, dust, heavy metals, etc. will be emitted into the mist via the collector 10 into the mist. Because it causes marine pollution, it is necessary to avoid this. Therefore, a second mist eliminator 23 is provided above the dust removal spray nozzle 8 and below the collector 10 to remove the mist.
 ここで、吸収部Aの脱硫スプレノズル9から噴霧される海水は大量使用することで排ガス中の硫黄酸化物を十分に吸収除去することができる。吸収部Aの脱硫スプレノズル9から噴霧される海水は大量であっても、全て酸化槽14内に流れ落ち、酸化槽14で酸化処理した後に海洋12中に海水を放流され、整流部材22とコレクタ10により吸収部Aで噴霧された海水は回収され、除塵部Bに流下することがない。 Here, the seawater sprayed from the desulfurization spray nozzle 9 of the absorption section A can sufficiently absorb and remove sulfur oxides in the exhaust gas by using a large amount. Even if a large amount of seawater is sprayed from the desulfurization spray nozzle 9 of the absorption part A, all of the seawater flows down into the oxidation tank 14, and after being oxidized in the oxidation tank 14, the seawater is discharged into the ocean 12 and the rectifying member 22 and the collector 10. Thus, the seawater sprayed in the absorption part A is collected and does not flow down to the dust removal part B.
 コレクタ10から回収された噴霧海水は酸化槽14内に送られて、酸化槽14内の亜硫酸イオン含有海水は希釈用海水送水管L3から送られる希釈用海水によって希釈されながら、酸化用空気ブロワ16から送られて散気ノズル17から噴出される空気(気泡)から溶け込む酸素によって酸化され、処理海水として海洋12に戻される。 The sprayed seawater recovered from the collector 10 is sent into the oxidation tank 14, and the sulfite ion-containing seawater in the oxidation tank 14 is diluted with the dilution seawater sent from the dilution seawater pipe L3, and the oxidation air blower 16 Is oxidized by oxygen dissolved from the air (bubbles) sent from the air diffuser nozzle 17 and returned to the ocean 12 as treated seawater.
 また、酸化槽14内の海水の一部は吸収用海水送水管L2から分岐した開閉弁26が付いた送水管L7から新鮮な海水は循環タンク5に補給される。
 本実施例では、除塵スプレノズル8から噴霧する循環タンク5内の海水の単位時間当たりの排ガス量に対する供給量と、脱硫スプレノズル9から噴霧する新鮮な海水の単位時間当たりの排ガス量に対する供給量との比は1~4:5~17とする。すなわち、単位時間当たりの排ガス量に対する脱硫スプレノズル9から噴霧する新鮮な海水の量を、単位時間当たりの排ガス量に対する除塵スプレノズル8から噴霧する循環海水の量に比べて約1.2倍以上とすることで、排ガス中の硫黄酸化物を法規制の範囲内に納めることができる。また、そのために排ガス中のSO濃度に応じて容易にSO濃度に関する法規制の枠内で海水噴霧量を容易に設定することができる利点がある。
Further, a part of the seawater in the oxidation tank 14 is replenished to the circulation tank 5 from a water supply pipe L7 having an on-off valve 26 branched from the absorption seawater water supply pipe L2.
In this embodiment, the supply amount of the seawater in the circulation tank 5 sprayed from the dust removal spray nozzle 8 with respect to the exhaust gas amount per unit time and the supply amount of the fresh seawater sprayed from the desulfurization spray nozzle 9 with respect to the exhaust gas amount per unit time. The ratio is 1 to 4: 5 to 17. That is, the amount of fresh seawater sprayed from the desulfurization spray nozzle 9 with respect to the amount of exhaust gas per unit time is about 1.2 times or more than the amount of circulating seawater sprayed from the dust removal spray nozzle 8 with respect to the amount of exhaust gas per unit time. Thus, the sulfur oxide in the exhaust gas can be kept within the range of legal regulations. For this reason, there is an advantage that the amount of seawater spray can be easily set within the framework of the legal regulations concerning the SO 2 concentration according to the SO 2 concentration in the exhaust gas.
 本実施例によれば、除塵部Bと吸収部Aで、それぞれ噴霧された海水は整流部材22、コレクタ10及び第2のミストエリミネータ23により混じり合うことなくそれぞれ独立して処理出来ることに大きな特徴があり、また、従来の海水を用いる排ガスの浄化処理技術に比べて、排ガス浄化処理後の海水が比較的清浄であることにも特徴がある。 According to the present embodiment, the seawater sprayed by the dust removing part B and the absorbing part A can be treated independently without being mixed by the rectifying member 22, the collector 10 and the second mist eliminator 23. Moreover, compared with the conventional exhaust gas purification treatment technology using seawater, the seawater after the exhaust gas purification treatment is also relatively clean.
 こうして、除塵部Bで使用する海水に比べて吸収部Aで使用する海水が多量であっても除塵部Bに流下することなくコレクタ10で回収され、比較的少量である除塵部Bで使用する海水の排水処理槽24での浄化処理の負荷は大きくならない。また、除塵部Bで噴霧される海水に比較して吸収部Aで噴霧される海水が多量であればあるほど、排ガス中の硫黄酸化物を十分に吸収除去することができる。 In this way, even if a large amount of seawater is used in the absorber A compared to the seawater used in the dust remover B, it is recovered by the collector 10 without flowing down to the dust remover B, and is used in the dust remover B, which is a relatively small amount. The load of the purification process in the seawater wastewater treatment tank 24 does not increase. Moreover, the more seawater sprayed by the absorption part A compared with the seawater sprayed by the dust removal part B, the more the sulfur oxide in the exhaust gas can be absorbed and removed.
 このように吸収部Aで噴霧される海水が大量であっても、全て酸化槽14内に流れ落ち、酸化槽14で酸化処理した後に海洋12中に海水を放流することができるので、整流部材22とコレクタ10により吸収部Aで噴霧された海水は回収され、除塵部Bに流下することがない。 In this way, even if a large amount of seawater is sprayed in the absorption part A, all of the seawater flows down into the oxidation tank 14 and can be discharged into the ocean 12 after being oxidized in the oxidation tank 14. And the seawater sprayed in the absorption part A by the collector 10 is collected and does not flow down to the dust removal part B.
 さらに、除塵スプレノズル8から噴霧する循環タンク5内の海水の汲み上げ用のポンプ4の動力源としてコレクタ10で回収した脱硫スプレノズル9から噴霧した海水が酸化槽14に供給される際に生じる位置エネルギーを水車19を介して使用することで、除塵スプレノズル8に使用する動力として電力を用いること無く費用の削減が可能となる。なお、水車19を図示していない電気モーターと併用することで、特に水車19の起動時に電気モーターが有用である。 Further, the potential energy generated when the seawater sprayed from the desulfurization spray nozzle 9 recovered by the collector 10 as the power source of the pump 4 for pumping up the seawater in the circulation tank 5 sprayed from the dust removal spray nozzle 8 is supplied to the oxidation tank 14. By using it through the water wheel 19, it is possible to reduce the cost without using electric power as power used for the dust removal spray nozzle 8. In addition, by using the water wheel 19 together with an electric motor (not shown), the electric motor is particularly useful when the water wheel 19 is started.
 排ガス浄化処理に用いられた海水を汚染されたまま海洋に放流することがない海水を使用する排煙脱硫装置として利用する可能性がある。 There is a possibility of using it as a flue gas desulfurization device that uses seawater that has not been discharged into the ocean while being contaminated.
1 脱硫吸収塔       2 入口ダクト
3 出口ダクト       4 吸収液循環ポンプ
5 循環タンク       6 攪拌機
7 第1のミストエリミネータ
8 除塵スプレノズル    9 脱硫スプレノズル
10 コレクタ       11 集液樋
12 海洋         18 海水ポンプ
14 酸化槽        15 マイクロバブル発生器
16 酸化用空気ブロワ   17 散気ノズル
19 水車         22 整流部材 
23 第2のミストエリミネータ
24 排水処理槽      26 開閉弁 
L1 吸収液抜き出し管    L2 吸収用海水送水管
L3 希釈用海水送水管    L4 亜硫酸イオン含有海水送水管
L5 吸気管         L6 送気管
L7 海水送水管       L8 送水管
A 吸収部          B 除塵部
DESCRIPTION OF SYMBOLS 1 Desulfurization absorption tower 2 Inlet duct 3 Outlet duct 4 Absorption liquid circulation pump 5 Circulation tank 6 Stirrer 7 1st mist eliminator 8 Dust removal spray nozzle 9 Desulfurization spray nozzle 10 Collector 11 Collection tank 12 Ocean 18 Seawater pump 14 Oxidation tank 15 Microbubble generation 16 Oxidizing air blower 17 Aeration nozzle 19 Water wheel 22 Rectification member
23 Second mist eliminator 24 Wastewater treatment tank 26 On-off valve
L1 Absorption liquid extraction pipe L2 Absorption seawater water supply pipe L3 Dilution seawater water supply pipe L4 Sulphite ion-containing seawater water supply pipe L5 Intake pipe L6 Air supply pipe L7 Seawater water supply pipe L8 Water supply pipe A Absorption part B Dust removal part

Claims (5)

  1.  ボイラを含む燃焼装置から排出される排ガスを導入する入口と、該入口より下部に設けた海水を貯留する循環タンクを設け、該循環タンク内の海水を繰り返し供給して前記入口から導入される排ガス中の煤塵及び重金属を吸収または接触除去する除塵スプレノズルを設け、該除塵スプレノズルの上方に新鮮な海水を噴霧して前記入口から導入される排ガス中の硫黄酸化物を吸収除去する脱硫スプレノズルを設け、前記除塵スプレノズルと前記脱硫スプレノズルの間に脱硫スプレノズルから噴霧される海水を回収するコレクタを設けた吸収塔と、該コレクタで回収された噴霧海水を導入して酸化空気を供給する酸化槽を備えた海水排煙脱硫装置において、
     コレクタと脱硫スプレノズルの間に噴霧海水の整流を行う整流部材を設け、
     コレクタと除塵スプレノズルの間にミスト除去用のミストエリミネータを設け、
     吸収塔内を整流部材とコレクタとミストエリミネータにより、脱硫スプレノズルを有する吸収部Aと、該吸収部Aの下方に設けた除塵スプレノズルを有する除塵部Bとに分けたことを特徴とする海水排煙脱硫装置。
    An inlet for introducing exhaust gas discharged from a combustion apparatus including a boiler and a circulation tank for storing seawater provided below the inlet are provided, and the exhaust gas introduced from the inlet by repeatedly supplying seawater in the circulation tank A dust removal spray nozzle that absorbs or contacts and removes dust and heavy metals therein is provided, and a desulfurization spray nozzle that absorbs and removes sulfur oxides in the exhaust gas introduced from the inlet by spraying fresh seawater above the dust removal spray nozzle, An absorption tower provided with a collector that collects seawater sprayed from the desulfurization spray nozzle between the dust removal spray nozzle and the desulfurization spray nozzle, and an oxidation tank that introduces the sprayed seawater recovered by the collector and supplies oxidized air are provided. In seawater flue gas desulfurization equipment,
    A rectifying member that rectifies sprayed seawater is provided between the collector and the desulfurization spray nozzle,
    A mist eliminator for removing mist is installed between the collector and the dust removal spray nozzle.
    The inside of the absorption tower is divided into an absorption part A having a desulfurization spray nozzle and a dust removal part B having a dust removal spray nozzle provided below the absorption part A by a rectifying member, a collector and a mist eliminator. Desulfurization equipment.
  2.  整流部材が多孔板、複数の充填材又は複数の鉛直方向に平面を有する板材を並列配置したスリット板からなることを特徴とする請求項1記載の海水排煙脱硫装置。 2. The seawater flue gas desulfurization apparatus according to claim 1, wherein the rectifying member comprises a slit plate in which a porous plate, a plurality of fillers, or a plurality of plates having a plane in the vertical direction are arranged in parallel.
  3.  除塵スプレノズルから噴霧する循環タンク内の海水の動力源として、コレクタで回収した脱硫スプレノズルから噴霧した新鮮な海水が酸化槽に供給されるときの位置エネルギーを使用するポンプを用いることを特徴とする請求項1記載の海水排煙脱硫装置。 A pump that uses potential energy when fresh seawater sprayed from a desulfurization spray nozzle recovered by a collector is supplied to an oxidation tank is used as a power source of seawater in a circulation tank sprayed from a dust removal spray nozzle. Item 1. A seawater flue gas desulfurization apparatus according to item 1.
  4.  コレクタは、少なくとも上下2段を用いて上段のコレクタの間隙部の下方に下段のコレクタを千鳥配置することを特徴とする請求項1記載の海水排煙脱硫装置。 The seawater flue gas desulfurization apparatus according to claim 1, wherein the collector is arranged in a staggered manner below the gap between the upper collectors using at least two upper and lower stages.
  5.  請求項1記載の海水排煙脱硫装置における除塵スプレノズルから噴霧する循環タンク内の海水の単位時間当たりの排ガス量に対する供給量と、脱硫スプレノズルから噴霧する新鮮な海水の単位時間当たりの排ガス量に対する供給量との比を1~4:5~17とすることを特徴とする海水排煙脱硫装置の運用方法である。 The supply amount with respect to the exhaust gas amount per unit time of seawater in the circulation tank sprayed from the dust removal spray nozzle in the seawater flue gas desulfurization apparatus according to claim 1, and the supply with respect to the exhaust gas amount per unit time of fresh seawater sprayed from the desulfurization spray nozzle The operation method of the seawater flue gas desulfurization apparatus is characterized in that the ratio to the amount is 1 to 4: 5 to 17.
PCT/JP2014/057825 2013-03-26 2014-03-20 Seawater flue-gas desulfurization device and method for operating same WO2014156985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PH12015501897A PH12015501897A1 (en) 2013-03-26 2015-08-27 Seawater flue-gas desulfurization device and method for operating same
SA515361204A SA515361204B1 (en) 2013-03-26 2015-09-17 Seawater flue-gas desulfurization device and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-064600 2013-03-26
JP2013064600A JP2014188406A (en) 2013-03-26 2013-03-26 Sea water flue gas desulfurization equipment and operation method thereof

Publications (1)

Publication Number Publication Date
WO2014156985A1 true WO2014156985A1 (en) 2014-10-02

Family

ID=51623962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057825 WO2014156985A1 (en) 2013-03-26 2014-03-20 Seawater flue-gas desulfurization device and method for operating same

Country Status (5)

Country Link
JP (1) JP2014188406A (en)
MY (1) MY173551A (en)
PH (1) PH12015501897A1 (en)
SA (1) SA515361204B1 (en)
WO (1) WO2014156985A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086898A1 (en) * 2013-12-11 2015-06-18 Oy Langh Tech Ab Ship with exhaust gas scrubber
CN105521676A (en) * 2016-01-06 2016-04-27 浙江汇同电源有限公司 Storage battery recycling dusting spray tower
CN106693564A (en) * 2017-02-28 2017-05-24 宜兴市压力容器厂有限公司 Urea dust gas absorbing and purifying system
CN107185329A (en) * 2017-07-24 2017-09-22 北京国电龙源环保工程有限公司 A kind of high-effective dust-removing and device for reclaiming moisture
CN107405568A (en) * 2015-03-20 2017-11-28 通用电器技术有限公司 For the system from flue gas desulfurization
CN108027140A (en) * 2015-12-06 2018-05-11 彭斯干 Ocean platform high-temperature flue gas safety dumping method and cooling purifier
CN109806754A (en) * 2017-11-21 2019-05-28 国电环境保护研究院有限公司 A kind of desulfuration absorbing tower device
CN110180366A (en) * 2019-07-08 2019-08-30 通用技术集团工程设计有限公司 A kind of smoke processing system
CN111408254A (en) * 2020-04-14 2020-07-14 镇江赛尔尼柯自动化有限公司 Ship exhaust gas washing system and control method
CN112957904A (en) * 2021-03-17 2021-06-15 杨达聪 Water curtain type dust removal, desulfurization and denitrification device for flue gas of coal-fired boiler
FR3112084A1 (en) * 2020-07-06 2022-01-07 Lab Sa Installation and method for the wet purification of exhaust fumes from an engine of a marine vessel
CN114517723A (en) * 2022-03-03 2022-05-20 威海市正大环保设备股份有限公司 Marine desulfurization, denitrification and dedusting integrated device and method
CN114534474A (en) * 2022-01-12 2022-05-27 江阴市尚时工程装备有限公司 High-cleanliness desulfurization and denitrification dust removal device with circulation synergism

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104524916B (en) * 2015-01-13 2016-07-13 北京化工大学常州先进材料研究院 A kind of gas purification dust collection method
EP3085911B1 (en) * 2015-04-22 2017-12-13 Wärtsilä Moss AS Scrubber with dual water system
EP3144051B1 (en) * 2015-09-15 2019-04-17 General Electric Technology GmbH Mercury control in a seawater flue gas desulfurization system
CN105435590A (en) * 2015-11-23 2016-03-30 江苏明轩环保科技有限公司 Purification system of waste gas purification tower
CN113069911A (en) * 2021-03-31 2021-07-06 徐州博源科技有限公司 Purification and dust removal control system based on mobile purification and dust removal unit
CN113443463A (en) * 2021-07-08 2021-09-28 国能龙源环保有限公司 Atomizing dust suppression device of ship unloader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187635U (en) * 1981-05-26 1982-11-29
JPS6022921A (en) * 1983-07-20 1985-02-05 Babcock Hitachi Kk Wet desulfurizing apparatus of waste gas
JPH11290643A (en) * 1998-04-13 1999-10-26 Fuji Kasui Eng Co Ltd Removal of acidic component of combustion gas by sea water
JP2009226365A (en) * 2008-03-25 2009-10-08 Chiyoda Kako Kensetsu Kk Desulfurization/decarbonation apparatus, and pretreatment method for removing carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187635U (en) * 1981-05-26 1982-11-29
JPS6022921A (en) * 1983-07-20 1985-02-05 Babcock Hitachi Kk Wet desulfurizing apparatus of waste gas
JPH11290643A (en) * 1998-04-13 1999-10-26 Fuji Kasui Eng Co Ltd Removal of acidic component of combustion gas by sea water
JP2009226365A (en) * 2008-03-25 2009-10-08 Chiyoda Kako Kensetsu Kk Desulfurization/decarbonation apparatus, and pretreatment method for removing carbon dioxide

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086898A1 (en) * 2013-12-11 2015-06-18 Oy Langh Tech Ab Ship with exhaust gas scrubber
CN107405568A (en) * 2015-03-20 2017-11-28 通用电器技术有限公司 For the system from flue gas desulfurization
CN107405568B (en) * 2015-03-20 2021-01-19 通用电器技术有限公司 System for removing sulfur from flue gas
CN108027140B (en) * 2015-12-06 2020-07-03 武汉晶源海能源科技有限公司 Safe emission method of high-temperature flue gas of ocean platform and cooling and purifying device
CN108027140A (en) * 2015-12-06 2018-05-11 彭斯干 Ocean platform high-temperature flue gas safety dumping method and cooling purifier
CN105521676A (en) * 2016-01-06 2016-04-27 浙江汇同电源有限公司 Storage battery recycling dusting spray tower
CN106693564A (en) * 2017-02-28 2017-05-24 宜兴市压力容器厂有限公司 Urea dust gas absorbing and purifying system
CN107185329A (en) * 2017-07-24 2017-09-22 北京国电龙源环保工程有限公司 A kind of high-effective dust-removing and device for reclaiming moisture
CN109806754A (en) * 2017-11-21 2019-05-28 国电环境保护研究院有限公司 A kind of desulfuration absorbing tower device
CN109806754B (en) * 2017-11-21 2024-02-09 国电环境保护研究院有限公司 Desulfurizing absorption tower device
CN110180366A (en) * 2019-07-08 2019-08-30 通用技术集团工程设计有限公司 A kind of smoke processing system
CN111408254A (en) * 2020-04-14 2020-07-14 镇江赛尔尼柯自动化有限公司 Ship exhaust gas washing system and control method
FR3112084A1 (en) * 2020-07-06 2022-01-07 Lab Sa Installation and method for the wet purification of exhaust fumes from an engine of a marine vessel
EP3936220A1 (en) * 2020-07-06 2022-01-12 Lab Plant and method for wet purification of the exhaust fumes from an engine of a marine vessel
CN112957904A (en) * 2021-03-17 2021-06-15 杨达聪 Water curtain type dust removal, desulfurization and denitrification device for flue gas of coal-fired boiler
CN114534474A (en) * 2022-01-12 2022-05-27 江阴市尚时工程装备有限公司 High-cleanliness desulfurization and denitrification dust removal device with circulation synergism
CN114534474B (en) * 2022-01-12 2022-12-27 江阴市尚时工程装备有限公司 High-cleanliness desulfurization and denitrification dust removal device with circulation synergism
CN114517723A (en) * 2022-03-03 2022-05-20 威海市正大环保设备股份有限公司 Marine desulfurization, denitrification and dedusting integrated device and method

Also Published As

Publication number Publication date
PH12015501897B1 (en) 2016-01-11
PH12015501897A1 (en) 2016-01-11
JP2014188406A (en) 2014-10-06
SA515361204B1 (en) 2016-08-28
MY173551A (en) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
JP2015174025A (en) Seawater flue gas desulfurization apparatus and application method of the same
CN106659971B (en) Method and apparatus for removing pollutants from exhaust gas
EP2826541B1 (en) Wet scrubber nozzle system and method of use for cleaning a process gas
JP4785006B2 (en) Wet flue gas desulfurization equipment
WO2011145160A1 (en) Flue gas desulfurization device, combustion system and combustion method
WO2014156984A1 (en) Seawater flue gas desulfurization apparatus and operating method therefor
WO2007066443A1 (en) Wet flue-gas desulfurization apparatus and method of wet flue-gas desulfurization
JP6663481B2 (en) In-line dual water scrubber and method for cleaning gas inside a ship
KR20120120011A (en) The purifying device of exhaust gas from diesel engine
JP2010115602A (en) Two-step wet desulfurization method and apparatus
JP5177859B2 (en) Desulfurization decarburization equipment
WO2008035703A1 (en) Wet-type exhaust desulfurizing apparatus
JP2014180656A (en) Flue gas desulfurizer
CN102008882A (en) Fenton reagent for denitration of power plant smoke and denitration method by using the same
JP2011230047A (en) Exhaust gas desulfurizer and oxygen combustion apparatus and method having the same
JP5144967B2 (en) Exhaust gas treatment system
EP2851344B1 (en) Method and system for seawater foam control
JP2001170444A (en) Wet stack gas desulfurizing device
WO2019163950A1 (en) Water treatment tank and desulfurization device
JPH115014A (en) Wet waste gas desulfurizer
JP2014200768A (en) Seawater type exhaust gas desulfurizer
JP2006320828A (en) Wet-type flue gas desulfurization apparatus
CN112221341A (en) A high-efficient desulfurization absorption tower for industrial flue gas
JP2002153727A (en) Double chamber type wet flue gas desulfurization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772632

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506818

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14772632

Country of ref document: EP

Kind code of ref document: A1