JP3836048B2 - Wet flue gas desulfurization method and apparatus - Google Patents

Wet flue gas desulfurization method and apparatus Download PDF

Info

Publication number
JP3836048B2
JP3836048B2 JP2002150888A JP2002150888A JP3836048B2 JP 3836048 B2 JP3836048 B2 JP 3836048B2 JP 2002150888 A JP2002150888 A JP 2002150888A JP 2002150888 A JP2002150888 A JP 2002150888A JP 3836048 B2 JP3836048 B2 JP 3836048B2
Authority
JP
Japan
Prior art keywords
gas
orp
oxidation
exhaust gas
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002150888A
Other languages
Japanese (ja)
Other versions
JP2003340238A (en
Inventor
裕 中小路
雅和 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002150888A priority Critical patent/JP3836048B2/en
Publication of JP2003340238A publication Critical patent/JP2003340238A/en
Application granted granted Critical
Publication of JP3836048B2 publication Critical patent/JP3836048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重質油や石炭の燃焼排ガス等に含まれる硫黄酸化物を除去する湿式排煙脱硫方法及びその装置に関する。さらに詳しくは、湿式排煙脱硫装置から排出される廃水中の化学的酸素要求量(COD)を低減させる方法及びその装置に関する。
【0002】
【従来の技術】
火力発電所等で重油や石炭等を燃焼して発生する排ガス中の硫黄酸化物を除去する排煙脱硫装置としては、吸収塔において排ガスと吸収剤スラリ(石灰石などのカルシウム化合物よりなるもの)とを接触させて、排ガス中の亜硫酸ガスを吸収剤スラリに吸収し、接触後の該スラリを酸化して固液分離することにより石膏を副生する湿式排煙脱硫装置が広く普及している。
【0003】
この場合の排ガス中の主なる硫黄酸化物である亜硫酸ガスは次の反応式で吸収液に吸収され、排ガス中の酸素や外部から供給される酸素と反応し、石膏を生成する。
【0004】
SO2+H2O→H++HSO3 - …(1)
++HSO3 -+1/2O2→2H++SO4 2- …(2)
2H++CaCO3+SO4 2-→CaSO4+CO2↑+H2O …(3)
ところで、通常は排ガス中の酸素濃度が低く、亜硫酸カルシウムから石膏への酸化が充分に行われないため、系外から酸素を含む気体を吸収液中に通気し石膏の生成を促進させるが、酸素を含む気体の通気量が少ない場合、未酸化の亜硫酸カルシウム濃度が増加するため、吸収剤である炭酸カルシウムの溶解阻害、脱硫性能の低下等の不具合を生ずる。
【0005】
一方、亜硫酸カルシウムから石膏への転化率を高めに維持しようとすれば、負荷変動等を考慮して前記酸素を含む気体を過剰に供給せざるを得ず、ランニングコストの増大およびS2O6やS2O8の等の過酸化物が生成要因となり排水CODの増大につながる。従って、酸素を含む気体の通気流量を適正範囲に調整することが必要である。
【0006】
亜硫酸カルシウムの酸化に係る酸素を含む気体の通気流量を調整する制御方法に関しては酸化還元電位(以下、ORPと称す)によるものが知られている。すなわち、従来のORPによる通気流量制御方法はORPと亜硫酸濃度の相関関係を求めた結果から予めORP設定値を決定し、吸収液のORPを連続的に検出した信号とORP設定値との偏差記号により通気流量を制御するものであった。
【0007】
しかしながら、排ガス中には過剰空気燃焼等からもたらされる酸素が含まれており、上記の制御方法では、酸素を含む気体の通気流量をほぼ0にしてもORP値が設定値範囲以下にならない場合が生じるという問題点があった。
【0008】
【発明が解決しようとする課題】
本発明は、従来の上記問題点を解決するものであって、酸素を含む気体の通気流量をほぼ0にしてもORP値が設定値範囲以下にならない場合であっても、吸収液のORP値を設定値以下にすることの出来る湿式排煙脱硫方法及びその装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、硫黄酸化物を含む排ガスとカルシウム化合物を含有する吸収液とを気液接触させて排ガス中の硫黄酸化物を吸収除去し、生成した亜硫酸カルシウムを含む吸収液に酸素を含む気体を供給して石膏を生成する湿式排煙脱硫方法において、前記吸収液の酸化還元電位を測定し、該酸化還元電位に応じて酸素を含む気体の供給量を調整し、該酸化還元電位が酸素を含む気体の供給量による調整範囲を超えて高くなった場合に、該吸収液に酸化抑制剤を供給して該酸化還元電位を調整することを特徴とする。
【0011】
さらには、前記酸化抑制剤は、シリコン系、油脂系、脂肪酸系、鉱油系、アルコール系、アミド系、リン酸エステル系、金属せっけん系の消泡剤、アルコールおよびグリセリンから選ばれる何れか一つであること又は何れか二つ以上の混合物であることを特徴とする。
【0012】
また、本発明は、硫黄酸化物を含む排ガスとカルシウム化合物を含有する吸収液とを気液接触させて排ガス中の硫黄酸化物を吸収除去させる吸収塔と、生成した亜硫酸カルシウムを含む吸収液に酸素を含む気体を供給する酸素含有気体供給設備を具備する湿式排煙脱硫装置において、さらに酸化抑制剤を前記吸収塔内に供給する酸化抑制剤供給設備と、前記吸収液の酸素還元電位を検出する酸素還元電位計を具備し、前記吸収液の酸化還元電位を測定し、該酸化還元電位に応じて酸素を含む気体の供給量を調整し、該酸化還元電位が酸素を含む気体の供給量による調整範囲を超えて高くなった場合に、該吸収液に酸化抑制剤を供給して該酸化還元電位を調整するように構成されてなることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0014】
図1は本発明に係る湿式排煙脱硫装置の一実施の形態の例についてその概略構成を示す系統図である。
【0015】
亜硫酸ガスを含む燃焼排ガスAは、排ガスダクト2を通って吸収塔1に導入される。吸収塔1の底部の吸収液4はポンプ13により吸収液循環ライン12を通ってスプレヘッダー10へ送られ、スプレヘッダー10に具備されたスプレノズルよりスプレーされる。そして、スプレーされた吸収液は吸収塔1内に導入された前記排ガスAと気液接触し、排ガスA中から亜硫酸ガスを吸収除去しつつ重力により落下し吸収塔1の底部へ戻る。亜硫酸ガスを除去された排ガスBは排ガスダクト3を通って系外へ導かれ、例えばさらに必要な処理をしたあと煙突から大気に放出される。
【0016】
一方、本実施の形態の例では酸素を含んだ気体として空気を使用し、図示しないブロワーによりライン6を通ってバブリングヘッダー5より噴出させ、亜硫酸ガスを吸収した吸収液4と反応し、石膏が生成する。生成した石膏を含む吸収液4は吸収液循環ライン12から石膏回収ライン23へと一部が抜き出され、ベルトフィルター式濾過装置等によって固液分離され石膏が回収される。分離された液の一部は補給水として吸収塔にもどされ、石灰スラリが石灰スラリ供給ライン15より吸収塔1内に供給され吸収液4と混合されることにより吸収液の亜硫酸ガス吸収性能が維持される。また、残りの液は排水として系外に排出される。
【0017】
酸化抑制剤溶液は酸化抑制剤溶液タンク16からバルブ19が具備された酸化抑制剤溶液供給ライン17から吸収塔1の底部の吸収液4に供給されるようになっている。
【0018】
吸収液循環ライン12には酸化還元電位計(0RP計)20が具備され循環吸収液の酸化還元電位(0RP)を計測し、その計測信号は第1制御器21及び第2制御器22にそれぞれ送信される。
【0019】
第1制御器21は前記0RP計20からの入力信号と酸化還元設定値(OPR設定値)とを比較演算し、出力信号によりバルブ8の弁開度を制御してバブリングヘッダー5より噴出する空気量を調整できるようになっている。
【0020】
第2制御器22は前記0RP計20からの入力信号と酸化還元設定値(OPR設定値)とを比較演算し、出力信号によりバルブ19の弁開度を制御して吸収塔への酸化抑制剤の供給量を調整できるようになっている。
【0021】
次に、上記循環吸収液のORPを指標とした空気の通気流量の制御と酸化抑制剤の添加タイミングを、図2を参照して説明する。
【0022】
(第1ステージ)
実効的な亜硫酸ガス量の高い排ガスを前記導入管2から前記吸収塔1に導入し、循環ポンプ13を作動して前記吸収塔1底部の吸収液4を、吸収液循環ライン12を通して前記吸収塔1のスプレヘッダー10から噴射し、前記排ガスと気液接触させてその排ガス中の亜硫酸ガスを亜硫酸イオンとして吸収し脱硫を行う。このとき、前記吸収液循環ライン12内を流通する吸収液のORP値をORP計20で検出し、その検出信号を第1制御器21に出力する。この第1制御器21では、前記ORP計20から入力されるORPの検出信号とORP設定値とを比較する。この比較結果において、ORP設定値を超える検出信号が入力されたときには前記第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を下げる信号を出力する。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が低減され、これに伴ってORP値が低下してORP設定値に合致する。一方、この比較結果において、ORP設定値未満の検出信号が入力されたときには前記第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を上げる信号を出力する。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が増大され、これに伴ってORP値が増大してORP設定値に合致する。
【0023】
このような第1ステージにおいてORPを連続的に検出しつつ、そのORP値に基づいて例えば第1制御器21および第1PID調節計7により第1バルブ8の開度を調節して吸収液4中への空気の通気流量を制御することにより、図2に示すように吸収液のORP値をORP設定値に収めることが可能なり、吸収液4中の亜硫酸イオンを適切な濃度に制御できるとともに、S26,S28のような過酸化物の生成を防止してCODの発生を低減することができる。
【0024】
(第2ステージ)
実効的な亜硫酸ガス量の低い排ガス(例えば流量が第1ステージの排ガス流量の半分の排ガス)を前記導入管2から前記吸収塔1に導入し、循環ポンプ13を作動して前記吸収塔1底部の吸収液4を吸収液循環ライン12を通して前記吸収塔1のスプレヘッダー10から噴射し、前記排ガスと気液接触させてその排ガス中の亜硫酸ガスを亜硫酸イオンとして吸収し脱硫を行う。このとき、前記吸収液循環ライン12内を流通する吸収液のORP値をORP計20で検出すると、前記吸収塔1の吸収液で吸収される亜硫酸イオン濃度に対してバブリングヘッダー5から通気される空気流量が過剰になるため、図2のステージ2に示すようにそのORP検出量はORP設定値を超える値になる。このような検出信号を前記第1制御器21に出力すると、この第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を下げる信号を出力する。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が低減される。
【0025】
しかしながら、前記第1バルブ8の絞り操作により吸収液に通気される空気流量を低減して、通気される空気流量を最小に制御しても、排気ガスの実効的な亜硫酸ガス量が少ないためにORP計20で検出されるORP値がORP設定値を超える場合がある。このとき(図2のP1点)、前記ORP計20から出力されるORPの検出信号と空気導入用流路6に介装された流量検出計9から出力された空気流量の検出信号とが入力された第2制御器22において、前記ORP計20からORP設定値を超えるORP検出信号が入力され、かつ前記流量検出計9から空気流量の最小値以下の空気流量検出信号が入力されるため、この第2制御器22から第2PID調節計18に流路17に介装された第2バルブ19を一定時間開動作させる信号を出力する。この第2バルブ19の一定時間の開動作により酸化抑制剤溶液収容タンク16内の酸化抑制剤溶液が流路17を通して前記吸収塔1の吸収液4に一定量供給される。これによって、図2に示すように吸収液4のORP値が下がってORP設定値に合致される。
【0026】
前記酸化抑制剤溶液の添加により吸収液4のORP値がORP設定値未満になる図2のP2点において、前記第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を上げる信号が出力される。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が増大され、これに伴ってORP値が増大してORP設定値に合致する。
【0027】
このような第2ステージにおいて、ORPを連続的に検出しつつ、その検出値に基づいて例えば第1制御器21および第1PID調節計7により第1バルブ8の開度を制御して吸収液4に通気する空気流量を最小値にしても、図2に示すように吸収液のORP値がORP設定値を超えるときには、ORPの検出値および通気する空気流量の検出値に基づいて例えば第2制御器22および第2PID調節計18により第2バルブ19を一定時間開いて酸化抑制剤を吸収液に一定量添加することによって、吸収液のORP値をORP設定値に収めることが可能なるため、S26,S28のような過酸化物の生成を防止してCODの発生を低減することができる。
【0028】
以上、本発明の実施形態によれば排ガス中の亜硫酸ガス量が実効的に低下し、通気する空気流量を最小に制御しても吸収液のORPの検出値がORP設定値を超えた時に、前記吸収液中に酸化抑制剤を投入して吸収液のORPの検出値をORP設定値以下に低減させることによって、S26,S28のような過酸化物の生成を抑制ないし防ぐことができる。その結果、排煙脱硫処理の系内の吸収液の一部を排出するときに、CODの原因となる前記過酸化物量を低減した排水を排出することができるため、廃水処理の負荷を軽減することができる。
【0029】
なお、前述した実施形態では炭酸カルシウムを含む吸収液を用いたが、炭酸カルシウム以外のアルカリ系化合物を含む水溶液を用いてもよい。
【0030】
【実施例】
以下、本発明の好ましい実施例を前述した図1を参照して説明する。
【0031】
(実施例1)
(1)適正な亜硫酸ガス量を有する排ガスの脱硫
まず、亜硫酸ガス(SO2)を350ppm含む排ガスを図1の矢印Aに示すように導入管2を通して吸収塔1の底部付近に500,000Nm3/hの流量で導入した。導入された排ガスは、前記吸収塔1内を上昇した。循環ポンプ13を作動して前記吸収塔1底部の石灰が15重量%の濃度で溶解された吸収液4を、吸収液循環ライン12を通して前記吸収塔1のスプレヘッダー10から噴射し、排ガスと気液接触させてその排ガス中の亜硫酸ガスを亜硫酸イオンとして吸収し脱硫を行った。脱硫後の排ガスは、デミスタ11を通過し、ここで排ガス中のミストおよび煤塵を捕集し、処理された排ガスを図1の矢印Bに示すように吸収塔1頂部の排出管3を通して系外に排気した。
【0032】
前述した脱硫工程において、前記吸収液循環ライン12内を流通する吸収液のORP値をORP計20で検出し、その検出信号を第1制御器21に出力した。この第1制御器21では、前記ORP計20から入力されるORPの検出信号とORP設定値とが比較される。この比較結果において、ORP設定値(例えば100mV)を超える検出信号が入力されたときには前記第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を下げる信号を出力した。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が低減され、これに伴ってORP値が低下してORP設定値に合致した。一方、この比較結果において、ORP設定値未満の検出信号が入力されたときには前記第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を上げる信号を出力した。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が増大され、これに伴ってORP値が増大してORP設定値に合致した。
【0033】
このように前記第1制御器21および第1PID調節計7により第1バルブ8の開度を調節して吸収液4中への空気の通気流量を制御することにより、吸収液のORP値をORP設定値に合致させることが可能となり、吸収液4中の亜硫酸イオンを適切な濃度に制御された。
【0034】
(2)亜硫酸ガス量が実効的に低い排ガスの脱硫
前記濃度の亜硫酸ガス(SO2)を含む排ガスを図1の矢印Aに示すように導入管2を通して吸収塔1の底部付近に前記流量の半分の流量(250,000Nm3/h)で導入し、同様な脱硫、排ガス中のミストおよび煤塵を捕集し、処理された排ガスを図1の矢印Bに示すように吸収塔1頂部の排出管3を通して系外に排気した。
【0035】
前記脱硫において、前記循環流路12内を流通する吸収液をORP計20でORPを測定すると、そのORP値がORP設定値である100mVから200mVに増加した。このため、このORP検出信号を第1制御器21に出力し、この第1制御器21から第1PID調節計7に第1バルブ8の開度を下げる信号を出力した。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が低減された。
【0036】
しかしながら、前記第1バルブ8の絞り操作により吸収液に通気される空気流量を低減し、通気する空気流量を最小に制御しても排気ガスの実効的な亜硫酸ガス量が少ないためにORP計20で検出されるORP値がORP設定値を超えた。このとき、第2制御器22において前記ORP計20からORP設定値を超えるORP検出信号が入力され、かつ空気導入用流路6に介装された前記流量検出計9から空気流量の最小値以下の空気流量検出信号が入力されたため、この第2制御器22から第2PID調節計18に流路17に介装された第2バルブ19を一定時間開動作させる信号を出力した。第2バルブ19の一時間の開動作により、酸化抑制剤溶液収容タンク16内の酸化抑制剤溶液(例えばシリコン樹脂系食品添加用消泡剤の100重量%濃度の溶液)を流路17を通して前記吸収塔1の吸収液4に供給した。このとき、前記消泡剤の前記吸収液に供給する量は通気した空気量210m3あたり400mL(0.5ppm)とした。これによって、吸収液4のORP値がORP設定値(100mV)未満に低減された。
【0037】
前記酸化抑制剤溶液の添加により吸収液4のORP値がORP設定値未満になると、前記第1制御器21から前記第1PID調節計7に前記第1バルブ8の開度を上げる信号が出力された。これにより、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量が増大され、これに伴ってORP値が増大してORP設定値に合致した。
【0038】
(比較例1)
(1)適正な亜硫酸ガス量を有する排ガスの脱硫
実施例1と同様な手法により適正な亜硫酸ガス濃度を有する排ガスの脱硫を行った。
【0039】
(2)亜硫酸ガス量が実効的に低い排ガスの脱硫
実施例1と同様な濃度の亜硫酸ガス(SO2)を含む排ガスを図1の矢印Aに示すように導入管2を通して吸収塔1の底部付近に250,000Nm3/hの流量で導入し、実施例1と同様な脱硫、排ガス中のミストおよび煤塵を捕集し、処理された排ガスを図1の矢印Bに示すように吸収塔1頂部の排出管3を通して系外に排気した。この脱硫において、実施例1と同様に第1制御器21により第1PID調節計7に第1バルブ8の開度を下げ、図示しない空気供給ブロアの作動により空気導入用流路6およびバブリングヘッダー5から吸収塔1底部の吸収液に通気される空気流量を低減させる操作のみを行い、酸化抑制剤溶液収容タンク16内の酸化抑制剤溶液を流路17を通して吸収塔1の吸収液4に供給する操作を行わなかった。
【0040】
実施例1および比較例1の(1),(2)の脱硫において、吸収塔頂部の排出管3を通して系外に排気された処理ガス中の亜硫酸ガス濃度と、吸収液循環ライン12から流路23を通して排出された排水中のCOD濃度とを測定した。その結果を下記表1に示す。
【0041】
【表1】

Figure 0003836048
【0042】
前記表1から明らかなように実施例1では、(2)の亜硫酸ガス量が実効的に低い排ガスの脱硫処理において、排水中のCOD量を(1)の適正な亜硫酸ガス量を有する排ガスの脱硫時とほぼ同程度に低減することができることがわかる。
【0043】
これに対し、比較例1では(2)の亜硫酸ガス量が実効的に低い排ガスの脱硫処理において、排水中のCOD量が(1)の適正な亜硫酸ガス量を有する排ガスの脱硫時に比べて増大することがわかる。これは、前記(2)の脱硫工程で吸収液に通気する空気流量を最小に制御しても、その吸収液のORP値がORP設定値を超えて吸収液に生成された亜硫酸イオンが過度に酸化されてS26,S28のような過酸化物を生成するためである。
【0044】
【発明の効果】
以上詳述したように、本発明によれば排ガス中の亜硫酸ガス量が実効的に低下して、通気する酸素含有ガス流量を最小にしてもORP値を設定値以下に制御できなくなった場合でも、CODの発生原因であるS26,S28のような過酸化物の生成を防ぐことができ、ひいてはCODの原因となる前記過酸化物量を低減して廃水処理の負荷を軽減できる等顕著な効果を奏する湿式排煙脱硫方法及び湿式排煙脱硫装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の排煙脱硫方法を実施するための排煙脱硫装置を示す概略図。
【図2】本発明の実施形態における実効的な亜硫酸ガス量の異なる排ガスの排煙脱硫処理時でのORP値の変化、制御される空気の通気流量および酸化抑制剤の添加時期を示すグラフ。
【符号の説明】
1…吸収塔、
2…導入管、
3…排出管、
4…吸収液、
5…バブリングヘッダー、
7,18…PID調節計、
8,19…バルブ、
12…吸収液循環ライン、
16…酸化抑制剤溶液収容タンク、
20…ORP計、
21.22…制御器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wet flue gas desulfurization method and apparatus for removing sulfur oxides contained in heavy oil or coal combustion exhaust gas. More specifically, the present invention relates to a method and apparatus for reducing chemical oxygen demand (COD) in wastewater discharged from a wet flue gas desulfurization apparatus.
[0002]
[Prior art]
As a flue gas desulfurization device that removes sulfur oxides in exhaust gas generated by burning heavy oil, coal, etc. in a thermal power plant etc., exhaust gas and absorbent slurry (made of calcium compounds such as limestone) in an absorption tower A wet flue gas desulfurization apparatus that produces gypsum as a by-product by absorbing sulfur dioxide gas in exhaust gas into an absorbent slurry, oxidizing the slurry after contact, and solid-liquid separation is widely used.
[0003]
In this case, sulfurous acid gas, which is the main sulfur oxide in the exhaust gas, is absorbed by the absorption liquid according to the following reaction formula, and reacts with oxygen in the exhaust gas and oxygen supplied from the outside to generate gypsum.
[0004]
SO 2 + H 2 O → H + + HSO 3 (1)
H + + HSO 3 + 1 / 2O 2 → 2H + + SO 4 2− (2)
2H + + CaCO 3 + SO 4 2− → CaSO 4 + CO 2 ↑ + H 2 O (3)
By the way, normally, the oxygen concentration in the exhaust gas is low, and oxidation from calcium sulfite to gypsum is not performed sufficiently, so a gas containing oxygen is vented into the absorption liquid from outside the system to promote the formation of gypsum. When the amount of aeration gas containing gas is small, the concentration of unoxidized calcium sulfite increases, resulting in problems such as inhibition of dissolution of calcium carbonate as an absorbent and a decrease in desulfurization performance.
[0005]
On the other hand, if the conversion rate from calcium sulfite to gypsum is to be maintained at a high level, the oxygen-containing gas must be supplied excessively in consideration of load fluctuations and the like, and the running cost increases and S2O6 and S2O8 increase. Peroxides and the like become generation factors and lead to an increase in wastewater COD. Therefore, it is necessary to adjust the ventilation flow rate of the gas containing oxygen to an appropriate range.
[0006]
As a control method for adjusting the aeration flow rate of a gas containing oxygen related to the oxidation of calcium sulfite, a method using an oxidation-reduction potential (hereinafter referred to as ORP) is known. That is, in the conventional aeration flow rate control method using ORP, the ORP set value is determined in advance from the result of obtaining the correlation between the ORP and the sulfurous acid concentration, and the deviation symbol between the signal obtained by continuously detecting the ORP of the absorbent and the ORP set value Was used to control the air flow rate.
[0007]
However, the exhaust gas contains oxygen resulting from excess air combustion or the like, and with the above control method, the ORP value may not fall below the set value range even if the ventilation flow rate of the gas containing oxygen is substantially zero. There was a problem that occurred.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and even if the flow rate of a gas containing oxygen is substantially zero, even if the ORP value does not fall below the set value range, the ORP value of the absorbing liquid An object of the present invention is to provide a wet flue gas desulfurization method and apparatus capable of reducing the value to a set value or less.
[0009]
[Means for Solving the Problems]
The present invention makes gas-liquid contact between an exhaust gas containing sulfur oxides and an absorption liquid containing calcium compounds to absorb and remove sulfur oxides in the exhaust gas, and a gas containing oxygen is generated in the generated absorption liquid containing calcium sulfite. In the wet flue gas desulfurization method of supplying gypsum, the redox potential of the absorption liquid is measured, the supply amount of a gas containing oxygen is adjusted according to the redox potential, and the redox potential reduces oxygen. When it becomes higher than the adjustment range depending on the supply amount of the gas to be included, an oxidation inhibitor is supplied to the absorption liquid to adjust the oxidation -reduction potential.
[0011]
Further, the oxidation inhibitor is any one selected from silicon-based, fat-based, fatty acid-based, mineral oil-based, alcohol-based, amide-based, phosphate ester-based, metal soap-based antifoaming agent, alcohol and glycerin. Or a mixture of any two or more.
[0012]
Further, the present invention provides an absorption tower that makes gas-liquid contact between an exhaust gas containing sulfur oxide and an absorption liquid containing a calcium compound to absorb and remove sulfur oxide in the exhaust gas, and an absorption liquid containing the generated calcium sulfite. In a wet flue gas desulfurization apparatus equipped with an oxygen-containing gas supply facility for supplying a gas containing oxygen, an oxidation inhibitor supply facility for further supplying an oxidation inhibitor into the absorption tower, and detecting an oxygen reduction potential of the absorption liquid An oxygen reduction potentiometer that measures the oxidation-reduction potential of the absorption liquid, adjusts the supply amount of a gas containing oxygen according to the oxidation-reduction potential, and the supply amount of the gas that contains oxygen as the oxidation-reduction potential if it becomes higher than the adjustment range of the features a configured such Rukoto as to supply the oxidation inhibitor to the absorbing liquid to adjust the oxidation-reduction potential.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0014]
FIG. 1 is a system diagram showing a schematic configuration of an example of an embodiment of a wet flue gas desulfurization apparatus according to the present invention.
[0015]
The combustion exhaust gas A containing sulfurous acid gas is introduced into the absorption tower 1 through the exhaust gas duct 2. The absorbent 4 at the bottom of the absorption tower 1 is sent to the spray header 10 through the absorbent circulation line 12 by the pump 13 and sprayed from the spray nozzle provided in the spray header 10. Then, the sprayed absorption liquid makes gas-liquid contact with the exhaust gas A introduced into the absorption tower 1, falls by gravity while absorbing and removing sulfurous acid gas from the exhaust gas A, and returns to the bottom of the absorption tower 1. The exhaust gas B from which the sulfurous acid gas has been removed is led out of the system through the exhaust gas duct 3, and is discharged from the chimney to the atmosphere after further necessary processing, for example.
[0016]
On the other hand, in the example of the present embodiment, air is used as a gas containing oxygen, and is blown from the bubbling header 5 through a line 6 by a blower (not shown) to react with the absorbing liquid 4 that has absorbed the sulfurous acid gas. Generate. Part of the absorbent 4 containing the generated gypsum is extracted from the absorbent circulation line 12 to the gypsum collection line 23, and is separated into solid and liquid by a belt filter type filtration device or the like to collect gypsum. A part of the separated liquid is returned to the absorption tower as make-up water, and the lime slurry is supplied into the absorption tower 1 from the lime slurry supply line 15 and mixed with the absorption liquid 4, so that the absorption capacity of the absorption liquid of sulfurous acid gas is improved. Maintained. The remaining liquid is discharged out of the system as waste water.
[0017]
The oxidation inhibitor solution is supplied from the oxidation inhibitor solution tank 16 to the absorption liquid 4 at the bottom of the absorption tower 1 from an oxidation inhibitor solution supply line 17 provided with a valve 19.
[0018]
The absorption liquid circulation line 12 is equipped with an oxidation-reduction potentiometer (0RP meter) 20 to measure the oxidation-reduction potential (0RP) of the circulation absorption liquid, and the measurement signals are sent to the first controller 21 and the second controller 22 , respectively. Sent.
[0019]
The first controller 21 compares the input signal from the 0RP meter 20 with the oxidation-reduction set value (OPR set value), controls the valve opening degree of the valve 8 by the output signal, and is ejected from the bubbling header 5 The amount can be adjusted.
[0020]
The second controller 22 compares and calculates the input signal from the 0RP meter 20 and the oxidation-reduction set value (OPR set value), and controls the valve opening degree of the valve 19 by the output signal to suppress oxidation to the absorption tower. The supply amount can be adjusted.
[0021]
Next, the control of the air flow rate and the addition timing of the oxidation inhibitor using the ORP of the circulating absorbent as an index will be described with reference to FIG.
[0022]
(First stage)
An exhaust gas having an effective amount of sulfurous acid gas is introduced into the absorption tower 1 from the introduction pipe 2, and the circulation pump 13 is operated so that the absorption liquid 4 at the bottom of the absorption tower 1 passes through the absorption liquid circulation line 12. It sprays from the 1 spray header 10, makes the gas-liquid contact with the said exhaust gas, absorbs the sulfurous acid gas in the exhaust gas as sulfite ion, and desulfurizes. At this time, the ORP value of the absorbent flowing through the absorbent circulation line 12 is detected by the ORP meter 20, and the detection signal is output to the first controller 21. The first controller 21 compares the ORP detection signal input from the ORP meter 20 with the ORP set value. In this comparison result, when a detection signal exceeding the ORP set value is inputted, a signal for lowering the opening of the first valve 8 is outputted from the first controller 21 to the first PID controller 7. As a result, the flow rate of air that is vented from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 by the operation of an air supply blower (not shown) is reduced, and the ORP value is lowered accordingly. It matches the set value. On the other hand, in this comparison result, when a detection signal less than the ORP set value is input, a signal for increasing the opening of the first valve 8 is output from the first controller 21 to the first PID controller 7. As a result, the air flow rate of the air flowing from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 is increased by the operation of the air supply blower (not shown), and the ORP value increases accordingly. It matches the set value.
[0023]
While continuously detecting ORP in such a first stage, the opening degree of the first valve 8 is adjusted by the first controller 21 and the first PID controller 7 based on the ORP value, for example, in the absorbent 4. By controlling the air flow rate to the air, it becomes possible to keep the ORP value of the absorbing solution within the ORP set value as shown in FIG. 2, and to control the sulfite ion in the absorbing solution 4 to an appropriate concentration, Generation of COD can be reduced by preventing generation of peroxides such as S 2 O 6 and S 2 O 8 .
[0024]
(Second stage)
An exhaust gas having an effective low amount of sulfurous acid gas (for example, an exhaust gas whose flow rate is half of the exhaust gas flow rate of the first stage) is introduced into the absorption tower 1 from the introduction pipe 2, and the circulation pump 13 is operated to operate the bottom of the absorption tower 1. The absorbent 4 is sprayed from the spray header 10 of the absorption tower 1 through the absorbent circulation line 12 and brought into gas-liquid contact with the exhaust gas to absorb the sulfurous acid gas in the exhaust gas as sulfite ions for desulfurization. At this time, when the ORP value of the absorbent flowing through the absorbent circulation line 12 is detected by the ORP meter 20, the bubbling header 5 vents the sulfite ion concentration absorbed by the absorbent in the absorption tower 1. Since the air flow rate becomes excessive, the ORP detection amount exceeds the ORP set value as shown in stage 2 of FIG. When such a detection signal is output to the first controller 21, a signal for lowering the opening of the first valve 8 is output from the first controller 21 to the first PID controller 7. Thereby, the air flow rate which is ventilated from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 by the operation of the air supply blower (not shown) is reduced.
[0025]
However, the effective amount of sulfurous acid gas in the exhaust gas is small even if the air flow rate that is vented to the absorbing liquid is reduced by the throttle operation of the first valve 8 and the air flow rate that is vented is controlled to the minimum. The ORP value detected by the ORP meter 20 may exceed the ORP set value. At this time (point P1 in FIG. 2), the ORP detection signal output from the ORP meter 20 and the air flow rate detection signal output from the flow rate detector 9 interposed in the air introduction flow path 6 are input. In the second controller 22, the ORP detection signal exceeding the ORP set value is input from the ORP meter 20, and the air flow detection signal below the minimum value of the air flow is input from the flow rate detector 9, The second controller 22 outputs a signal for opening the second valve 19 interposed in the flow path 17 to the second PID controller 18 for a predetermined time. By the opening operation of the second valve 19 for a certain time, a certain amount of the oxidation inhibitor solution in the oxidation inhibitor solution storage tank 16 is supplied to the absorption liquid 4 of the absorption tower 1 through the flow path 17. As a result, as shown in FIG. 2, the ORP value of the absorbent 4 is lowered to match the ORP set value.
[0026]
The opening of the first valve 8 from the first controller 21 to the first PID controller 7 at the point P2 in FIG. 2 where the ORP value of the absorbent 4 becomes less than the ORP set value due to the addition of the oxidation inhibitor solution. A signal to increase the value is output. As a result, the air flow rate of the air flowing from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 is increased by the operation of the air supply blower (not shown), and the ORP value increases accordingly. It matches the set value.
[0027]
In such a second stage, while the ORP is continuously detected, the opening of the first valve 8 is controlled by the first controller 21 and the first PID controller 7 based on the detected value, for example, to absorb the absorbent 4 When the ORP value of the absorbing liquid exceeds the ORP set value as shown in FIG. 2, for example, the second control is performed based on the detected value of ORP and the detected value of the air flow rate. Since the second valve 19 is opened for a certain period of time by the vessel 22 and the second PID controller 18 and a certain amount of oxidation inhibitor is added to the absorbent, the ORP value of the absorbent can be kept within the ORP set value. Generation of peroxides such as 2 O 6 and S 2 O 8 can be prevented to reduce the generation of COD.
[0028]
As described above, according to the embodiment of the present invention, when the amount of sulfurous acid gas in the exhaust gas is effectively reduced and the detected value of the ORP of the absorbing liquid exceeds the ORP set value even if the air flow rate to be ventilated is controlled to the minimum, By introducing an oxidation inhibitor into the absorption liquid to reduce the ORP detection value of the absorption liquid below the ORP set value, the generation of peroxides such as S 2 O 6 and S 2 O 8 is suppressed. Can be prevented. As a result, when part of the absorption liquid in the flue gas desulfurization treatment system is discharged, the wastewater with reduced amount of the peroxide that causes COD can be discharged, thereby reducing the load of wastewater treatment. be able to.
[0029]
In the above-described embodiment, the absorption liquid containing calcium carbonate is used, but an aqueous solution containing an alkaline compound other than calcium carbonate may be used.
[0030]
【Example】
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG.
[0031]
Example 1
(1) Desulfurization of exhaust gas having an appropriate amount of sulfurous acid gas First, 500,000 Nm 3 of exhaust gas containing 350 ppm of sulfurous acid gas (SO 2 ) is introduced near the bottom of the absorption tower 1 through the introduction pipe 2 as shown by arrow A in FIG. / H was introduced at a flow rate. The introduced exhaust gas rose in the absorption tower 1. The circulation pump 13 is operated to inject the absorption liquid 4 in which the lime at the bottom of the absorption tower 1 is dissolved at a concentration of 15% by weight from the spray header 10 of the absorption tower 1 through the absorption liquid circulation line 12, Desulfurization was performed by contacting the liquid and absorbing the sulfurous acid gas in the exhaust gas as sulfite ions. The desulfurized exhaust gas passes through the demister 11, where mist and dust in the exhaust gas are collected, and the treated exhaust gas passes through the exhaust pipe 3 at the top of the absorption tower 1 as shown by the arrow B in FIG. Exhausted.
[0032]
In the desulfurization step described above, the ORP value of the absorbent flowing through the absorbent circulation line 12 was detected by the ORP meter 20, and the detection signal was output to the first controller 21. In the first controller 21, the ORP detection signal input from the ORP meter 20 is compared with the ORP set value. In this comparison result, when a detection signal exceeding the ORP set value (for example, 100 mV) is inputted, a signal for lowering the opening of the first valve 8 is outputted from the first controller 21 to the first PID controller 7. As a result, the flow rate of air that is vented from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 by the operation of an air supply blower (not shown) is reduced, and the ORP value is lowered accordingly. Matched the set value. On the other hand, in this comparison result, when a detection signal less than the ORP set value is inputted, a signal for increasing the opening of the first valve 8 is outputted from the first controller 21 to the first PID controller 7. As a result, the air flow rate of the air flowing from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 is increased by the operation of the air supply blower (not shown), and the ORP value increases accordingly. Matched the set value.
[0033]
Thus, by adjusting the opening degree of the first valve 8 by the first controller 21 and the first PID controller 7 to control the air flow rate into the absorbent 4, the ORP value of the absorbent is ORP. It was possible to match the set value, and the sulfite ion in the absorbing solution 4 was controlled to an appropriate concentration.
[0034]
(2) Desulfurization of exhaust gas with low effective sulfurous acid amount Exhaust gas containing sulfurous acid gas (SO 2 ) of the above concentration is introduced near the bottom of the absorption tower 1 through the introduction pipe 2 as shown by arrow A in FIG. Introduced at half the flow rate (250,000 Nm 3 / h), collects the same desulfurization, mist and dust in the exhaust gas, and discharges the treated exhaust gas at the top of the absorption tower 1 as shown by arrow B in FIG. Exhaust out of the system through the tube 3.
[0035]
In the desulfurization, when the ORP of the absorbent flowing through the circulation flow path 12 was measured with the ORP meter 20, the ORP value increased from 100 mV, which is the ORP set value, to 200 mV. Therefore, this ORP detection signal is output to the first controller 21, and a signal for decreasing the opening of the first valve 8 is output from the first controller 21 to the first PID controller 7. As a result, the flow rate of air that is vented from the air introduction channel 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 by the operation of the air supply blower (not shown) is reduced.
[0036]
However, since the effective flow rate of the sulfurous acid gas in the exhaust gas is small even if the flow rate of the air that is vented to the absorbing liquid is reduced by the throttle operation of the first valve 8 and the air flow rate that is vented is controlled to the minimum, the ORP meter 20 The ORP value detected in (1) exceeded the ORP set value. At this time, an ORP detection signal exceeding the ORP set value is input from the ORP meter 20 to the second controller 22 and the flow rate detector 9 interposed in the air introduction channel 6 is below the minimum value of the air flow rate. Therefore, the second controller 22 outputs a signal for opening the second valve 19 interposed in the flow path 17 for a certain period of time. When the second valve 19 is opened for one hour, the oxidation inhibitor solution in the oxidation inhibitor solution storage tank 16 (for example, a 100% strength by weight solution of the antifoaming agent for silicon resin food addition) is passed through the flow path 17 to It supplied to the absorption liquid 4 of the absorption tower 1. At this time, the amount of the antifoaming agent supplied to the absorbing liquid was 400 mL (0.5 ppm) per 210 m 3 of the aerated air amount. As a result, the ORP value of the absorbent 4 was reduced to less than the ORP set value (100 mV).
[0037]
When the ORP value of the absorbent 4 becomes less than the ORP set value due to the addition of the oxidation inhibitor solution, a signal for increasing the opening of the first valve 8 is output from the first controller 21 to the first PID controller 7. It was. As a result, the air flow rate of the air flowing from the air introduction flow path 6 and the bubbling header 5 to the absorption liquid at the bottom of the absorption tower 1 is increased by the operation of the air supply blower (not shown), and the ORP value increases accordingly. Matched the set value.
[0038]
(Comparative Example 1)
(1) Desulfurization of exhaust gas having an appropriate amount of sulfurous acid gas Exhaust gas having an appropriate concentration of sulfurous acid gas was desulfurized by the same method as in Example 1.
[0039]
(2) Desulfurization of exhaust gas in which the amount of sulfurous acid gas is effectively low Exhaust gas containing sulfurous acid gas (SO 2 ) having the same concentration as in Example 1 is passed through the introduction pipe 2 as shown by arrow A in FIG. Introduced in the vicinity at a flow rate of 250,000 Nm 3 / h, the same desulfurization as in Example 1, mist and soot in the exhaust gas are collected, and the treated exhaust gas is absorbed by the absorption tower 1 as indicated by arrow B in FIG. It exhausted out of the system through the discharge pipe 3 of the top part. In this desulfurization, the opening of the first valve 8 is lowered to the first PID controller 7 by the first controller 21 as in the first embodiment, and the air introduction flow path 6 and the bubbling header 5 are operated by the operation of an air supply blower (not shown). Only the operation of reducing the flow rate of air that is vented to the absorption liquid at the bottom of the absorption tower 1 is supplied to supply the oxidation inhibitor solution in the oxidation inhibitor solution storage tank 16 to the absorption liquid 4 of the absorption tower 1 through the flow path 17. The operation was not performed.
[0040]
In the desulfurization of (1) and (2) of Example 1 and Comparative Example 1, the concentration of sulfurous acid gas in the processing gas exhausted out of the system through the discharge pipe 3 at the top of the absorption tower and the flow path from the absorption liquid circulation line 12 The COD concentration in the waste water discharged through the No. 23 was measured. The results are shown in Table 1 below.
[0041]
[Table 1]
Figure 0003836048
[0042]
As apparent from Table 1, in Example 1, in the desulfurization treatment of the exhaust gas in which the amount of sulfurous acid gas (2) is effectively low, the COD amount in the wastewater is reduced to the amount of the exhaust gas having the appropriate amount of sulfurous acid gas in (1). It can be seen that it can be reduced to almost the same level as during desulfurization.
[0043]
On the other hand, in the comparative example 1, in the desulfurization treatment of the exhaust gas in which the amount of sulfurous acid gas in (2) is effectively low, the COD amount in the waste water is increased compared to that in the exhaust gas having the appropriate amount of sulfurous acid gas in (1). I understand that This is because even if the flow rate of air flowing through the absorbent in the desulfurization step (2) is controlled to a minimum, the ORP value of the absorbent exceeds the ORP set value, and the sulfite ions generated in the absorbent are excessive. This is because it is oxidized to produce peroxides such as S 2 O 6 and S 2 O 8 .
[0044]
【The invention's effect】
As described above in detail, according to the present invention, even when the amount of sulfurous acid gas in the exhaust gas is effectively reduced and the ORP value cannot be controlled below the set value even if the flow rate of the oxygen-containing gas to be passed is minimized. , It is possible to prevent the generation of peroxides such as S 2 O 6 and S 2 O 8 that are the cause of COD, and to reduce the amount of peroxide that causes COD, thereby reducing the wastewater treatment load. it is possible to provide a wet flue gas desulfurization process and the wet flue gas desulfurization system exhibits equal remarkable effect of.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a flue gas desulfurization apparatus for carrying out the flue gas desulfurization method of the present invention.
FIG. 2 is a graph showing a change in ORP value, controlled air ventilation flow rate, and addition timing of an oxidation inhibitor during flue gas desulfurization treatment of exhaust gases having different effective amounts of sulfurous acid gas in the embodiment of the present invention.
[Explanation of symbols]
1 ... Absorption tower,
2 ... introduction pipe,
3 ... discharge pipe,
4 ... Absorbing liquid,
5 ... Bubbling header,
7, 18 ... PID controller,
8,19 ... Valve,
12 ... Absorption liquid circulation line,
16 ... oxidation inhibitor solution storage tank,
20 ... ORP meter,
21.22 ... Controller.

Claims (3)

硫黄酸化物を含む排ガスとカルシウム化合物を含有する吸収液とを気液接触させて排ガス中の硫黄酸化物を吸収除去し、生成した亜硫酸カルシウムを含む吸収液に酸素を含む気体を供給して石膏を生成する湿式排煙脱硫方法において、前記吸収液の酸化還元電位を測定し、該酸化還元電位に応じて酸素を含む気体の供給量を調整し、該酸化還元電位が酸素を含む気体の供給量による調整範囲を超えて高くなった場合に、該吸収液に酸化抑制剤を供給して該酸化還元電位を調整することを特徴とする湿式排煙脱硫方法。 The exhaust gas containing sulfur oxides and the absorption liquid containing calcium compounds are brought into gas-liquid contact to absorb and remove sulfur oxides in the exhaust gas, and the gas containing oxygen is supplied to the generated absorption liquid containing calcium sulfite. In the wet flue gas desulfurization method, the redox potential of the absorbent is measured, the supply amount of the gas containing oxygen is adjusted according to the redox potential, and the redox potential supplies the gas containing oxygen if it becomes higher than the adjustment range of the amount, Shikihaikemuri desulfurization method fountain characterized in that by supplying oxidation inhibitor to the absorbing liquid to adjust the oxidation-reduction potential. 前記酸化抑制剤は、シリコン系、油脂系、脂肪酸系、鉱油系、アルコール系、アミド系、リン酸エステル系、金属せっけん系の消泡剤、アルコールおよびグリセリンから選ばれる何れか一つであること又は何れか二つ以上の混合物であることを特徴とする請求項1記載の湿式排煙脱硫方法。The oxidation inhibitor is any one selected from silicon-based, oil-based, fatty acid-based, mineral oil-based, alcohol-based, amide-based, phosphate ester-based, metal soap-based antifoaming agent, alcohol and glycerin. or wet flue gas desulfurization method according to claim 1 Symbol mounting, characterized in that any mixture of two or more. 硫黄酸化物を含む排ガスとカルシウム化合物を含有する吸収液とを気液接触させて排ガス中の硫黄酸化物を吸収除去させる吸収塔と、生成した亜硫酸カルシウムを含む吸収液に酸素を含む気体を供給する酸素含有気体供給設備を具備する湿式排煙脱硫装置において、さらに酸化抑制剤を前記吸収塔内に供給する酸化抑制剤供給設備と、前記吸収液の酸素還元電位を検出する酸素還元電位計を具備し、前記吸収液の酸化還元電位を測定し、該酸化還元電位に応じて酸素を含む気体の供給量を調整し、該酸化還元電位が酸素を含む気体の供給量による調整範囲を超えて高くなった場合に、該吸収液に酸化抑制剤を供給して該酸化還元電位を調整するように構成されてなることを特徴とする湿式排煙脱硫装置。An absorption tower that makes gas-liquid contact between an exhaust gas containing sulfur oxides and an absorption liquid containing calcium compounds to absorb and remove sulfur oxides in the exhaust gas, and a gas containing oxygen to the generated absorption liquid containing calcium sulfite In the wet flue gas desulfurization apparatus equipped with an oxygen-containing gas supply facility, an oxidation inhibitor supply facility for further supplying an oxidation inhibitor into the absorption tower, and an oxygen reduction electrometer for detecting the oxygen reduction potential of the absorption liquid And measuring the oxidation-reduction potential of the absorption liquid, adjusting the supply amount of the gas containing oxygen according to the oxidation-reduction potential, the oxidation-reduction potential exceeding the adjustment range by the supply amount of the gas containing oxygen when it becomes high, wet flue gas desulfurization apparatus characterized by configured by such Rukoto to adjust the oxidation-reduction potential by supplying oxidation inhibitor to the absorption liquid.
JP2002150888A 2002-05-24 2002-05-24 Wet flue gas desulfurization method and apparatus Expired - Lifetime JP3836048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150888A JP3836048B2 (en) 2002-05-24 2002-05-24 Wet flue gas desulfurization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150888A JP3836048B2 (en) 2002-05-24 2002-05-24 Wet flue gas desulfurization method and apparatus

Publications (2)

Publication Number Publication Date
JP2003340238A JP2003340238A (en) 2003-12-02
JP3836048B2 true JP3836048B2 (en) 2006-10-18

Family

ID=29768627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150888A Expired - Lifetime JP3836048B2 (en) 2002-05-24 2002-05-24 Wet flue gas desulfurization method and apparatus

Country Status (1)

Country Link
JP (1) JP3836048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722205A (en) * 2015-04-09 2015-06-24 南京大学 Limestone-gypsum wet flue gas desulfurization synergist
US9101882B2 (en) 2013-11-21 2015-08-11 Mitsubishi Hitachi Power Systems, Ltd. Wet type flue-gas desulfurization apparatus and method for adjusting oxidation reduction potential of absorbent therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829490B (en) * 2010-05-14 2012-08-15 上海龙净环保科技工程有限公司 Oxygen supply pipe device for wet flue gas desulfurization oxidation
EP3275529B1 (en) 2015-03-27 2020-11-11 Mitsubishi Power, Ltd. Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device
CN106110859A (en) * 2016-08-12 2016-11-16 无锡欧玛森远洋工程设备有限公司 A kind of boiler waste gas treating device
JP6837355B2 (en) * 2017-03-09 2021-03-03 千代田化工建設株式会社 Desulfurization method and desulfurization equipment
JP6985084B2 (en) * 2017-09-25 2021-12-22 関西電力株式会社 Desulfurization method and desulfurization equipment for gases containing sulfur oxides
JP7461143B2 (en) 2019-10-04 2024-04-03 三菱重工業株式会社 Foam suppression method and foam suppression system
JP7370281B2 (en) * 2020-02-28 2023-10-27 三菱重工業株式会社 Filter cloth clogging prevention method and flue gas desulfurization system
CN116422118B (en) * 2023-04-18 2024-07-23 中国华电科工集团有限公司 Flue gas desulfurization and oxidation wind system and application method thereof
CN117695820B (en) * 2024-01-09 2024-07-09 乌苏市华泰石油化工有限公司 Desulfurizing tower top part capable of slowly injecting corrosion inhibitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101882B2 (en) 2013-11-21 2015-08-11 Mitsubishi Hitachi Power Systems, Ltd. Wet type flue-gas desulfurization apparatus and method for adjusting oxidation reduction potential of absorbent therefor
CN104722205A (en) * 2015-04-09 2015-06-24 南京大学 Limestone-gypsum wet flue gas desulfurization synergist

Also Published As

Publication number Publication date
JP2003340238A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP6522114B2 (en) Wet flue gas desulfurization device and operating method of wet flue gas desulfurization device
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
KR0145215B1 (en) Method for controlling the oxidation of sulfites
JP3573950B2 (en) Exhaust gas desulfurization method
JP2009166013A (en) Exhaust gas treatment system of coal fired boiler
WO2013118683A1 (en) Desulfurization seawater processing system
JP2013006143A (en) Exhaust gas treatment apparatus, and orp control method therefor
JP5081000B2 (en) Method for controlling the amount of air supplied for oxidation in wet flue gas desulfurization equipment
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
EP0518585B1 (en) Flue gas desulfurization process
JP3254139B2 (en) Redox potential measurement method in flue gas desulfurization method
JPH10128053A (en) Stack gas treating device and treatment of stack gas
JP3748861B2 (en) Exhaust gas desulfurization method by metathesis method
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JPH0359731B2 (en)
JPH10202050A (en) Suppressing method of oxidation of selenium in flue gas desulfurization apparatus and device therefor
JPH06210126A (en) Method and device for treating waste gas
JP3693778B2 (en) Method and apparatus for controlling carbonate concentration in slurry
JP4269379B2 (en) Wet flue gas desulfurization method and wet flue gas desulfurization apparatus
EP3144051A1 (en) Mercury control in a seawater flue gas desulfurization system
KR100421463B1 (en) Control method for sufite ion concentration in the circulation water of the flue gas disulfurization equipment
JPH11207142A (en) Wet stack gas desulfurizing method and device therefor
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPS631090B2 (en)
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R151 Written notification of patent or utility model registration

Ref document number: 3836048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term