JP2009166013A - Exhaust gas treatment system of coal fired boiler - Google Patents

Exhaust gas treatment system of coal fired boiler Download PDF

Info

Publication number
JP2009166013A
JP2009166013A JP2008010332A JP2008010332A JP2009166013A JP 2009166013 A JP2009166013 A JP 2009166013A JP 2008010332 A JP2008010332 A JP 2008010332A JP 2008010332 A JP2008010332 A JP 2008010332A JP 2009166013 A JP2009166013 A JP 2009166013A
Authority
JP
Japan
Prior art keywords
exhaust gas
mercury
coal
treatment system
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010332A
Other languages
Japanese (ja)
Other versions
JP4719228B2 (en
Inventor
Nobuyuki Ukai
展行 鵜飼
Shintaro Honjo
新太郎 本城
Susumu Okino
沖野  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008010332A priority Critical patent/JP4719228B2/en
Publication of JP2009166013A publication Critical patent/JP2009166013A/en
Application granted granted Critical
Publication of JP4719228B2 publication Critical patent/JP4719228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment system of a coal fired boiler efficiently removing mercury in the exhaust gas from the coal fired boiler. <P>SOLUTION: The exhaust gas treatment system is provided with: a denitration device removing nitrogen oxides in the exhaust gas from the coal fired boiler; an air preheater recovering heat in the gas after nitrogen oxides removal; an electrostatic precipitator removing soot and dust in the gas after heat recovery; a gas-liquid contact type desulfurizer removing sulfur oxides in the gas after dust removal by the lime-gypsum method and mercury oxide; and a chimney discharging the gas which has undergone desulfurization to the outside. Coal fed as fuel having a mole ratio of mercury (Hg)/sulfur (S) of 1.3×10<SP>-6</SP>or less is used for power generation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ボイラの排ガス中から水銀を除去する石炭焚ボイラの排ガス処理システムに関するものである。   The present invention relates to an exhaust gas treatment system for a coal fired boiler that removes mercury from the exhaust gas of a boiler.

火力発電所等の燃焼装置であるボイラから排出される排ガスには毒性の高い水銀が含まれるため、従来から排ガス中の水銀を除去するためのシステムが種々検討されてきた。   Since exhaust gas discharged from boilers, which are combustion devices such as thermal power plants, contains highly toxic mercury, various systems for removing mercury in exhaust gas have been studied.

通常、ボイラには排ガス中の硫黄分を除去するための湿式の脱硫装置が設けられている。このようなボイラに排ガス処理装置として脱硫装置が付設されてなる排煙処理設備においては、2価の酸化水銀は水に可溶であるため、前記脱硫装置で水銀が捕集しやすくなることが、広く知られている。   Usually, a boiler is provided with a wet desulfurization apparatus for removing sulfur content in exhaust gas. In a flue gas treatment facility in which a desulfurization device is attached to such a boiler as an exhaust gas treatment device, since divalent mercury oxide is soluble in water, mercury may be easily collected by the desulfurization device. Widely known.

そこで、近年、NOxを還元する脱硝装置、および、アルカリ吸収液をSOx吸収剤とする湿式脱硫装置と組み合わせて、この金属水銀を処理する方法や装置について様々な考案がなされてきた。   Therefore, in recent years, various devices and methods for treating this metallic mercury have been devised in combination with a denitration device that reduces NOx and a wet desulfurization device that uses an alkaline absorbent as an SOx absorbent.

排ガス中の金属水銀を処理する方法としては、活性炭やセレンフィルター等の吸着剤による除去方法が知られているが、特殊な吸着除去手段が必要であり、発電所排ガス等の大容量排ガスの処理には適していない。   As a method for treating metallic mercury in exhaust gas, a removal method using an adsorbent such as activated carbon or a selenium filter is known, but a special adsorption removal means is required, and treatment of large-volume exhaust gas such as power plant exhaust gas Not suitable for.

ここで、大容量排ガス中の金属水銀を処理する方法として、従来より脱硫方法として、下記式(1)及び(2)に示すような反応により、主に気液接触式の脱硫装置を用いた石灰-石膏法が多用されている。
SO2 +CaCO3 +1/2H2O→CaSO3・1/2H2O+CO2(吸収) …(1)
CaSO3・1/2H2O+3/2H2O+1/2O2→CaSO4・2H2O(酸化) …(2)
Here, as a method for treating metal mercury in large-capacity exhaust gas, as a conventional desulfurization method, a gas-liquid contact type desulfurization apparatus was mainly used by a reaction shown in the following formulas (1) and (2). The lime-gypsum method is frequently used.
SO 2 + CaCO 3 + 1 / 2H 2 O → CaSO 3 · 1 / 2H 2 O + CO 2 (absorption) (1)
CaSO 3 .1 / 2H 2 O + 3 / 2H 2 O + 1 / 2O 2 → CaSO 4 .2H 2 O (oxidation) (2)

特開2007−7612号公報JP 2007-7612 A

ところで、気液接触式の脱硫装置内においては、酸化水銀(Hg2+)を石膏(CaSO4)スラリ中に吸着・固定化し水銀を除去していた。この際、水銀(Hg)の除去速度は一般に石膏(CaSO4)の生成速度に依存している。 In the gas-liquid contact type desulfurization apparatus, mercury oxide (Hg 2+ ) is adsorbed and fixed in gypsum (CaSO 4 ) slurry to remove mercury. At this time, the mercury (Hg) removal rate generally depends on the production rate of gypsum (CaSO 4 ).

このため、水銀の除去速度を高めるには、石膏(CaSO4)の生成速度を高める必要があるが、石炭中の水銀(Hg)と硫黄(S)との比率は、石炭の性状に依存し、石膏の生成速度のみ高めることは困難である、という問題がある。
このため、水銀(Hg)に対して硫黄(S)が少ない石炭を用いる場合、石膏−石灰を含むスラリ中の石膏の生産量が少ない場合には水銀(Hg)除去性能が不足する恐れがある。
Therefore, in order to increase the mercury removal rate, it is necessary to increase the production rate of gypsum (CaSO 4 ), but the ratio of mercury (Hg) and sulfur (S) in the coal depends on the properties of the coal. However, it is difficult to increase only the rate of formation of gypsum.
For this reason, when coal with less sulfur (S) than mercury (Hg) is used, there is a risk that mercury (Hg) removal performance may be insufficient if the amount of gypsum in the slurry containing gypsum-lime is small. .

加えて、空気または酸素富化空気の添加によりスラリを酸化状態とすることで、酸化水銀(Hg2+)の還元(Hg2+→Hg0)を防止し、ガス相への0価の水銀の(Hg0)の再飛散を抑制している。 In addition, the reduction of mercury oxide (Hg 2+ ) (Hg 2+ → Hg 0 ) is prevented by adding the air or oxygen-enriched air to the oxidized state, and zero-valent mercury into the gas phase (Hg 0 ) is prevented from re-scattering.

しかしながら、排ガス中に還元性物質が多量に存在する場合においては、所定の酸化状態(酸化還元電位(ORP)値が+150mV以上)を維持できず、0価の水銀の(Hg0)ののガス相への再飛散を抑制できないような場合がある。このため、他の対応策により排ガス中の水銀を効率的に除去することが切望されている。 However, when a large amount of reducing substance is present in the exhaust gas, the predetermined oxidation state (the oxidation-reduction potential (ORP) value is +150 mV or more) cannot be maintained, and the zero-valent mercury (Hg 0 ) gas. There are cases where re-scattering into the phase cannot be suppressed. For this reason, it is anxious to remove mercury in exhaust gas efficiently by other countermeasures.

本発明は、以上の課題に鑑み、石炭焚きボイラからの排ガス中の水銀を効率的に除去することができる石炭焚ボイラの排ガス処理システムを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an exhaust gas treatment system for a coal fired boiler that can efficiently remove mercury in the exhaust gas from the coal fired boiler.

上述した課題を解決するための本発明の第1の発明は、石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、窒素酸化物除去後のガス中の熱を回収する空気予熱器と、熱回収後のガス中の煤塵を除去する集塵機と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以下であることを特徴とする石炭焚ボイラの排ガス処理システムにある。 A first invention of the present invention for solving the above-mentioned problems is a denitration device that removes nitrogen oxides in exhaust gas from a coal fired boiler, and an air preheat that recovers heat in the gas after removal of nitrogen oxides A dust collector that removes dust in the gas after heat recovery, a gas-liquid contact type desulfurization device that removes sulfur oxide in the gas after dust removal by the lime / gypsum method, and removes mercury oxide, An exhaust gas treatment system comprising a chimney that discharges gas after desulfurization to the outside, wherein the coal has a molar ratio of mercury (Hg) / sulfur (S) of 1.3 × 10 −6 or less. It is in the exhaust gas treatment system of a boiler.

第2の発明は、第1の発明において、石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上の場合には、モル比が1.3×10-6以下の硫黄含有量が高い石炭を混焼することを特徴とする石炭焚ボイラの排ガス処理システムにある。 According to a second invention, in the first invention, when the molar ratio of mercury (Hg) / sulfur (S) of coal is 1.3 × 10 −6 or more, the molar ratio is 1.3 × 10 −6. The present invention is an exhaust gas treatment system for a coal fired boiler characterized by co-firing coal having a high sulfur content.

第3の発明は、第1の発明において、石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上の場合には、硫黄化合物を混焼することを特徴とする石炭焚ボイラの排ガス処理システムにある。 A third invention is characterized in that, in the first invention, when the molar ratio of mercury (Hg) / sulfur (S) of coal is 1.3 × 10 −6 or more, a sulfur compound is co-fired. It is in the exhaust gas treatment system of coal fired boiler.

第4の発明は、第1の発明において、石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上の場合には、排ガスに硫酸系ガスを混合しつつ脱硫することを特徴とする石炭焚ボイラの排ガス処理システムにある。 In a fourth aspect of the present invention, when the molar ratio of mercury (Hg) / sulfur (S) in the coal is 1.3 × 10 −6 or more in the first aspect, desulfurization is performed while mixing sulfuric acid gas with the exhaust gas. It is in the exhaust gas treatment system of a coal fired boiler characterized by doing.

第5の発明は、第1乃至4の発明のいずれか一つにおいて、石灰石-石膏を含むスラリに酸化剤を添加することを特徴とする石炭焚ボイラの排ガス処理システムにある。   A fifth invention is an exhaust gas treatment system for a coal fired boiler according to any one of the first to fourth inventions, wherein an oxidizing agent is added to a slurry containing limestone-gypsum.

第6の発明は、第1乃至5の発明のいずれか一つにおいて、石灰石‐石膏を含むスラリに硫酸系化合物を添加することを特徴とする石炭焚ボイラの排ガス処理システムにある。   A sixth invention is an exhaust gas treatment system for a coal fired boiler according to any one of the first to fifth inventions, wherein a sulfuric acid compound is added to a slurry containing limestone-gypsum.

本発明によれば、気液接触のスラリ吸収液からの水銀の再飛散がなくなり、排ガス中の水銀と石膏との接触効率を高めることができ、水銀の吸着・固定化を促進することができる。   According to the present invention, re-scattering of mercury from a gas-liquid contact slurry absorbing liquid is eliminated, the contact efficiency between mercury and gypsum in exhaust gas can be increased, and mercury adsorption / immobilization can be promoted. .

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る石炭焚ボイラの排ガス処理システムについて、図面を参照して説明する。
本実施例は、石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、窒素酸化物除去後のガス中の熱を回収する空気予熱器と、熱回収後のガス中の煤塵を除去する集塵機と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、燃料として供給する石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以下のものを用いて発電を行うようにするものである。
An exhaust gas treatment system for a coal fired boiler according to a first embodiment of the present invention will be described with reference to the drawings.
In this embodiment, a denitration device that removes nitrogen oxides in exhaust gas from a coal fired boiler, an air preheater that recovers heat in the gas after nitrogen oxide removal, and dust in the gas after heat recovery A dust collector to be removed, a gas-liquid contact type desulfurization device that removes mercury oxide while removing sulfur oxide in the gas after dust removal by the lime / gypsum method, and a chimney that discharges the gas after desulfurization to the outside In the exhaust gas treatment system to be provided, power generation is performed using a mercury (Hg) / sulfur (S) molar ratio of 1.3 × 10 −6 or less of coal supplied as fuel.

これは、通常、水銀の含有量が小さい石炭では、その「水銀(Hg)/硫黄(S)のモル比(Hg/Sモル比という)」が1.3×10-6以下である場合に、ORP計の制御だけで、排ガス中の水銀を除去することができるからである。 This is usually the case when coal having a low mercury content has a “mercury (Hg) / sulfur (S) molar ratio (referred to as Hg / S molar ratio)” of 1.3 × 10 −6 or less. This is because mercury in the exhaust gas can be removed only by controlling the ORP meter.

次に、Hg/Sモル比が1.3×10-6と規定した理由を説明する。
先ず、ΔHg/ΔCaSO4=Δ水銀除去量/Δ石膏生成量の関係から、脱硫装置である気液接触塔におけるΔHg/ΔCaSO4と水銀除去性能(気液接触塔出口でのガス中水銀濃度)の関係を図1に示す。
このグラフよりΔHg/ΔCaSO4が2mgHg/kgCaSO4以下で、水銀除去性能を維持できることが判明する。
水銀(Hg)と石膏(CaSO4)に含まれる硫黄(S)は、最上流の石炭に起因する。
Next, the reason why the Hg / S molar ratio is defined as 1.3 × 10 −6 will be described.
First, from the relationship of ΔHg / ΔCaSO 4 = Δ mercury removal amount / Δ gypsum generation amount, ΔHg / ΔCaSO 4 and mercury removal performance (gas mercury concentration at the gas-liquid contact tower outlet) in the gas-liquid contact tower as a desulfurization apparatus The relationship is shown in FIG.
From this graph, it is found that mercury removal performance can be maintained when ΔHg / ΔCaSO 4 is 2 mgHg / kgCaSO 4 or less.
Sulfur (S) contained in mercury (Hg) and gypsum (CaSO 4 ) is attributed to the most upstream coal.

ここで、ΔHg/ΔCaSO4=2mgHg/kgCaSO4を換算すると、以下のようになる。
Hgmol/Smol=2mgHg/kgCaSO4 × 〔(1/200.59)×10-3 molHg/mgHg〕/(1/136.144)×103molS/kgCaSO4
=1.357×10-6 molHg/molS
なお、水銀(Hg)の分子量を200.59、硫黄(S)の分子量を32.066、石膏(CaSO4)の分子量を136.144とする。
よって、ΔHg/ΔCaSO4 2mgHg/kgCaSO4は、1.36×10-6molHg/molSに相当することとなる。
この結果、Hg/Sモル比の閾値として1.3×10-6と規定し、これを上回る場合には、水銀除去が低下することになるので、水銀除去対策を講じる必要があることとなる。
Here, ΔHg / ΔCaSO 4 = 2 mgHg / kgCaSO 4 is converted as follows.
Hgmol / Smol = 2 mgHg / kgCaSO 4 × [(1 / 200.59) × 10 −3 molHg / mgHg] / (1 / 136.144) × 10 3 molS / kgCaSO 4 ]
= 1.357 × 10 −6 molHg / molS
The molecular weight of mercury (Hg) is 200.59, the molecular weight of sulfur (S) is 32.066, and the molecular weight of gypsum (CaSO 4 ) is 136.144.
Therefore, ΔHg / ΔCaSO 4 2 mgHg / kgCaSO 4 corresponds to 1.36 × 10 −6 molHg / molS.
As a result, the threshold value of the Hg / S molar ratio is defined as 1.3 × 10 −6, and if this is exceeded, mercury removal will be reduced, so it is necessary to take measures to remove mercury. .

さらに、瀝青炭とPRB炭とにおける石炭の含有量比(Hg/S)と頻度との関係図を図2及び図3に示す。
図2及び図3は、米国石炭の瀝青炭及びPRB炭の各30検体のHg/S比を集計したものであり、1.36×10-6 molHg/molS以下の比率は、瀝青炭では約70%であり、PRB炭では約27%であった。
Further, FIG. 2 and FIG. 3 show the relationship between the coal content ratio (Hg / S) and the frequency of bituminous coal and PRB coal.
FIG. 2 and FIG. 3 summarize the Hg / S ratio of 30 samples of bituminous coal and PRB coal of US coal, and the ratio of 1.36 × 10 −6 molHg / molS or less is about 70% for bituminous coal. It was about 27% for PRB charcoal.

よって、PRB炭を用いる場合には、石炭の水銀(Hg)/硫黄(S)の比を測定する手段を設け、モル比で1.36×10-6 molHg/molSの場合には、水銀(Hg)除去速度に対して石膏(CaSO4)生成速度が不足すると判断する。
このため、モル比が1.36×10-6 molHg/molS以上の石炭の場合には、硫黄(S)源等を添加し、モル比を1.36×10-6molHg/molS以下とする。
Therefore, when using PRB charcoal, a means for measuring the ratio of mercury (Hg) / sulfur (S) of the coal is provided. When the molar ratio is 1.36 × 10 −6 molHg / molS, Hg) It is determined that the gypsum (CaSO 4 ) production rate is insufficient with respect to the removal rate.
For this reason, in the case of coal having a molar ratio of 1.36 × 10 −6 molHg / molS or more, a sulfur (S) source or the like is added to make the molar ratio 1.36 × 10 −6 molHg / molS or less. .

具体的なモル比を1.36×10-6 molHg/molS以下とする方法を以下に説明する。
(1)高S炭(1.36×10-6 molHg/molS以下とする)を混焼する。
(2)硫黄系化合物を混焼する。ここで、硫黄系化合物としては、硫黄、硫化水素、金属硫化物(黄鉄鋼FeS2等)、硫酸塩(CaSO4、MgSO4、FeSO4等)、二酸化硫黄(SO2)等を挙げることができる。
(3)排ガスに亜硫酸ガスや硫酸ガス等を混合する。
よって、PRB炭を用いるような場合、瀝青炭等の1.36×10-6 molHg/molS以下の炭を混合して用いることで、水銀の除去を効率よく行うことができる。
A method for setting the specific molar ratio to 1.36 × 10 −6 molHg / molS or less will be described below.
(1) High S charcoal (1.36 × 10 −6 molHg / molS or less) is co-fired.
(2) A sulfur-based compound is co-fired. Here, examples of the sulfur-based compound include sulfur, hydrogen sulfide, metal sulfide (such as pyrite steel FeS 2 ), sulfate (CaSO 4 , MgSO 4 , FeSO 4, etc.), sulfur dioxide (SO 2 ), and the like. it can.
(3) Sulfurous acid gas or sulfuric acid gas is mixed with the exhaust gas.
Therefore, when using PRB charcoal, mercury can be efficiently removed by using a mixture of charcoal of 1.36 × 10 −6 molHg / molS or less such as bituminous coal.

本発明による実施例2に係る石炭焚ボイラの排ガス処理システムについて、図4を参照して説明する。
本実施例は、石炭の水銀(Hg)/硫黄(S)モル比を測定する手段を設け、モル比で1.36×10-6 molHg/molS以下である場合に、ORP制御や、スラリ吸収液に酸化剤の添加を行うものである。
図4に排ガス処理システムの一例を示す。
図4に示すように、排ガス処理システムは、燃料Fとして石炭を用いる石炭焚ボイラ11からの排ガス中にアンモニア12を添加して窒素酸化物を除去する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収する空気予熱器14と、熱回収後のガス中の煤塵を除去する電気集塵器15と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置16と、脱硫・水銀除去後の浄化ガスを外部に排出する煙突17とを具備する排ガス処理システムにおいて、前記脱硫装置16内又は外部に抜き出した石灰石−石膏を含むスラリ吸収液21に酸化剤を添加するものである。
なお、図中、符号18は空気、19は酸化還元電位計測計(ORP計)、22は石膏24を分離する固液分離装置であり、23は石膏を除去した上澄水である。
An exhaust gas treatment system for a coal fired boiler according to a second embodiment of the present invention will be described with reference to FIG.
In this example, means for measuring the mercury (Hg) / sulfur (S) molar ratio of coal is provided, and when the molar ratio is 1.36 × 10 −6 molHg / molS or less, ORP control and slurry absorption are performed. An oxidant is added to the liquid.
FIG. 4 shows an example of the exhaust gas treatment system.
As shown in FIG. 4, the exhaust gas treatment system includes a denitration device 13 that removes nitrogen oxides by adding ammonia 12 to the exhaust gas from a coal fired boiler 11 that uses coal as fuel F, and after nitrogen oxide removal. An air preheater 14 that recovers heat in the gas, an electric dust collector 15 that removes dust in the gas after heat recovery, and sulfur oxides in the gas after dust removal by the lime / gypsum method, Limestone extracted inside or outside the desulfurization device 16 in an exhaust gas treatment system comprising a gas-liquid contact type desulfurization device 16 for removing mercury oxide and a chimney 17 for discharging the purified gas after desulfurization and mercury removal to the outside. -An oxidizing agent is added to the slurry absorbent 21 containing gypsum.
In the figure, reference numeral 18 denotes air, 19 denotes an oxidation-reduction potential measuring meter (ORP meter), 22 denotes a solid-liquid separator that separates gypsum 24, and 23 denotes supernatant water from which gypsum has been removed.

ここで、前記酸化剤の添加場所は、脱硫装置16内(30A)、固液分離装置22の前流側(30B)または後流側(30C)のいずれの場所でもよい。   Here, the place where the oxidizing agent is added may be any place in the desulfurizer 16 (30A), the upstream side (30B) or the downstream side (30C) of the solid-liquid separator 22.

また、前記酸化剤を供給することで、脱硫装置内のスラリ吸収液の酸化還元電位は150mV以上とするのが好ましい。
これは、図5に示す「水銀再飛散率(%)とORP酸化還元電位(mV)」との関係のグラフに示すように、酸化還元電位が150mV以上、好適には175mV以上、より好適には200mV以上であると、水銀の再飛散率の大幅な低減を図ることができるからである。
ここで、水銀再飛散率(%)は、以下の式により求める。
水銀再飛散率(%)=(Hg0出口−Hg0入口)/(Hg2+入口)×100
Moreover, it is preferable that the oxidation-reduction potential of the slurry absorbent in the desulfurization apparatus is set to 150 mV or more by supplying the oxidizing agent.
This is because the redox potential is 150 mV or higher, preferably 175 mV or higher, as shown in the graph of the relationship between “mercury re-scattering rate (%) and ORP redox potential (mV)” shown in FIG. This is because when the voltage is 200 mV or more, the re-scattering rate of mercury can be significantly reduced.
Here, the mercury re-scattering rate (%) is obtained by the following equation.
Mercury re-scattering rate (%) = (Hg 0 outlet−Hg 0 inlet) / (Hg 2+ inlet) × 100

前記酸化剤としては、一般のORP制御に用いる酸素(空気)よりも酸化力の強い酸化剤とするのが好ましく、例えばオゾン(O3)、過酸化水素(H22)、過マンガン酸カリウム(KMnO4)、塩素系化合物(例えば次亜塩素酸ソーダ(NaClO)等を挙げることができるが、本発明はこれに限定されるものではない。 The oxidizing agent is preferably an oxidizing agent having a stronger oxidizing power than oxygen (air) used for general ORP control. For example, ozone (O 3 ), hydrogen peroxide (H 2 O 2 ), permanganic acid Examples include potassium (KMnO 4 ) and chlorine-based compounds (for example, sodium hypochlorite (NaClO)), but the present invention is not limited thereto.

また、酸化還元を促進する触媒としてマンガン化合物(KMnO4,MnCl2)を添加するようにしてもよい。 Further, a manganese compound (KMnO 4 , MnCl 2 ) may be added as a catalyst for promoting redox.

このように、本実施例によれば、ORP計の電位を150mV以上とすることで、酸化水銀(Hg2+)の還元(Hg2+→Hg0)を防止し、ガス相への0価の水銀の(Hg0)の再飛散を抑制し、排ガス中の水銀の除去率を高めることができる。
これによって、スラリ吸収液からの水銀がガス中に再度放出されることを防止することができる。
As described above, according to this example, the potential of the ORP meter is set to 150 mV or more, so that reduction of mercury oxide (Hg 2+ ) (Hg 2+ → Hg 0 ) is prevented and zero valence to the gas phase is achieved. Of mercury (Hg 0 ) can be suppressed, and the removal rate of mercury in exhaust gas can be increased.
Thereby, it is possible to prevent mercury from the slurry absorbing liquid from being released again into the gas.

また、酸化剤の添加と、必要に応じてマンガン化合物の添加により、酸化状態を維持することとし、上述したORP計の電位を所定以上に維持することができる効果を期待できる。   In addition, the oxidation state can be maintained by adding an oxidizing agent and, if necessary, a manganese compound, and an effect of maintaining the above-described ORP meter potential at a predetermined level or more can be expected.

本発明による実施例3に係る石炭焚ボイラの排ガス処理システムについて、図6を参照して説明する。
図6に排ガス処理システムの一例を示す。
図6に示すように気液接触塔の脱硫装置16内の吸収液(石灰石-石膏スラリ)21に、硫酸化合物(SO4 2-)や亜硫酸化合物(SO3 2-)等の硫酸系化合物を添加し、スラリ中の石膏の生成を促進し、石膏濃度を高めるようにしてもよい。
このような石膏濃度を向上させるために石膏を生成する反応式を下記(3)〜(5)に示す。
SO3 2-+ Ca2+ → CaSO3 …(3)
CaSO3 +1/2O2 → CaSO4(酸化により石膏生成)…(4)
SO4 2-+Ca2+ → CaSO4 (石膏生成)…(5)
An exhaust gas treatment system for a coal fired boiler according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 6 shows an example of the exhaust gas treatment system.
As shown in FIG. 6, a sulfuric acid compound such as a sulfuric acid compound (SO 4 2− ) or a sulfite compound (SO 3 2− ) is added to the absorption liquid (limestone-gypsum slurry) 21 in the desulfurization device 16 of the gas-liquid contact tower. It may be added to promote the formation of gypsum in the slurry and increase the gypsum concentration.
Reaction formulas for producing gypsum to improve the gypsum concentration are shown in the following (3) to (5).
SO 3 2- + Ca 2+ → CaSO 3 (3)
CaSO 3 + 1 / 2O 2 → CaSO 4 (gypsum formation by oxidation) (4)
SO 4 2- + Ca 2+ → CaSO 4 (gypsum formation) (5)

なお、硫酸化合物の添加場所は、脱硫装置16内(40A)、吸収液の石膏分離装置31の前流側(40B)または後流側(40C)のいずれの場所でもよい。なお、図6中、符号32は石膏、33は上澄水である。
このように、本発明によれば、水銀と石膏の接触確率を高めることで、水銀の吸着・固定化を促進することができる。
よって、本実施例によれば、別途に硫酸系化合物を添加することにより、スラリ中の石膏生成量を増加でき、積極的に水銀の吸着・固定化を促進することができる。
The sulfuric acid compound may be added at any location in the desulfurization device 16 (40A), on the upstream side (40B) or on the downstream side (40C) of the absorbent gypsum separation device 31. In FIG. 6, reference numeral 32 is gypsum, and 33 is supernatant water.
Thus, according to the present invention, it is possible to promote mercury adsorption and immobilization by increasing the contact probability between mercury and gypsum.
Therefore, according to the present embodiment, by separately adding a sulfate compound, the amount of gypsum produced in the slurry can be increased, and the adsorption and immobilization of mercury can be actively promoted.

さらに、以上述べた実施例1乃至3を適宜組み合わせて、その組み合わせにより、さらに水銀の吸着・固定化を促進するようにしてもよい。   Furthermore, the above-described Embodiments 1 to 3 may be appropriately combined, and the combination may further promote the adsorption / fixation of mercury.

以上のように、本発明に係る排ガス処理システム及び方法によれば、水銀の再飛散が軽減されるので、水銀除去効率を向上することができ、排ガス中の水銀排出量が規制される場合の排ガス処理に用いて適している。   As described above, according to the exhaust gas treatment system and method according to the present invention, mercury re-scattering is reduced, so that the mercury removal efficiency can be improved and the amount of mercury discharged in the exhaust gas is regulated. Suitable for exhaust gas treatment.

スラリ中の石膏濃度と水銀吸着量との関係図である。FIG. 4 is a relationship diagram of gypsum concentration in slurry and mercury adsorption amount. 米国石炭の瀝青炭の各30検体のHg/S比の集計図である。It is an aggregation figure of Hg / S ratio of 30 samples of bituminous coal of US coal. 米国石炭のPRB炭の各30検体のHg/S比の集計図である。It is an aggregation figure of Hg / S ratio of 30 specimens of PRB coal of US coal. 実施例2に係る排ガス処理システムの概略図である。6 is a schematic diagram of an exhaust gas treatment system according to Embodiment 2. FIG. 水銀再飛散率(%)とORP酸化還元電位(mV)との関係を示すグラフである。It is a graph which shows the relationship between mercury re-scattering rate (%) and ORP oxidation-reduction potential (mV). 実施例3に係る排ガス処理システムの概略図である。6 is a schematic diagram of an exhaust gas treatment system according to Embodiment 3. FIG.

符号の説明Explanation of symbols

10 排ガス処理システム
11 石炭焚ボイラ
12 アンモニア
13 脱硝装置
14 空気予熱器
15 集塵器
16 脱硫装置
17 煙突
21 石灰石‐石膏を含むスラリ
22 固液分離器
23 上澄水
24 石膏
DESCRIPTION OF SYMBOLS 10 Exhaust gas treatment system 11 Coal fired boiler 12 Ammonia 13 Denitration device 14 Air preheater 15 Dust collector 16 Desulfurization device 17 Chimney 21 Slurry containing limestone-gypsum 22 Solid-liquid separator 23 Supernatant water 24 Gypsum

Claims (6)

石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、
窒素酸化物除去後のガス中の熱を回収する空気予熱器と、
熱回収後のガス中の煤塵を除去する集塵機と、
除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、
脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、
石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以下であることを特徴とする石炭焚ボイラの排ガス処理システム。
A denitration device for removing nitrogen oxides in exhaust gas from a coal fired boiler;
An air preheater for recovering heat in the gas after removal of nitrogen oxides;
A dust collector to remove the dust in the gas after heat recovery;
A gas-liquid contact type desulfurization device that removes sulfur oxide in the gas after dust removal by the lime / gypsum method and removes mercury oxide,
In an exhaust gas treatment system comprising a chimney that exhausts gas after desulfurization to the outside,
An exhaust gas treatment system for a coal fired boiler, wherein the molar ratio of mercury (Hg) / sulfur (S) of coal is 1.3 × 10 −6 or less.
請求項1において、
石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上の場合には、モル比が1.3×10-6以下の硫黄含有量が高い石炭を混焼することを特徴とする石炭焚ボイラの排ガス処理システム。
In claim 1,
When the molar ratio of mercury (Hg) / sulfur (S) in coal is 1.3 × 10 −6 or more, co-firing coal with a high sulfur content with a molar ratio of 1.3 × 10 −6 or less An exhaust gas treatment system for coal fired boilers.
請求項1において、
石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上の場合には、硫黄化合物を混焼することを特徴とする石炭焚ボイラの排ガス処理システム。
In claim 1,
An exhaust gas treatment system for a coal fired boiler, wherein a sulfur compound is co-fired when the molar ratio of mercury (Hg) / sulfur (S) in coal is 1.3 × 10 −6 or more.
請求項1において、
石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上の場合には、排ガスに硫酸系ガスを混合しつつ脱硫することを特徴とする石炭焚ボイラの排ガス処理システム。
In claim 1,
When the molar ratio of mercury (Hg) / sulfur (S) in coal is 1.3 × 10 −6 or more, the exhaust gas treatment of a coal fired boiler is characterized by desulfurization while mixing sulfuric acid gas with the exhaust gas system.
請求項1乃至4のいずれか一つにおいて、
石灰石-石膏を含むスラリに酸化剤を添加することを特徴とする石炭焚ボイラの排ガス処理システム。
In any one of Claims 1 thru | or 4,
An exhaust gas treatment system for a coal fired boiler characterized by adding an oxidizing agent to a slurry containing limestone-gypsum.
請求項1乃至5のいずれか一つにおいて、
石灰石‐石膏を含むスラリに硫酸系化合物を添加することを特徴とする石炭焚ボイラの排ガス処理システム。
In any one of Claims 1 thru | or 5,
An exhaust gas treatment system for a coal fired boiler, characterized in that a sulfuric acid compound is added to a slurry containing limestone-gypsum.
JP2008010332A 2008-01-21 2008-01-21 Exhaust gas treatment system for coal fired boiler Expired - Fee Related JP4719228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010332A JP4719228B2 (en) 2008-01-21 2008-01-21 Exhaust gas treatment system for coal fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010332A JP4719228B2 (en) 2008-01-21 2008-01-21 Exhaust gas treatment system for coal fired boiler

Publications (2)

Publication Number Publication Date
JP2009166013A true JP2009166013A (en) 2009-07-30
JP4719228B2 JP4719228B2 (en) 2011-07-06

Family

ID=40967824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010332A Expired - Fee Related JP4719228B2 (en) 2008-01-21 2008-01-21 Exhaust gas treatment system for coal fired boiler

Country Status (1)

Country Link
JP (1) JP4719228B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104841A1 (en) * 2010-02-25 2011-09-01 三菱重工業株式会社 Exhaust gas treatment system, and exhaust gas treatment method
WO2011104840A1 (en) * 2010-02-25 2011-09-01 三菱重工業株式会社 Exhaust gas treatment system, and exhaust gas treatment method
JP2012011317A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd System for treating mercury in exhaust gas
CN102407066A (en) * 2010-09-26 2012-04-11 宝山钢铁股份有限公司 Wet-process desulfurization method for sintering flue gas
CN102449400A (en) * 2009-11-09 2012-05-09 三菱重工业株式会社 Boiler
CN102562193A (en) * 2010-10-27 2012-07-11 株式会社日立制作所 Thermal power plant
WO2012176634A1 (en) * 2011-06-23 2012-12-27 三菱重工業株式会社 Exhaust gas treatment apparatus and orp control method therefor
WO2012176635A1 (en) * 2011-06-23 2012-12-27 三菱重工業株式会社 Exhaust gas treatment apparatus and orp control method therefor
CN105259938A (en) * 2015-09-22 2016-01-20 广东电网有限责任公司电力科学研究院 Method for controlling flue gas of coal-fired boiler
CN110052157A (en) * 2019-04-01 2019-07-26 浙江菲达环保科技股份有限公司 A kind of Hg, SO based on changed red mud3Cooperation-removal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715822A (en) * 1981-05-18 1982-01-27 Mitsui Miike Mach Co Ltd Treatment of sulfur oxide in waste gas
JP2004313833A (en) * 2003-04-11 2004-11-11 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2007167698A (en) * 2005-12-19 2007-07-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus and exhaust gas treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715822A (en) * 1981-05-18 1982-01-27 Mitsui Miike Mach Co Ltd Treatment of sulfur oxide in waste gas
JP2004313833A (en) * 2003-04-11 2004-11-11 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2007167698A (en) * 2005-12-19 2007-07-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus and exhaust gas treatment method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449400A (en) * 2009-11-09 2012-05-09 三菱重工业株式会社 Boiler
US8388917B2 (en) 2010-02-25 2013-03-05 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
KR101425289B1 (en) * 2010-02-25 2014-08-01 미츠비시 쥬고교 가부시키가이샤 Exhaust gas treatment system, and exhaust gas treatment method
JP5656649B2 (en) * 2010-02-25 2015-01-21 三菱重工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
WO2011104840A1 (en) * 2010-02-25 2011-09-01 三菱重工業株式会社 Exhaust gas treatment system, and exhaust gas treatment method
WO2011104841A1 (en) * 2010-02-25 2011-09-01 三菱重工業株式会社 Exhaust gas treatment system, and exhaust gas treatment method
US8475750B2 (en) 2010-02-25 2013-07-02 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
US8398944B2 (en) 2010-02-25 2013-03-19 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
JP2012011317A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd System for treating mercury in exhaust gas
CN102407066A (en) * 2010-09-26 2012-04-11 宝山钢铁股份有限公司 Wet-process desulfurization method for sintering flue gas
CN102562193A (en) * 2010-10-27 2012-07-11 株式会社日立制作所 Thermal power plant
US8959916B2 (en) 2010-10-27 2015-02-24 Mitsubishi Hitachi Power Systems, Ltd. Thermal power plant
WO2012176635A1 (en) * 2011-06-23 2012-12-27 三菱重工業株式会社 Exhaust gas treatment apparatus and orp control method therefor
WO2012176634A1 (en) * 2011-06-23 2012-12-27 三菱重工業株式会社 Exhaust gas treatment apparatus and orp control method therefor
CN105259938A (en) * 2015-09-22 2016-01-20 广东电网有限责任公司电力科学研究院 Method for controlling flue gas of coal-fired boiler
CN110052157A (en) * 2019-04-01 2019-07-26 浙江菲达环保科技股份有限公司 A kind of Hg, SO based on changed red mud3Cooperation-removal device

Also Published As

Publication number Publication date
JP4719228B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2009093574A1 (en) System and method for treating discharge gas from coal-fired boiler
JP4719228B2 (en) Exhaust gas treatment system for coal fired boiler
WO2009093576A1 (en) System for treating discharge gas from coal-fired boiler and method of operating the same
WO2009093575A1 (en) System and method for treating discharge gas from coal-fired boiler
JP5656649B2 (en) Exhaust gas treatment system and exhaust gas treatment method
RU2435628C2 (en) Off-gas treatment
US8980207B1 (en) Method and system for removal of mercury from a flue gas
JP5972983B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP6095923B2 (en) Mercury treatment system in exhaust gas
JPH10230137A (en) Method and apparatus for treatment of exhaust gas
EP2585195A1 (en) Flue-gas purification and reclamation system and method thereof
WO2015039019A1 (en) Treatment of nitrogen oxides in flue gas streams
JP2017006822A (en) Exhaust gas treatment device for coal-firing boiler and exhaust gas treatment method for coal-firing boiler
JP2014057913A5 (en)
WO2012176635A1 (en) Exhaust gas treatment apparatus and orp control method therefor
CN110064293B (en) Method for desulfurization, denitrification and demercuration of flue gas
WO2014041951A1 (en) System for treating mercury in exhaust gas
JP5144967B2 (en) Exhaust gas treatment system
CN101347709A (en) Purification system of flue gas and method
EP3043890A1 (en) Treatment of nitrogen oxides in flue gas streams
JP4777133B2 (en) Mercury removal apparatus and method
CN204619711U (en) A kind of system and boiler removing various pollutants in fume
JP2006136856A (en) Mercury removing device and method
JPH0698266B2 (en) Method and apparatus for treating combustion exhaust gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R151 Written notification of patent or utility model registration

Ref document number: 4719228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees