WO2012176634A1 - Exhaust gas treatment apparatus and orp control method therefor - Google Patents

Exhaust gas treatment apparatus and orp control method therefor Download PDF

Info

Publication number
WO2012176634A1
WO2012176634A1 PCT/JP2012/064818 JP2012064818W WO2012176634A1 WO 2012176634 A1 WO2012176634 A1 WO 2012176634A1 JP 2012064818 W JP2012064818 W JP 2012064818W WO 2012176634 A1 WO2012176634 A1 WO 2012176634A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
exhaust gas
oxidation
solution
hypochlorous acid
Prior art date
Application number
PCT/JP2012/064818
Other languages
French (fr)
Japanese (ja)
Inventor
鵜飼 展行
哲 牛久
進 沖野
浅野 昌道
立人 長安
勇作 那須
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012176634A1 publication Critical patent/WO2012176634A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas treatment device for removing mercury contained in exhaust gas from a boiler and an ORP control method for the exhaust gas treatment device.
  • exhaust gas discharged from boilers which are combustion devices such as thermal power plants, may contain metal mercury (Hg 0 ) in addition to soot, sulfur oxides (SOx) and nitrogen oxides (NOx)
  • Hg 0 metal mercury
  • SOx sulfur oxides
  • NOx nitrogen oxides
  • a boiler is provided with a wet desulfurization device for removing sulfur content in exhaust gas.
  • a desulfurization device for removing sulfur content in exhaust gas.
  • divalent mercury oxide is soluble in water, mercury can be easily collected by the desulfurization device. Widely known.
  • mercury oxide (Hg 2+ ) is adsorbed and absorbed in a lime gypsum slurry absorbing liquid (hereinafter also referred to as “slurry”, “slurry absorbing liquid” or “alkali absorbing liquid”). Fixed and removed mercury. At this time, by adding an oxidizing agent to the slurry absorbing liquid, the slurry absorbing liquid is brought into an oxidized state to prevent reduction of mercury oxide (Hg 2+ ) (Hg 2+ ⁇ Hg 0 ), and to the gas phase.
  • a method for suppressing re-scattering of zero-valent mercury (Hg 0 ) has been proposed (see, for example, Patent Document 1).
  • NS compound nitrogen-sulfur compound contained in the slurry absorbing solution.
  • a flue gas desulfurization method has been proposed in which the filtrate after solid-liquid separation is electrolyzed in the presence of chloride ions and supplied to a desulfurization apparatus as make-up water (see, for example, Patent Document 2).
  • the flue gas desulfurization method described in Patent Document 2 is for electrolyzing the filtrate of the slurry absorbent and supplying it to the desulfurization apparatus.
  • the pH of the slurry absorbing solution or the slurry absorbing solution is adjusted to 3 to 4, and the redox potential (ORP) is not controlled for the purpose of removing mercury contained in the exhaust gas.
  • oxidation reduction potential (ORP) value is 100 mV or more and 200 mV or less
  • ORP oxidation reduction potential
  • the present invention has been made in view of the above, and it is possible to efficiently remove mercury contained in exhaust gas from a boiler, and to suppress oxidation inhibition in desulfurization, and an ORP of the exhaust gas treatment device.
  • An object is to provide a control method.
  • an exhaust gas treatment apparatus generates hydrogen chloride and ammonia when vaporized in a flue for exhausting exhaust gas from a boiler.
  • the sulfur oxides and mercury oxidized in the reductive denitration device are absorbed and removed by the absorption liquid, the redox potential meter for measuring the redox potential of the absorption liquid, and the wet desulfurization apparatus.
  • Solid-liquid separation means for separating the solid and mercury in the desulfurization effluent and the liquid, and electrolysis for generating hypochlorous acid by electrolyzing the separated liquid separated by the solid-liquid separation means And having a location, and control means for controlling the oxidation-reduction potential of the absorbing solution by supplying the hypochlorous acid to the absorption liquid, the.
  • the exhaust gas treatment apparatus according to claim 2 of the present invention is the exhaust gas treatment apparatus according to claim 1, wherein the separation liquid is a dehydrated filtrate separated by the solid-liquid separation means, or a heavy metal is removed from the dehydrated filtrate. It is a liquid.
  • An exhaust gas treatment apparatus is the exhaust gas treatment apparatus according to the first or second aspect, wherein the electrical conductivity measuring means for measuring the electrical conductivity of the separation liquid and the oxidant raw material are supplied to the electrolysis apparatus.
  • An oxidant raw material supply means for supplying the oxidant raw material when the measured electrical conductivity is equal to or lower than a predetermined value.
  • the exhaust gas treatment apparatus is the exhaust gas treatment apparatus according to any one of claims 1 to 3, wherein the control means sets the oxidation-reduction potential of the absorption liquid to a range of 100 mV to 200 mV, or the absorption.
  • the sulfite ion in the liquid is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
  • An exhaust gas treatment apparatus is the exhaust gas treatment apparatus according to any one of claims 1 to 4, wherein the hypochlorous acid, the dehydrated filtrate, or one or both of the treatment liquids, A mixing tank for mixing the mixed liquid and a mixed liquid return line for returning the mixed liquid mixed in the mixing tank to the wet desulfurization apparatus, and the control means measures an oxidation-reduction potential of the mixed liquid.
  • the hypochlorous acid is supplied to the mixed solution so that the redox potential of the mixed solution is in the range of 100 mV to 200 mV, or the sulfite ion in the mixed solution is 0.1 mmol / L to 2.0 mmol / L. Control is as follows.
  • An exhaust gas treatment apparatus is the exhaust gas treatment apparatus according to any one of claims 1 to 5, wherein the electrolyzer generates hypochlorous acid from the separated liquid with a pulsed current.
  • the ORP control method of the exhaust gas treatment apparatus according to claim 7 of the present invention is a reduction in which a reducing oxidation assistant that generates hydrogen chloride and ammonia when vaporized is supplied into a flue that exhausts exhaust gas from a boiler.
  • An oxidizing aid supplying step a reducing denitration step having a denitration catalyst that reduces nitrogen oxides in the exhaust gas with ammonia and oxidizes mercury in the presence of hydrogen chloride, sulfur oxides in the exhaust gas and the reductive denitration
  • Wet desulfurization step of absorbing and removing mercury oxidized in the process by the absorption liquid
  • oxidation-reduction potential measurement step of measuring the oxidation-reduction potential of the absorption liquid, solid content in the desulfurization effluent discharged from the wet desulfurization process
  • a solid-liquid separation step for separating mercury from a liquid component
  • an electrolysis step for electrolyzing the separated liquid separated in the solid-liquid separation step to produce hypochlorous acid
  • An ORP control method for an exhaust gas treatment apparatus is the above-described ORP control method according to claim 7, wherein the separation liquid is a dehydrated filtrate separated in the solid-liquid separation step, or heavy metal from the dehydrated filtrate. The treatment liquid is removed.
  • the ORP control method for an exhaust gas treatment apparatus is the method according to claim 7 or 8, wherein the electrical conductivity measurement step for measuring the electrical conductivity of the separated liquid and the oxidation step for oxidation are performed.
  • An ORP control method for an exhaust gas treatment apparatus is the method according to any one of the seventh to ninth aspects, wherein the control step sets the oxidation-reduction potential of the absorbent to a range of 100 mV to 200 mV.
  • the sulfite ion in the absorbing solution is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
  • An exhaust gas treatment apparatus ORP control method is the method according to any one of the seventh to tenth aspects, wherein the hypochlorous acid, the dehydrated filtrate, or the treatment liquid is selected. Or a mixing step for mixing the two, and a mixed solution returning step for returning the mixed solution mixed in the mixing step to the wet desulfurization step, and the control step is an oxidation-reduction of the mixed solution
  • the potential is measured, and the hypochlorous acid is supplied to the mixed solution so that the oxidation-reduction potential of the mixed solution is in the range of 100 mV to 200 mV, or the sulfite ion in the mixed solution is 0.1 mmol / L to 2 It is characterized by being controlled to 0.0 mmol / L or less.
  • An ORP control method for an exhaust gas treatment apparatus provides the ORP control method according to any one of claims 7 to 11, wherein the electrolysis step generates hypochlorous acid from the separated liquid with a pulsed current. It is characterized by generating.
  • the exhaust gas treatment device and the ORP control method of the exhaust gas treatment device of the present invention it is possible to efficiently remove mercury contained in the exhaust gas from the boiler and to suppress the inhibition of oxidation during desulfurization.
  • FIG. 1 is a configuration diagram of an exhaust gas treatment apparatus according to the first embodiment.
  • FIG. 2 is a configuration diagram of the exhaust gas treatment apparatus according to the second embodiment.
  • FIG. 3 is a configuration diagram of the exhaust gas treatment apparatus according to the third embodiment.
  • FIG. 4 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 5 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 6 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment apparatus 10A according to the present embodiment.
  • the exhaust gas treatment device 10 ⁇ / b> A according to the present embodiment is an exhaust gas treatment device 10 ⁇ / b> A that removes NOx, SOx, and Hg contained in the exhaust gas 22 generated from the boiler 11.
  • the exhaust gas 22 discharged from the boiler 11 that combusts the fuel 21 is purified through the processes in the reduction denitration device 12, the air preheater 13, the dust collector 14, and the wet desulfurization device 15, and then the chimney 16. Discharged to the outdoors.
  • the exhaust gas treatment apparatus 10 ⁇ / b> A includes a reduction oxidation aid supply means 31 for spraying an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) as the reduction oxidation aid 32 in the flue 23 downstream of the boiler 11, and the exhaust gas 22.
  • a reduction oxidation aid supply means 31 for spraying an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) as the reduction oxidation aid 32 in the flue 23 downstream of the boiler 11, and the exhaust gas 22.
  • a reduction denitration device 12 having a denitration catalyst that oxidizes metallic mercury (Hg 0 ) in the presence of HCl gas, and an air preheater (AH) that exchanges heat between the denitrated exhaust gas 22 : Air heater) 13, dust collector (ESP: Electrostatic Precipitator) 14 for removing dust in the denitrated exhaust gas 22, SOx in the exhaust gas 22, and divalent Hg 2 oxidized in the reductive denitration device 12 + a a wet desulfurization system 15 be removed using lime gypsum slurry (alkaline absorbing solution) 34, the lime gypsum slurry 34 used for desulfurization reaction is extracted from the bottom of the column 15a, is solids A solid-liquid separation means 41 for solid-liquid separation and silver dehydrated cake containing (HgSO 4, etc.) (gypsum) 42 and dried filtrate (separated liquid) 46, separated dewatered filtrate (se
  • the electrolyzer 54 a supply line L 6 supplied to the wet desulfurization system 15 as a solution 55 of hypochlorite oxidizing agent generated by electrolysis device 54 (hypochlorous acid), not reused dehydrated filtrate (Separation liquid) 36, wastewater treatment equipment 43 for performing wastewater treatment such as removal of suspended matters and heavy metals, pH adjustment of the dehydrated filtrate (separation liquid) 36 to be discharged, and oxidizing agent (hypochlorous acid)
  • the electric conductivity of the solution 55 is measured by an electric conductivity (EC) meter 61.
  • the oxidant raw material (chlorine compound) 53 is supplied from the oxidant raw material supply means 52 into the electrolyzer 54, and the redox potential of the lime gypsum slurry (alkali absorbing liquid) 34 is measured by the redox potentiometer 58.
  • V 1 , V 2 , and V 4 indicate open / close valves.
  • the reductive oxidation aid supplying means 31 uses a reductive denitration device 12 as a reductive oxidation aid 32 on the downstream side of the boiler 11 with an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) adjusted to a predetermined concentration in the solution tank. Is supplied into the flue 23 on the upstream side.
  • the reduction oxidation aid 32 is used as an example of the reduction oxidation aid 32, but this embodiment is not limited to this, and the reduction oxidation aid 32 is oxidized with an oxidizing gas when vaporized. Any substance capable of producing reducing gas can be used.
  • the reduction oxidation assistant 32 is an oxidation (Hg 0 ⁇ Hg 2+ ) of metallic mercury (Hg 0 ) contained in the exhaust gas 22 in the presence of an oxidizing gas (HCl gas) on the denitration catalyst. ) And an oxidizing aid used to reduce NOx contained in the exhaust gas 22 with a denitration catalyst using a reducing gas.
  • HCl gas is used as the oxidizing gas
  • NH 3 gas is used as the reducing gas.
  • the NH 4 Cl solution is supplied from the reduction oxidation aid supply means 31 to the exhaust gas 22 discharged from the boiler 11.
  • the reduction oxidation auxiliary agent supply means 31 sprays the NH 4 Cl solution in a liquid state on the exhaust gas 22 and is contained in the exhaust gas 22 on the denitration catalyst filled in the denitration catalyst layer filled in the reduction denitration device 12. NOx is reduced and Hg 0 is oxidized.
  • the droplets of the NH 4 Cl solution sprayed into the flue 23 from the nozzle head of the spraying device are evaporated and vaporized by the high-temperature atmosphere temperature of the exhaust gas 22 to generate fine NH 4 Cl solid particles. As in (3), it decomposes into HCl and NH 3 and sublimes. Accordingly, the NH 4 Cl solution sprayed from the spray device is decomposed to generate HCl and NH 3 , and NH 3 gas and HCl gas can be supplied into the flue 23.
  • NH 3 gas acts as a reducing agent
  • HCl gas acts as a mercury chlorinating agent (oxidation aid). That is, on the denitration catalyst filled in the reductive denitration apparatus 12, NH 3 gas undergoes a reduction reaction with NOx in the exhaust gas 22 as shown in the following equation (4), and HCl gas as shown in the following equation (5). In addition, the oxidation reaction proceeds with Hg 0 in the exhaust gas 22.
  • HCl gas reductively denitrates NH 3 on a denitration catalyst, oxidizes metallic mercury (Hg 0 ) (Hg 0 ⁇ Hg 2+ ) to form water-soluble mercury chloride (HgCl 2 ), and is installed on the downstream side
  • the wet desulfurization apparatus 15 dissolves HgCl 2 in water to remove mercury contained in the exhaust gas 22.
  • ammonium halides such as ammonium bromide (NH 4 Br) and ammonium iodide (NH 4 I) other than NH 4 Cl were used as the reduction oxidation aid 32, and a solution dissolved in water was used. It may be used. Further, a mixed solution of NH 4 Cl and aqueous ammonia or hydrochloric acid may be used.
  • a gas for example, hydrogen chloride gas and ammonia gas
  • an oxidation aid and a reduction agent may be supplied.
  • An HCl solution can be exemplified as the oxidation aid, but the present embodiment is not limited to this, and the oxidation aid can be used as long as it generates an oxidizing gas when vaporized. .
  • Examples thereof include hydrogen halides such as hydrogen bromide (HBr) and hydrogen iodide (HI).
  • HBr hydrogen bromide
  • HI hydrogen iodide
  • the oxidation aid has been described as a liquid, the present invention is not limited to this, and a gas (for example, hydrogen chloride gas) may be supplied.
  • NH 3 solution can be exemplified as the reducing agent, but the present embodiment is not limited to this, and any reducing agent that generates a reducing gas when vaporized can be used.
  • any reducing agent that generates a reducing gas when vaporized can be used.
  • urea ((NH 2 ) 2 CO) can be used.
  • the reducing agent has been described as a liquid, the present invention is not limited to this, and a gas (for example, ammonia gas) may be supplied.
  • a two-fluid nozzle or the like may be used as a means for supplying the NH 4 Cl solution, the HCl solution, and the NH 3 solution into the flue 23 of the boiler 11, for example, a two-fluid nozzle or the like may be used.
  • a present Example is not limited to this, You may use the injection nozzle for normal liquid spraying.
  • the supply amounts of the NH 4 Cl solution, the HCl solution, and the NH 3 solution can be arbitrarily adjusted.
  • the temperature of the exhaust gas 22 in the flue 23 depends on the combustion conditions of the boiler 11, it is preferably 320 ° C. or higher and 420 ° C. or lower, more preferably 320 ° C. or higher and 380 ° C. or lower, and further preferably 350 ° C. or higher and 380 ° C. or lower. . This is because NOx denitration reaction and Hg oxidation reaction can be efficiently generated on the denitration catalyst in these temperature zones.
  • any one or more of the reducing oxidation assistant (NH 4 Cl solution) 32, the oxidation assistant (HCl solution), and the reducing agent (NH 3 solution) are provided on the downstream side of the boiler 11. It can be supplied into the flue 23 on the upstream side of the reductive denitration device 12.
  • the HCl component is insufficient in the NH 4 Cl solution due to the content of the exhaust gas 22 component
  • two of the NH 4 Cl solution and the HCl solution may be supplied, or when the HN 3 component is insufficient May supply two of NH 4 Cl solution and NH 3 solution.
  • two of an HCl solution and an NH 3 solution may be supplied.
  • the supply amounts of the NH 4 Cl solution, the HCl solution, and the NH 3 solution are obtained by determining the contents of NOx, SOx, and Hg contained in the exhaust gas 22, respectively. , Can be adjusted by its value.
  • FIG. 1 shows a configuration in which the reduction oxidation assistant (NH 4 Cl solution) 32 is supplied.
  • the present invention is not limited to this, and the above three solutions are mixed and supplied. May be.
  • a solution in which the reduction oxidation aid 32 is dissolved a solution in which the reduction agent is dissolved, and a solution in which the oxidation aid (mercury chlorinating agent) is dissolved. Further, a plurality of these may be mixed and supplied.
  • the reductive denitration device 12 has a denitration catalyst (not shown) that reduces NOx in the exhaust gas 22 with NH 3 gas and oxidizes metallic mercury (Hg 0 ) in the presence of HCl gas.
  • the exhaust gas 22 contains, for example, HCl gas and NH 3 gas generated from droplets of the NH 4 Cl solution sprayed into the flue 23 from the reducing oxidation assistant supply means 31, The reduced denitration device 12 is fed.
  • NH 3 gas generated by decomposition of NH 4 Cl is used for NOx reductive denitration, and HCl gas is used for Hg oxidation, and NOx and Hg are removed from the exhaust gas 22.
  • NH 3 gas reduces and denitrates NOx as in the following formula (6) on the denitration catalyst filled in the denitration catalyst layer filled in the reductive denitration device 12, and HCl gas represents the following formula (7 Hg is oxidized (chlorinated) as shown in FIG. 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O (6) Hg + 1 / 2O 2 + 2HCl ⁇ HgCl 2 + H 2 O (7)
  • the reduction denitration device 12 includes one denitration catalyst layer, but the present embodiment is not limited to this, and the reduction denitration device 12 appropriately changes the number of denitration catalyst layers according to the denitration performance. be able to.
  • the exhaust gas 22 removes dust in the exhaust gas 22 after recovering the air preheater 13 that recovers the heat in the exhaust gas 22.
  • ESP dust collector
  • the dust collector 14 include, but are not limited to, an inertial dust collector, an electric dust collector, a centrifugal dust collector, a filtration dust collector, and a cleaning dust collector.
  • the wet desulfurization apparatus 15 removes SOx and oxidized divalent Hg 2+ in the exhaust gas 22 after removing the dust in a wet manner.
  • the exhaust gas 22 is fed from the wall surface side of the tower bottom in the apparatus main body, and the lime gypsum slurry 34 used as the alkali absorption liquid is supplied from the lime gypsum slurry supply means 33 into the apparatus main body from the slurry absorption liquid supply line. And jetted from the nozzle 15c toward the tower top side 15b.
  • the exhaust gas 22 rising from the bottom side in the apparatus main body and the lime gypsum slurry 34 jetted from the nozzle 15 c are brought into gas-liquid contact with each other, and HgCl 2 and SOx in the exhaust gas 22 are in a lime gypsum slurry 34. It is absorbed in, separated and removed from the exhaust gas 22, and the exhaust gas 22 is purified.
  • the exhaust gas 22 purified by the lime gypsum slurry 34 is discharged from the tower top side 15b, and then discharged from the chimney 16 to the outside (hereinafter referred to as “outside of the system”) as the treated exhaust gas 24.
  • Lime gypsum slurry 34 used for the desulfurization reaction of the exhaust gas 22 is supplied to the tower bottom 15a of the wet desulfurization apparatus 15 from the slurry absorbent supply line.
  • a pumped liquid (L 1 ) of the liquid stored in the tower bottom 15 a of the apparatus main body of the wet desulfurization apparatus 15 is used as the lime gypsum slurry 34.
  • SOx in the exhaust gas 22 reacts with lime (CaCO 3 ) in the lime-gypsum slurry 34 as shown in the following formula (8).
  • the lime-gypsum slurry 34 that has absorbed SOx in the exhaust gas 22 is mixed with water 35 supplied into the apparatus main body, and an oxidant (hypochlorous acid) containing oxygen supplied to the tower bottom 15a of the apparatus main body.
  • the solution 55 is oxidized.
  • the lime gypsum slurry 34 that has flowed down in the apparatus main body undergoes a reaction such as the following formula (9) with water 35 and oxygen (air).
  • lime gypsum slurry 34 is used as the alkali absorbing liquid, but other solutions can be used as the alkali absorbing liquid as long as it can absorb HgCl 2 in the exhaust gas 22.
  • the alkali absorbing solution other than the lime gypsum method include sodium hydroxide solution, sodium sulfite solution, ammonia water, magnesium hydroxide solution and the like.
  • a method for promoting the removal of mercury for example, a method of mixing a chelating agent or a polymer flocculant as a heavy metal scavenger can be used in combination.
  • the method of supplying the lime gypsum slurry 34 is not limited to the method of jetting from the nozzle 15c toward the tower top side 15b, and may be caused to flow downward from the nozzle 15c so as to face the exhaust gas 22, for example.
  • the solid-liquid separation means 41 is provided on the downstream side of the wet desulfurization apparatus 15.
  • the solid-liquid separation means 41 extracts the lime gypsum slurry 34 used for the desulfurization reaction stored in the tower bottom 15a of the wet desulfurization apparatus 15 from the tower bottom 15a (L 2 ), and a mercury salt that is a solid content by solid-liquid separation processing. It is separated into a dehydrated cake (gypsum) 42 containing (HgSO 4 or the like) and a separation liquid (dehydrated filtrate) 46 which is a liquid component.
  • the solid-liquid separation means 41 for example, a belt filter, a gravity precipitation concentration tank, a liquid cyclone, a centrifuge, a decanter type centrifugal sedimentator, or the like is used.
  • the separated dehydrated cake (gypsum) 42 is discharged out of the system of the exhaust gas treatment apparatus 10A.
  • the separation liquid (dehydrated filtrate) 46 is supplied to the electrolysis apparatus 54 through the supply line L 4, and a solution 55 of hypochlorous acid (oxidant) generated by electrolysis in the electrolysis apparatus 54 is obtained. It is supplied to the wet desulfurization apparatus 15 (L 6 ) and reused.
  • the remaining separation liquid (dehydrated filtrate) 36 that has not been reused is fed (L 3 ) to the wastewater treatment device 43 and subjected to wastewater treatment.
  • a waste water treatment device 43 is provided on the downstream side of the solid-liquid separation means 41.
  • the waste water treatment device 43 removes suspended matter, heavy metals, mercury, etc. 44 in the remaining separation liquid (dehydrated filtrate) 36 that has not been supplied from the solid-liquid separation means 41 to the electrolysis apparatus 54.
  • the suspended matter, heavy metal, mercury, etc. 44 in the removed separated liquid (dehydrated filtrate) 36 are discharged out of the system.
  • the treatment liquid from which the suspended matter, heavy metal, mercury, and the like 44 have been removed is subjected to wastewater treatment such as pH adjustment. This waste water-treated treatment liquid is treated as waste water 45.
  • Examples of the treatment method of the suspended matter, heavy metal, mercury and the like 44 in the waste water treatment apparatus 43 include a precipitation method, an ion exchange method, an adsorption method, and the like.
  • Examples of the precipitation method include, for example, a method using a mixed liquid of ferrous sulfate and sodium sulfide (precipitation method), a chelating agent or an aggregating agent as a heavy metal scavenger, or a method using “mercury chelate” which selectively reacts with mercury.
  • Examples of the ion exchange method include a method using an ion exchanger.
  • Examples of the adsorption method include activated carbon adsorption and a method using a chelate resin. The present embodiment is not limited to the above processing method.
  • final treatment such as waste water treatment and detoxification treatment as described above may be performed by a final treatment apparatus (not shown).
  • a final treatment apparatus As the waste water treatment in this final treatment device, a known final treatment device such as a sulfide coagulation sedimentation treatment device, a chelating agent treatment device, a chelate resin treatment device, an ion exchange resin treatment device, or an activated carbon treatment device is applied. do it.
  • a detoxification processing apparatus which is not illustrated, a cement solidification processing apparatus can be mentioned, for example.
  • an electrolyzer 54 that supplies the wet desulfurizer 15 after electrolyzing the separated liquid (dehydrated filtrate) 46 processed by the solid-liquid separator 41 is provided.
  • the electrolyzer 54 electrolyzes chlorine ions (Cl ⁇ ) contained in the separated liquid (dehydrated filtrate) 46 to generate hypochlorous acid (HClO).
  • Hypochlorous acid generated in the electrolysis apparatus 54 is supplied to the wet desulfurization apparatus 15 as a solution 55 of an oxidizing agent (hypochlorous acid) (L 6 ).
  • the supply amount of the oxidant (hypochlorous acid) solution 55 supplied to the wet desulfurization apparatus 15 is adjusted by an open / close valve V 4 controlled by the control means 51.
  • a separated liquid (dehydrated filtrate) 46 containing abundant chlorine ions for example, about 20000 mg / L is used as the electrolytic solution supplied to the electrolyzer 54.
  • Chlorine ions in the separation liquid (dehydrated filtrate) 46 undergo a reaction represented by the following formula (10) by electrolysis. 2Cl ⁇ ⁇ Cl 2 + 2e ⁇ (10)
  • the generated Cl 2 dissolves in water (H 2 O) to form hypochlorous acid (HClO) and dissolves as ClO ⁇ ions.
  • the generated hypochlorite electrolysis device 54 - to be supplied to the slurry absorption liquid 34 of the wet desulfurization system 15 (ClO ion-containing) as a solution 55 of the oxidizing agent (hypochlorite).
  • electrolyzer 54 used in this embodiment.
  • hypochlorous acid is generated by the electrolyzer 54.
  • the electric conductivity (EC) of the separated liquid (dehydrated filtrate) 46 to be reused, the inside of the electrolyzer 54, and the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15 is obtained.
  • the electric conductivity becomes a predetermined value or less as measured by the meter 61, it is determined that the chlorine ion is insufficient, and the oxidant raw material (with the oxidant raw material supply means 52 in the electrolyzer 54).
  • (Chlorine compound) 53 is supplied. Thereby, the shortage of chlorine ions can be solved.
  • the pH may be controlled in the range of 5 or more and 7 or less in order to improve the performance (electrolysis efficiency) of the electrolytic solution, or the electrolysis device 54. You may make it raise the output of.
  • the electric conductivity is equal to or less than a predetermined value is the electric conductivity in the electrolyzer 54 ⁇ the electric conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15. Is the case.
  • the range of electrical conductivity is preferably 1 mS / cm or more and 100 ⁇ S / cm or less, more preferably 2 mS / cm or more and 60 mS / cm or less.
  • Examples of the oxidant raw material (chlorine compound) 53 added to the electrolyzer 54 include a calcium chloride (CaCl 2 ) solution, a sodium chloride (NaCl) solution, and a hydrochloric acid (HCL) solution.
  • a calcium chloride (CaCl 2 ) solution is preferable.
  • the ORP meter 58 measures and compares the ORP of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the electrolyzer 54 and the wet desulfurizer 15.
  • the oxidation-reduction potential (ORP) is equal to or less than a predetermined value because, like the electrical conductivity, the oxidation-reduction potential in the electrolyzer 54 ⁇ the oxidant (hypochlorous acid) supplied to the wet desulfurizer 15 In this case, the redox potential of the solution 55 is obtained.
  • the electrolyzer 54 of the present embodiment electrolyzes the above desulfurized wastewater separation liquid (dehydrated filtrate) 46, scales such as Ca (OH) 2 and Mg (OH) 2 are generated on the electrode surface. There is a risk.
  • the generation of scale on the electrode surface can be suppressed by making the current applied to the electrode into a pulsed current. According to this pulse electrolysis method, for example, the time during which Ca 2+ adheres to the electrode can be shortened, so that the generation of scale on the electrode surface can be suppressed.
  • the electrode of the electrolyzer 54 for example, titanium (Ti) can be used for the cathode, platinum (Pt), iridium oxide (IrO 2 ), or the like can be used for the anode.
  • hypochlorous acid (ClO ⁇ ) can be stably generated and supplied to the slurry absorbent 34 of the wet desulfurization apparatus 15.
  • the scale when scale is generated on the electrode surface and the efficiency of generating hypochlorous acid is reduced, the scale is removed by acid cleaning with an acidic chemical (for example, hydrochloric acid HCl, citric acid, etc.). Can be removed.
  • an acidic chemical for example, hydrochloric acid HCl, citric acid, etc.
  • the control of the oxidation-reduction potential (hereinafter also referred to as ORP) in the present embodiment is carried out by using the separation liquid (dehydrated filtrate) 46 after the solid-liquid separation treatment of the lime gypsum slurry 34 used for the desulfurization reaction in the wet desulfurization apparatus 15.
  • a solution 55 of hypochlorous acid (oxidant) generated by electrolysis in the electrolysis device 54 is supplied to the wet desulfurization device 15 to perform ORP control of the slurry absorbing liquid (lime gypsum slurry) 34.
  • an appropriate amount of the oxidizing agent (hypochlorous acid) solution 55 can be generated and supplied.
  • the desulfurization waste water can be recycled in the desulfurization device 15.
  • the exhaust gas treatment apparatus 10 ⁇ / b> A of the present embodiment electrolyzes a control means 51 that controls the ORP of the slurry absorbing liquid (lime gypsum slurry) 34 in the tower bottom 15 a of the wet desulfurization apparatus 15, and an oxidant raw material (chlorine compound) 53.
  • An electrical conductivity meter (hereinafter also referred to as an EC meter) 61 for measurement is provided.
  • the control means 51 measures the ORP value of the slurry absorbing liquid (lime gypsum slurry) 34 at the tower bottom 15 a of the wet desulfurization device 15 by the ORP meter 58. Based on the measured ORP value, the supply amount of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the tower bottom 15a of the wet desulfurization apparatus 15 is controlled.
  • the ORP control when the ORP measured by the ORP meter 58 is lower than a predetermined value, the supply amount of the oxidizing agent (hypochlorous acid) solution 55 supplied to the tower bottom 15a of the wet desulfurization apparatus 15 is increased.
  • the oxidant raw material 53 is supplied to the electrolyzer 54 so as to increase the electrolysis efficiency (ratio in which chlorine is generated from the current), thereby increasing the ClO ⁇ ion concentration in the electrolytic solution. 2) By making the pH of the electrolytic solution of the electrolyzer 54 acidic, HCLO (hypochlorous acid) having strong oxidizing power is increased.
  • the ORP of the slurry absorbing liquid (lime gypsum slurry) 34 in the wet desulfurization apparatus 15 is preferably in the range of, for example, 0 mV or more and 600 mV or less in order to prevent re-scattering of Hg from the slurry absorbing liquid 34. More preferably, it is in the range of 50 mV to 300 mV, and most preferably in the range of 100 mV to 200 mV. More optimally, the range is 150 mV or more and less than (less than) 200 mV. This is because if the ORP is within the above range, Hg collected as HgCl 2 in the slurry absorbing liquid 34 is a stable region, and re-scattering into the atmosphere can be prevented.
  • the oxidizing agent solution 55 is hypochlorous acid (ClO ⁇ ) -containing electrolytic solution
  • the oxidizing power is stronger than oxygen (air) used for general ORP control, so the ORP meter in the slurry absorbing liquid 34 is used.
  • the potential of 58 can be in the range of at least 100 mV and 200 mV.
  • the exhaust gas 22 of a general coal-fired boiler may contain selenium (Se) as well as mercury.
  • Selenium in the exhaust gas 22 is absorbed by the slurry absorbent 34 of the wet desulfurization device 15 and removed from the exhaust gas 22.
  • Examples of a method for treating selenium in the slurry absorbing liquid 34 include a coprecipitation method using iron oxide and an adsorption method using activated carbon or activated alumina. This is an effective treatment method for tetravalent Se (IV). Yes, it is not an effective processing method for hexavalent Se (VI).
  • the ORP of the slurry absorbing liquid 34 is used as an index for determination.
  • the concentration of sulfite ion (SO 3 2 ⁇ ) may be used as an index for determination.
  • the concentration of sulfite ions is, for example, 0.1 mmol / L or more and 2.0 mmol / L or less, preferably 0.5 mmol / L or more and 1 0.0 mmol / L or less, more preferably 1.0 mmol / L or less.
  • the concentration of sulfite ions can be controlled by controlling the ORP. It is.
  • the value of sulfite ion (SO 3 2 ⁇ ) corresponding to the ORP value “150 mV to 200 mV” is approximately “1.0 mmol / L”. Therefore, when judging at one point, the value of sulfite ion (SO 3 2 ⁇ ) may be judged as “1.0 mmol / L”. Therefore, the concentration of sulfite ion (SO 3 2 ⁇ ) can be used as an index for judgment instead of control by ORP.
  • the ORP control of the exhaust gas treatment apparatus 10A is not the slurry absorbing liquid (lime gypsum slurry) 34, but the electrolyzing apparatus 54 for the separated liquid (dehydrated filtrate) 46 that is returned to the wet desulfurization apparatus 15 and reused. Since the solution 55 of the oxidizing agent (hypochlorous acid) generated by electrolysis in step 1 is supplied to the wet desulfurization apparatus 15, it is not necessary to supply the solution 55 of the oxidizing agent (hypochlorous acid) excessively.
  • the ORP of the slurry absorbing liquid 34 can be controlled by the amount 55 of the oxidizing agent (hypochlorous acid) solution 55.
  • the desulfurization waste water can be recycled in the desulfurization device 15.
  • the exhaust gas treatment apparatus 10A includes the solid-liquid separation means 41 for performing the solid-liquid separation process on the slurry absorbing liquid (lime gypsum slurry) 34 used for the desulfurization reaction, and the separated separation liquid.
  • An electrolysis device 54 that electrolyzes (dehydrated filtrate) 46 to produce a solution 55 of an oxidant (hypochlorous acid), and an oxidant material that supplies an oxidant material (chlorine compound) 53 to the electrolysis device 54 solution supply means 52, a supply line L 6 for supplying the generated oxidizing agent solution 55 (hypochlorous acid) to the wet desulfurization system 15, oxidant wet desulfurization system 15 (hypochlorite) 55 And a control means 51 for performing ORP control of the slurry absorbing liquid 34.
  • the separation liquid is removed when the sulfur oxide (SOx) and the divalent Hg 2+ oxidized in the reduction denitration apparatus 12 are removed by the wet desulfurization apparatus 15.
  • Liquid) 46 is electrolyzed by an electrolyzer 54, and a solution 55 of oxidant (hypochlorous acid) is supplied to the wet desulfurizer 15 to perform ORP control.
  • a solution 55 of (hypochlorous acid) can be supplied, NOx, SOx, particularly Hg contained in the exhaust gas 22 can be efficiently removed, and oxidation inhibition in desulfurization can be suppressed.
  • the desulfurization waste water can be recycled in the desulfurization device 15.
  • FIG. 2 is a schematic configuration diagram of the exhaust gas treatment apparatus 10B according to the present embodiment.
  • symbol is attached
  • the exhaust gas treatment apparatus 10 ⁇ / b> B according to the present embodiment recycles the separation liquid (dehydrated filtrate) 36 separated by the solid-liquid separation means 41 and the treatment liquid 47 treated by the waste water treatment apparatus 43.
  • a solution 55 of the oxidizing agent (hypochlorous acid) generated by electrolysis using the electrolyzer 54 is supplied to the wet desulfurizer 15.
  • ORP control of this embodiment is performed by supplying a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing the treatment liquid 47 by the electrolysis apparatus 54 to the wet desulfurization apparatus 15 and supplying the slurry absorbing liquid 34. ORP control is performed.
  • an oxidizing agent hyperochlorous acid
  • the electrical conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the separation liquid (treatment liquid) 47, the electrolysis apparatus 54, and the wet desulfurization apparatus 15 is measured by the EC meter 61.
  • the electrical conductivity falls below a predetermined value, it is determined that the chlorine ions are insufficient, and the oxidant material (chlorine compound) 53 is supplied into the electrolyzer 54 by the oxidant material supply means 52. It is supposed to be. Thereby, the shortage of chlorine ions can be solved.
  • the electric conductivity is equal to or less than a predetermined value is the electric conductivity in the electrolyzer 54 ⁇ the electric conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15. Is the case.
  • the treatment liquid 47 treated by the waste water treatment apparatus 43 is further removed of suspended matter, heavy metals, mercury, and the like 44 as compared with the dehydrated filtrate 36, and the treatment liquid 47 is electrolyzed by the electrolysis apparatus 54.
  • the generated oxidant (hypochlorous acid) solution 55 is supplied to the wet desulfurization apparatus 15, the suspension, heavy metal, mercury, etc. contained in the slurry absorbing liquid (lime gypsum slurry) 34 in the wet desulfurization apparatus 15
  • the density of 44 can be reduced. That is, the total amount of mercury contained in the slurry absorbing liquid (lime gypsum slurry) 34 can be reduced.
  • the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases.
  • the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization apparatus 15 can be reduced.
  • a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing a treatment liquid 47 obtained by further treating a separated liquid (dehydrated filtrate) 36 obtained by solid-liquid separation of desulfurized wastewater with an electrolyzer 54 is subjected to wet desulfurization.
  • the desulfurization effluent can be recycled in the wet desulfurization device 15 for supply to the device 15.
  • FIG. 3 is a schematic configuration diagram of an exhaust gas treatment apparatus 10C according to the present embodiment.
  • symbol is attached
  • the exhaust gas treatment apparatus 10 ⁇ / b> C according to the present embodiment is a wastewater treatment apparatus for separating a part of the separation liquid (dehydrated filtrate) 46 processed by the solid-liquid separation means 41 and the remaining dehydrated filtrate 36.
  • One or both of the separation liquid (processing liquid) 47 processed in 43 is supplied to the electrolysis apparatus 54 through the supply lines L 4 and L 5 and is generated by electrolysis in the electrolysis apparatus 54 ( A solution 55 of hypochlorous acid) is supplied to the wet desulfurization apparatus 15.
  • ORP control of this embodiment is performed by using a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing either one or both of the dehydrated filtrate 46 and the treatment liquid 47 with an electrolyzer 54. This is supplied to the wet desulfurization apparatus 15 to perform ORP control of the slurry absorbent 34.
  • an oxidizing agent hyperochlorous acid
  • the electric conductivity of the solution 55 of the oxidant (hypochlorous acid) supplied to the separation liquid (dehydrated filtrate 46, treatment liquid 47), the electrolysis apparatus 54, and the wet desulfurization apparatus 15 is measured with an EC meter.
  • the electric conductivity becomes a predetermined value or less as measured by 61, it is determined that the chlorine ion is insufficient, and the oxidant raw material (chlorine) is supplied to the electrolyzer 54 by the oxidant raw material supply means 52. Compound) 53 is supplied. Thereby, the shortage of chlorine ions can be solved.
  • the electric conductivity is equal to or less than a predetermined value is the electric conductivity in the electrolyzer 54 ⁇ the electric conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15. Is the case.
  • the supply amount of the dehydrated filtrate 46 and the treatment liquid 47 to the electrolyzer 54 is determined and controlled based on the amount of components contained in the slurry absorbing liquid 34.
  • components contained in the slurry absorbing liquid 34 include gypsum, sulfite gypsum, calcium carbonate, mercury, and heavy metals.
  • water balance such as reuse of desulfurization drainage discharged from the wet desulfurization apparatus 15 so that a minimum amount of water (industrial water) 35 can be replenished.
  • the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases.
  • the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
  • the desulfurization waste water can be recycled in the wet desulfurization apparatus 15.
  • FIGS. 4 to 6 are schematic configuration diagrams of the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment. Note that the same components as those in the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted. As shown in FIGS. 4 to 6, the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment are separated from the separation liquid (dehydrated filtrate 46, treatment liquid 47) by the electrolysis apparatus 54 in addition to the configurations of the first to third embodiments. ) And the mixing tank 56 for mixing one or both of the dehydrated filtrate 48 and the treatment liquid 49, and the solid-liquid separation means 41.
  • Supply lines L 4 and L 5 for supplying either or both of a part of the treated dehydrated filtrate 46 and a part of the treated liquid 47 treated by the waste water treatment device 43 to the electrolyzer 54, and dehydration Supply lines L 6 and L 7 for supplying one or both of the remaining filtrate 48 and the remaining treatment liquid 49 to the mixing tank 56, and the oxidizing agent (hypochlorous acid) solution 55 are mixed into the mixing tank 56.
  • the supply line L 8 supplies the mixture 57 of the mixing tank 56 the wet desulfurization system
  • the mixed liquid return line L 9 for returning to 15 and a line for supplying water (industrial water) 37 to the mixing tank 56 are provided.
  • V 1 to V 4 indicate open / close valves.
  • the ORP is controlled by supplying the mixed liquid 57 in which the redox potential of the mixed liquid 57 mixed in the mixing tank 56 is controlled to the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 (L 9 ). 34 ORP control is performed.
  • the oxidation-reduction potential of the mixed solution 57 mixed in the mixing tank 56 is, for example, in the range of 0 mV to 600 mV in order to prevent re-scattering of Hg from the slurry absorbent 34 in the wet desulfurization apparatus 15. Is preferred. More preferably, it is in the range of 50 mV to 300 mV, and most preferably in the range of 100 mV to 200 mV. More optimally, the range is 150 mV or more and 200 mV or less.
  • the oxidation-reduction potential of the mixed liquid 57 supplied to the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is within the above range, for example, the oxidation-reduction potential of the mixed liquid 57 is in the range of 100 mV to 200 mV.
  • the oxidation-reduction potential of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is less than 200 mV, and does not exceed 200 mV.
  • Hg collected as HgCl 2 in the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is a stable region and prevents re-scattering into the atmosphere. be able to. More preferably, by setting the oxidation-reduction potential in the range of 150 mV or more and 200 mV or less, reduction of mercury can be efficiently and economically prevented, re-scattering can be reduced, and as described in Example 1, selenium (Se ) Side effects such as deterioration of processability can be prevented.
  • the EC meter 61 measures the electrical conductivity of the separation liquid (dehydrated filtrates 46 and 48 and treatment liquids 47 and 49), the electrolysis apparatus 54, and the mixed liquid 57 supplied to the wet desulfurization apparatus 15.
  • the electrical conductivity becomes a predetermined value or less, it is determined that the chlorine ions are insufficient, and the oxidant material (chlorine compound) 53 is contained in the electrolyzer 54 by the oxidant material supply means 52. To supply. Thereby, the shortage of chlorine ions can be solved.
  • the electric conductivity is equal to or lower than a predetermined value is a case where the electric conductivity in the electrolysis apparatus 54 ⁇ the electric conductivity of the mixed liquid 57 supplied to the wet desulfurization apparatus 15.
  • the ORP control of the exhaust gas treatment apparatuses 10D to 10F in the fourth embodiment it is possible to reduce the concentration of metallic mercury re-scattered to the exhaust gas 22 side as the metallic mercury concentration in the slurry absorbing liquid 34 decreases. As a result, the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
  • an oxidizing agent hyperochlorous acid
  • a separation liquid obtained by treating the dehydrated filtrate 46 and the dehydrated filtrate 36 obtained by solid-liquid separation of desulfurized wastewater with an electrolyzer 54. Since 55 is supplied to the wet desulfurization apparatus 15, the desulfurization waste water can be recycled in the wet desulfurization apparatus 15.
  • the redox potential of the mixed liquid 57 mixed in the mixing tank 56 before being supplied to the slurry absorbing liquid 34 is controlled within the range of 100 mV to 200 mV, the redox of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is controlled.
  • the potential will be below 200 mV and will not be above 200 mV.
  • the exhaust gas treatment apparatus 10 includes the solid-liquid separation means 41 for performing the solid-liquid separation treatment on the lime gypsum slurry 34 used for the desulfurization reaction, and the separated liquid (dehydrated filtrate 46 and An electrolyzer 54 for electrolyzing the treatment liquid 47) to produce an oxidant (hypochlorous acid) solution 55; and an oxidant material supply means for supplying an oxidant material (chlorine compound) 53 to the electrolyzer 54.
  • the wet oxide desulfurization apparatus 15 removes the sulfur oxide (SOx) and the divalent Hg 2+ oxidized in the reductive denitration apparatus 12, the separated liquid.
  • An oxidant (hypochlorous acid) solution 55 generated by electrolyzing (dehydrated filtrate 46 and treatment liquid 47) with an electrolyzer 54 is supplied to the wet desulfurizer 15 to perform ORP control of the slurry absorbent 34.
  • an appropriate amount of an oxidant (hypochlorous acid) solution 55 can be supplied, and NOx, SOx, especially Hg contained in the exhaust gas 22 can be efficiently removed, and desulfurization is performed. Oxidation inhibition in can be suppressed.
  • the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases.
  • the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
  • a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing the separated liquid (dehydrated filtrate 46 and treatment liquid 47) obtained by solid-liquid separation of the desulfurized wastewater with the electrolyzer 54 is supplied to the wet desulfurizer 15.
  • desulfurization waste water can be recycled within the wet desulfurization apparatus 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

This exhaust gas treatment apparatus has: a redox agent supplying means for supplying a redox agent, which produces hydrogen chloride and ammonia when vaporized, to a discharge flue for the exhaust gas from a boiler; a reduction/denitration device that has a denitration catalyst for reducing the nitrogen oxide in the exhaust gas using ammonia and oxidizing the mercury in the presence of hydrogen chloride; a wet desulfurization device for absorbing and removing the sulfur oxide in the exhaust gas and the oxidized mercury in the reduction/denitration device using an absorbent; an oxidation reduction potential (ORP) meter for measuring the ORP of the absorbent; a solid-liquid separating means for separating the solids and the mercury from the liquids in the desulfurization waste water discharged from the wet desulfurization device; an electrolyser for electrolysing the separated liquid separated by the solid-liquid separating means to produce a hypochlorous acid; and a controlling means for supplying the hypochlorous acid to the absorbent to control the ORP of the absorbent.

Description

排ガス処理装置及び排ガス処理装置のORP制御方法Exhaust gas treatment device and ORP control method of exhaust gas treatment device
 本発明は、ボイラからの排ガス中に含まれる水銀を除去する排ガス処理装置及び排ガス処理装置のORP制御方法に関するものである。 The present invention relates to an exhaust gas treatment device for removing mercury contained in exhaust gas from a boiler and an ORP control method for the exhaust gas treatment device.
 火力発電所等の燃焼装置であるボイラから排出される排ガス中には、煤塵、硫黄酸化物(SOx)、窒素酸化物(NOx)のほか、金属水銀(Hg0)が含まれることがあるため、従来から排ガス中の水銀を除去する方法や装置について様々な考案がなされてきた。 Because exhaust gas discharged from boilers, which are combustion devices such as thermal power plants, may contain metal mercury (Hg 0 ) in addition to soot, sulfur oxides (SOx) and nitrogen oxides (NOx) Conventionally, various devices and methods for removing mercury in exhaust gas have been devised.
 通常、ボイラには排ガス中の硫黄分を除去するための湿式の脱硫装置が設けられている。このようなボイラに排ガス処理装置として脱硫装置が付設されてなる排煙処理設備においては、2価の酸化水銀は水に可溶であるため、前記脱硫装置で水銀が捕集しやすくなることが、広く知られている。 Usually, a boiler is provided with a wet desulfurization device for removing sulfur content in exhaust gas. In a flue gas treatment facility in which a desulfurization device is attached to such a boiler as an exhaust gas treatment device, since divalent mercury oxide is soluble in water, mercury can be easily collected by the desulfurization device. Widely known.
 そこで、近年、NOxを還元する脱硝装置、および、アルカリ吸収液をSOx吸収剤とする湿式脱硫装置を組み合わせて、この金属水銀を処理する方法や装置について様々な考案がなされてきた。 Thus, in recent years, various devices and methods for treating this metallic mercury have been devised in combination with a denitration device that reduces NOx and a wet desulfurization device that uses an alkaline absorbent as an SOx absorbent.
 大容量の排ガス中の金属水銀を処理する方法として、従来より脱硫方法として、下記式(1)及び(2)に示すような反応により、主に気液接触式の脱硫装置を用いた石灰-石膏法が用いられている。
 SO2 +CaCO3 +1/2H2O→ CaSO3・1/2H2O+CO2(吸収) …(1)
 CaSO3・1/2H2O+3/2H2O+1/2O2→CaSO4・2H2O(酸化) …(2)
As a method for treating metallic mercury in a large volume of exhaust gas, as a conventional desulfurization method, lime--using a gas-liquid contact type desulfurization apparatus mainly by a reaction shown in the following formulas (1) and (2): The plaster method is used.
SO 2 + CaCO 3 + 1 / 2H 2 O → CaSO 3 · 1 / 2H 2 O + CO 2 (absorption) (1)
CaSO 3 .1 / 2H 2 O + 3 / 2H 2 O + 1 / 2O 2 → CaSO 4 .2H 2 O (oxidation) (2)
 気液接触式の脱硫装置内においては、酸化水銀(Hg2+)を石灰石膏スラリ吸収液(以下、「スラリ」、「スラリ吸収液」又は「アルカリ吸収液」ともいう。)中に吸着・固定化し水銀を除去していた。この際、スラリ吸収液に酸化剤を添加することによりスラリ吸収液を酸化状態とすることで、酸化水銀(Hg2+)の還元(Hg2+→Hg0)を防止し、ガス相への0価の水銀(Hg0)の再飛散を抑制する方法が提案されている(例えば、特許文献1参照)。 In the gas-liquid contact type desulfurization apparatus, mercury oxide (Hg 2+ ) is adsorbed and absorbed in a lime gypsum slurry absorbing liquid (hereinafter also referred to as “slurry”, “slurry absorbing liquid” or “alkali absorbing liquid”). Fixed and removed mercury. At this time, by adding an oxidizing agent to the slurry absorbing liquid, the slurry absorbing liquid is brought into an oxidized state to prevent reduction of mercury oxide (Hg 2+ ) (Hg 2+ → Hg 0 ), and to the gas phase. A method for suppressing re-scattering of zero-valent mercury (Hg 0 ) has been proposed (see, for example, Patent Document 1).
 スラリ吸収液に酸化剤を供給する方法としては、スラリ吸収液中に含まれる窒素-イオウ化合物(以下、N-S化合物という)による酸化阻害を抑制するために、スラリ吸収液の一部を抜き出し、固液分離後のろ液を塩素イオン共存下で電気分解処理し、メークアップ水として脱硫装置へ供給する排煙脱硫方法が提案されている(例えば、特許文献2参照)。 As a method of supplying the oxidizing agent to the slurry absorbing solution, a part of the slurry absorbing solution is extracted in order to suppress oxidation inhibition by the nitrogen-sulfur compound (hereinafter referred to as NS compound) contained in the slurry absorbing solution. A flue gas desulfurization method has been proposed in which the filtrate after solid-liquid separation is electrolyzed in the presence of chloride ions and supplied to a desulfurization apparatus as make-up water (see, for example, Patent Document 2).
米国特許第7758829号明細書US Pat. No. 7,758,829 特許第2695680号公報Japanese Patent No. 2695680
 しかしながら、特許文献1に記載の排煙脱硫装置及び方法は、スラリ吸収液に酸化剤を添加するものであるため、スラリ吸収液に含まれる還元性物質(酸化阻害物質)により添加した酸化剤が消費されてしまうために酸化剤を過剰に供給しなければならない、という問題がある。 However, since the flue gas desulfurization apparatus and method described in Patent Document 1 add an oxidizing agent to the slurry absorbent, the oxidizing agent added by the reducing substance (oxidation inhibitor) contained in the slurry absorbent is not included. There is a problem in that the oxidant must be supplied excessively in order to be consumed.
 また、還元性物質(酸化阻害物質)がスラリ吸収液に含まれていると、適正な量の酸化剤を添加して酸化還元電位(ORP:Oxidation-reduction Potential)を適した範囲内に制御することが難しい、という問題がある。 In addition, if a reducing substance (oxidation inhibitor) is contained in the slurry absorbent, an appropriate amount of oxidizing agent is added to control the oxidation-reduction potential (ORP) within a suitable range. There is a problem that it is difficult.
 また、特許文献2に記載の排煙脱硫方法は、スラリ吸収液のろ液を電気分解処理して脱硫装置へ供給するものであるが、スラリ吸収液に含まれるN-S化合物を分解するためにスラリ吸収液又はスラリ吸収液のろ液のpHを3~4に調整するものであり、排ガス中に含まれる水銀の除去を対象として酸化還元電位(ORP)を制御するものではない。 In addition, the flue gas desulfurization method described in Patent Document 2 is for electrolyzing the filtrate of the slurry absorbent and supplying it to the desulfurization apparatus. However, in order to decompose the NS compound contained in the slurry absorbent. In addition, the pH of the slurry absorbing solution or the slurry absorbing solution is adjusted to 3 to 4, and the redox potential (ORP) is not controlled for the purpose of removing mercury contained in the exhaust gas.
 さらに、特許文献2に記載の排煙脱硫方法のような脱硫排水を排水しない(無排水)系においては、電気分解処理で塩素酸化合物を生成させるための塩化物イオンが不足する、という問題がある。 Furthermore, in a system that does not drain desulfurization drainage as in the flue gas desulfurization method described in Patent Document 2 (no drainage), there is a problem that chloride ions for generating a chloric acid compound by electrolysis are insufficient. is there.
 そこで、排ガス中およびスラリ吸収液中に還元性物質(酸化阻害物質)が存在する場合においては、適正な量の酸化剤で所定の酸化状態(酸化還元電位(ORP)値が100mV以上200mV以下)を維持し、0価の水銀(Hg0)のガス相への再飛散を抑制して排ガス中の水銀を効率的に除去することが望まれている。 Therefore, when there is a reducing substance (oxidation inhibitor) in the exhaust gas and the slurry absorption liquid, a predetermined oxidation state (oxidation reduction potential (ORP) value is 100 mV or more and 200 mV or less) with an appropriate amount of oxidant. Therefore, it is desired to efficiently remove mercury in exhaust gas by suppressing re-scattering of zero-valent mercury (Hg 0 ) into the gas phase.
 本発明は、上記に鑑みてなされたものであって、ボイラからの排ガス中に含まれる水銀を効率的に除去することができ、脱硫における酸化阻害を抑制できる排ガス処理装置及び排ガス処理装置のORP制御方法を提供することを目的とする。 The present invention has been made in view of the above, and it is possible to efficiently remove mercury contained in exhaust gas from a boiler, and to suppress oxidation inhibition in desulfurization, and an ORP of the exhaust gas treatment device. An object is to provide a control method.
 上述した課題を解決し、目的を達成するために、本発明の請求項1に係る排ガス処理装置は、ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給手段と、前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、前記排ガス中の硫黄酸化物と前記還元脱硝装置において酸化された水銀を吸収液により吸収除去する湿式脱硫装置と、前記吸収液の酸化還元電位を計測する酸化還元電位計と、前記湿式脱硫装置から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離手段と、前記固液分離手段で分離処理された分離液を電気分解して次亜塩素酸を生成する電気分解装置と、前記吸収液に前記次亜塩素酸を供給して前記吸収液の酸化還元電位を制御する制御手段と、を有することを特徴とする。 In order to solve the above-described problems and achieve the object, an exhaust gas treatment apparatus according to claim 1 of the present invention generates hydrogen chloride and ammonia when vaporized in a flue for exhausting exhaust gas from a boiler. A reduction oxidation auxiliary agent supplying means for supplying a reduction oxidation auxiliary, a reduction denitration apparatus having a denitration catalyst for reducing nitrogen oxides in the exhaust gas with ammonia and oxidizing mercury in the presence of hydrogen chloride; and in the exhaust gas The sulfur oxides and mercury oxidized in the reductive denitration device are absorbed and removed by the absorption liquid, the redox potential meter for measuring the redox potential of the absorption liquid, and the wet desulfurization apparatus. Solid-liquid separation means for separating the solid and mercury in the desulfurization effluent and the liquid, and electrolysis for generating hypochlorous acid by electrolyzing the separated liquid separated by the solid-liquid separation means And having a location, and control means for controlling the oxidation-reduction potential of the absorbing solution by supplying the hypochlorous acid to the absorption liquid, the.
 また、本発明の請求項2に係る排ガス処理装置は、上記請求項1において、前記分離液は、前記固液分離手段で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする。 The exhaust gas treatment apparatus according to claim 2 of the present invention is the exhaust gas treatment apparatus according to claim 1, wherein the separation liquid is a dehydrated filtrate separated by the solid-liquid separation means, or a heavy metal is removed from the dehydrated filtrate. It is a liquid.
 また、本発明の請求項3に係る排ガス処理装置は、上記請求項1又は2において、前記分離液の電気伝導率を計測する電気伝導率計測手段と、前記電気分解装置に酸化剤原料を供給する酸化剤原料供給手段と、を有し、前記酸化剤原料供給手段は、前記計測した電気伝導率が所定の値以下の場合に酸化剤原料を供給することを特徴とする。 An exhaust gas treatment apparatus according to a third aspect of the present invention is the exhaust gas treatment apparatus according to the first or second aspect, wherein the electrical conductivity measuring means for measuring the electrical conductivity of the separation liquid and the oxidant raw material are supplied to the electrolysis apparatus. An oxidant raw material supply means for supplying the oxidant raw material when the measured electrical conductivity is equal to or lower than a predetermined value.
 また、本発明の請求項4に係る排ガス処理装置は、上記請求項1から3の何れかにおいて、前記制御手段は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。 The exhaust gas treatment apparatus according to claim 4 of the present invention is the exhaust gas treatment apparatus according to any one of claims 1 to 3, wherein the control means sets the oxidation-reduction potential of the absorption liquid to a range of 100 mV to 200 mV, or the absorption. The sulfite ion in the liquid is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
 また、本発明の請求項5に係る排ガス処理装置は、上記請求項1から4の何れかにおいて、前記次亜塩素酸と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合槽と、前記混合槽で混合された混合液を前記湿式脱硫装置に戻す混合液返送ラインと、を有し、前記制御手段は、前記混合液の酸化還元電位を計測し、前記混合液に前記次亜塩素酸を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。 An exhaust gas treatment apparatus according to claim 5 of the present invention is the exhaust gas treatment apparatus according to any one of claims 1 to 4, wherein the hypochlorous acid, the dehydrated filtrate, or one or both of the treatment liquids, A mixing tank for mixing the mixed liquid and a mixed liquid return line for returning the mixed liquid mixed in the mixing tank to the wet desulfurization apparatus, and the control means measures an oxidation-reduction potential of the mixed liquid. The hypochlorous acid is supplied to the mixed solution so that the redox potential of the mixed solution is in the range of 100 mV to 200 mV, or the sulfite ion in the mixed solution is 0.1 mmol / L to 2.0 mmol / L. Control is as follows.
 また、本発明の請求項6に係る排ガス処理装置は、上記請求項1から5の何れかにおいて、前記電気分解装置は、パルス状の電流で前記分離液から次亜塩素酸を生成することを特徴とする。 An exhaust gas treatment apparatus according to claim 6 of the present invention is the exhaust gas treatment apparatus according to any one of claims 1 to 5, wherein the electrolyzer generates hypochlorous acid from the separated liquid with a pulsed current. Features.
 また、本発明の請求項7に係る排ガス処理装置のORP制御方法は、ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給工程と、前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝工程と、前記排ガス中の硫黄酸化物と前記還元脱硝工程において酸化された水銀を吸収液により吸収除去する湿式脱硫工程と、前記吸収液の酸化還元電位を計測する酸化還元電位計測工程と、前記湿式脱硫工程から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離工程と、前記固液分離工程で分離処理された分離液を電気分解して次亜塩素酸を生成する電気分解工程と、前記吸収液に前記次亜塩素酸を供給して前記吸収液の酸化還元電位を制御する制御工程と、を有することを特徴とする。 Moreover, the ORP control method of the exhaust gas treatment apparatus according to claim 7 of the present invention is a reduction in which a reducing oxidation assistant that generates hydrogen chloride and ammonia when vaporized is supplied into a flue that exhausts exhaust gas from a boiler. An oxidizing aid supplying step, a reducing denitration step having a denitration catalyst that reduces nitrogen oxides in the exhaust gas with ammonia and oxidizes mercury in the presence of hydrogen chloride, sulfur oxides in the exhaust gas and the reductive denitration Wet desulfurization step of absorbing and removing mercury oxidized in the process by the absorption liquid, oxidation-reduction potential measurement step of measuring the oxidation-reduction potential of the absorption liquid, solid content in the desulfurization effluent discharged from the wet desulfurization process, and A solid-liquid separation step for separating mercury from a liquid component, an electrolysis step for electrolyzing the separated liquid separated in the solid-liquid separation step to produce hypochlorous acid, and the absorption The supplied hypochlorous acid and having a control step of controlling the redox potential of the absorbing solution to.
 また、本発明の請求項8に係る排ガス処理装置のORP制御方法は、上記請求項7において、前記分離液は、前記固液分離工程で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする。 An ORP control method for an exhaust gas treatment apparatus according to claim 8 of the present invention is the above-described ORP control method according to claim 7, wherein the separation liquid is a dehydrated filtrate separated in the solid-liquid separation step, or heavy metal from the dehydrated filtrate. The treatment liquid is removed.
 また、本発明の請求項9に係る排ガス処理装置のORP制御方法は、上記請求項7または8において、前記分離液の電気伝導率を計測する電気伝導率計測工程と、前記電気分解工程に酸化剤原料を供給する酸化剤原料供給工程と、を有し、前記酸化剤原料供給工程は、前記計測した電気伝導率が所定の値以下の場合に酸化剤原料を供給することを特徴とする。 Further, the ORP control method for an exhaust gas treatment apparatus according to claim 9 of the present invention is the method according to claim 7 or 8, wherein the electrical conductivity measurement step for measuring the electrical conductivity of the separated liquid and the oxidation step for oxidation are performed. An oxidant raw material supply step for supplying an oxidant raw material, wherein the oxidant raw material supply step supplies the oxidant raw material when the measured electrical conductivity is equal to or lower than a predetermined value.
 また、本発明の請求項10に係る排ガス処理装置のORP制御方法は、上記請求項7から9の何れかにおいて、前記制御工程は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。 An ORP control method for an exhaust gas treatment apparatus according to a tenth aspect of the present invention is the method according to any one of the seventh to ninth aspects, wherein the control step sets the oxidation-reduction potential of the absorbent to a range of 100 mV to 200 mV. Alternatively, the sulfite ion in the absorbing solution is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
 また、本発明の請求項11に係る排ガス処理装置のORP制御方法は、上記請求項7から10の何れかにおいて、前記次亜塩素酸と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合工程と、前記混合工程で混合された混合液を前記湿式脱硫工程に戻す混合液返送工程と、を有し、前記制御工程は、前記混合液の酸化還元電位を計測し、前記混合液に前記次亜塩素酸を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。 An exhaust gas treatment apparatus ORP control method according to an eleventh aspect of the present invention is the method according to any one of the seventh to tenth aspects, wherein the hypochlorous acid, the dehydrated filtrate, or the treatment liquid is selected. Or a mixing step for mixing the two, and a mixed solution returning step for returning the mixed solution mixed in the mixing step to the wet desulfurization step, and the control step is an oxidation-reduction of the mixed solution The potential is measured, and the hypochlorous acid is supplied to the mixed solution so that the oxidation-reduction potential of the mixed solution is in the range of 100 mV to 200 mV, or the sulfite ion in the mixed solution is 0.1 mmol / L to 2 It is characterized by being controlled to 0.0 mmol / L or less.
 また、本発明の請求項12に係る排ガス処理装置のORP制御方法は、上記請求項7から11の何れかにおいて、前記電気分解工程は、パルス状の電流で前記分離液から次亜塩素酸を生成することを特徴とする。 An ORP control method for an exhaust gas treatment apparatus according to claim 12 of the present invention provides the ORP control method according to any one of claims 7 to 11, wherein the electrolysis step generates hypochlorous acid from the separated liquid with a pulsed current. It is characterized by generating.
 本発明の排ガス処理装置及び排ガス処理装置のORP制御方法によれば、ボイラからの排ガス中に含まれる水銀を効率的に除去することができ、脱硫における酸化阻害を抑制できるという効果を奏する。 According to the exhaust gas treatment device and the ORP control method of the exhaust gas treatment device of the present invention, it is possible to efficiently remove mercury contained in the exhaust gas from the boiler and to suppress the inhibition of oxidation during desulfurization.
図1は、本実施例1に係る排ガス処理装置の構成図である。FIG. 1 is a configuration diagram of an exhaust gas treatment apparatus according to the first embodiment. 図2は、本実施例2に係る排ガス処理装置の構成図である。FIG. 2 is a configuration diagram of the exhaust gas treatment apparatus according to the second embodiment. 図3は、本実施例3に係る排ガス処理装置の構成図である。FIG. 3 is a configuration diagram of the exhaust gas treatment apparatus according to the third embodiment. 図4は、本実施例4に係る排ガス処理装置の構成図である。FIG. 4 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment. 図5は、本実施例4に係る排ガス処理装置の構成図である。FIG. 5 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment. 図6は、本実施例4に係る排ガス処理装置の構成図である。FIG. 6 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
 以下に、本発明に係る排ガス処理装置及び排ガス処理装置のORP制御方法の実施例を図面に基づいて詳細に説明する。なお、本発明は以下の実施例に記載した内容により限定されるものではない。また、以下に記載した実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに以下に記載した実施例で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, embodiments of the exhaust gas treatment device and the ORP control method of the exhaust gas treatment device according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following Examples. In addition, constituent elements in the embodiments described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments described below can be appropriately combined.
<排ガス処理装置>
 本実施例に係る排ガス処理装置の構成について説明する。図1は、本実施例に係る排ガス処理装置10Aの概略構成図である。図1に示すように、本実施例に係る排ガス処理装置10Aは、ボイラ11から発生した排ガス22中に含まれるNOx、SOx、Hgを除去する排ガス処理装置10Aである。燃料21を燃焼させたボイラ11から排出される排ガス22は、還元脱硝装置12、空気予熱器13、集塵器14、湿式脱硫装置15の各装置での工程を経て浄化された後、煙突16から屋外に排出される。
<Exhaust gas treatment equipment>
The configuration of the exhaust gas treatment apparatus according to this embodiment will be described. FIG. 1 is a schematic configuration diagram of an exhaust gas treatment apparatus 10A according to the present embodiment. As shown in FIG. 1, the exhaust gas treatment device 10 </ b> A according to the present embodiment is an exhaust gas treatment device 10 </ b> A that removes NOx, SOx, and Hg contained in the exhaust gas 22 generated from the boiler 11. The exhaust gas 22 discharged from the boiler 11 that combusts the fuel 21 is purified through the processes in the reduction denitration device 12, the air preheater 13, the dust collector 14, and the wet desulfurization device 15, and then the chimney 16. Discharged to the outdoors.
 排ガス処理装置10Aは、ボイラ11の下流の煙道23内に、還元酸化助剤32として塩化アンモニウム(NH4Cl)を含むNH4Cl溶液を噴霧する還元酸化助剤供給手段31と、排ガス22中のNOxをNH3ガスで還元すると共に、HClガス共存下で金属水銀(Hg0)を酸化する脱硝触媒を有する還元脱硝装置12と、脱硝された排ガス22を熱交換する空気予熱器(AH:Air heater)13と、脱硝された排ガス22中の煤塵を除去する集塵器(ESP:Electrostatic Precipitator)14と、排ガス22中のSOx、及び還元脱硝装置12において酸化された2価のHg2+を石灰石膏スラリ(アルカリ吸収液)34を用いて除去する湿式脱硫装置15と、脱硫反応に用いた石灰石膏スラリ34を塔底部15aより抜き出して、固体分である水銀塩(HgSO等)を含んだ脱水ケーキ(石膏)42と脱水ろ液(分離液)46とに固液分離する固液分離手段41と、分離された脱水ろ液(分離液)46を再利用するために電気分解装置54に供給する供給ラインLと、分離液(脱水ろ液)46に含まれる塩素イオン(Cl)を電気分解して次亜塩素酸(HClO)を生成する電気分解装置54と、電気分解装置54で生成された次亜塩素酸を酸化剤(次亜塩素酸)の溶液55として湿式脱硫装置15に供給する供給ラインLと、再利用されない脱水ろ液(分離液)36中の懸濁物、重金属の除去、排出される脱水ろ液(分離液)36のpH調整などの排水処理を行う排水処理装置43と、酸化剤(次亜塩素酸)の溶液55の電気伝導率を電気伝導率(EC)計61により計測して電気分解装置54内に酸化剤原料供給手段52から酸化剤原料(塩素化合物)53を供給し、石灰石膏スラリ(アルカリ吸収液)34の酸化還元電位を酸化還元電位計58で計測しながら制御する制御手段51とを具備するものである。なお、図1中、V1、V、Vは開閉バルブを図示する。 The exhaust gas treatment apparatus 10 </ b> A includes a reduction oxidation aid supply means 31 for spraying an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) as the reduction oxidation aid 32 in the flue 23 downstream of the boiler 11, and the exhaust gas 22. NOx contained therein is reduced with NH 3 gas, and a reduction denitration device 12 having a denitration catalyst that oxidizes metallic mercury (Hg 0 ) in the presence of HCl gas, and an air preheater (AH) that exchanges heat between the denitrated exhaust gas 22 : Air heater) 13, dust collector (ESP: Electrostatic Precipitator) 14 for removing dust in the denitrated exhaust gas 22, SOx in the exhaust gas 22, and divalent Hg 2 oxidized in the reductive denitration device 12 + a a wet desulfurization system 15 be removed using lime gypsum slurry (alkaline absorbing solution) 34, the lime gypsum slurry 34 used for desulfurization reaction is extracted from the bottom of the column 15a, is solids A solid-liquid separation means 41 for solid-liquid separation and silver dehydrated cake containing (HgSO 4, etc.) (gypsum) 42 and dried filtrate (separated liquid) 46, separated dewatered filtrate (separated liquid) 46 Hypochlorous acid (HClO) is generated by electrolyzing chlorine ions (Cl ) contained in the supply line L 4 supplied to the electrolyzer 54 for reuse and the separation liquid (dehydrated filtrate) 46. the electrolyzer 54, a supply line L 6 supplied to the wet desulfurization system 15 as a solution 55 of hypochlorite oxidizing agent generated by electrolysis device 54 (hypochlorous acid), not reused dehydrated filtrate (Separation liquid) 36, wastewater treatment equipment 43 for performing wastewater treatment such as removal of suspended matters and heavy metals, pH adjustment of the dehydrated filtrate (separation liquid) 36 to be discharged, and oxidizing agent (hypochlorous acid) The electric conductivity of the solution 55 is measured by an electric conductivity (EC) meter 61. The oxidant raw material (chlorine compound) 53 is supplied from the oxidant raw material supply means 52 into the electrolyzer 54, and the redox potential of the lime gypsum slurry (alkali absorbing liquid) 34 is measured by the redox potentiometer 58. And control means 51 for controlling. In FIG. 1, V 1 , V 2 , and V 4 indicate open / close valves.
(還元酸化助剤供給手段)
 還元酸化助剤供給手段31は、還元酸化助剤32として溶液タンク内で所定濃度に調整された塩化アンモニウム(NH4Cl)を含むNH4Cl溶液をボイラ11の後流側で還元脱硝装置12の前流側である煙道23内に供給するものである。
(Reducing oxidation aid supply means)
The reductive oxidation aid supplying means 31 uses a reductive denitration device 12 as a reductive oxidation aid 32 on the downstream side of the boiler 11 with an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) adjusted to a predetermined concentration in the solution tank. Is supplied into the flue 23 on the upstream side.
 本実施例においては、還元酸化助剤32の一例としてNH4Clを用いているが、本実施例はこれに限定されるものではなく、還元酸化助剤32は気化した際に酸化性ガスと還元性ガスとを生成するものであれば用いることができる。また、本実施例においては、還元酸化助剤32とは、脱硝触媒上において酸化性ガス(HClガス)共存下で排ガス22中に含まれる金属水銀(Hg0)を酸化(Hg→Hg2+)するのに用いられる酸化助剤と、還元性ガスにより脱硝触媒で排ガス22中に含まれるNOxを還元する還元剤として機能するものをいう。本実施例では、酸化性ガスとしてHClガスが用いられ、還元性ガスとしてNH3ガスが用いられている。 In the present embodiment, NH 4 Cl is used as an example of the reduction oxidation aid 32, but this embodiment is not limited to this, and the reduction oxidation aid 32 is oxidized with an oxidizing gas when vaporized. Any substance capable of producing reducing gas can be used. In the present embodiment, the reduction oxidation assistant 32 is an oxidation (Hg 0 → Hg 2+ ) of metallic mercury (Hg 0 ) contained in the exhaust gas 22 in the presence of an oxidizing gas (HCl gas) on the denitration catalyst. ) And an oxidizing aid used to reduce NOx contained in the exhaust gas 22 with a denitration catalyst using a reducing gas. In this embodiment, HCl gas is used as the oxidizing gas, and NH 3 gas is used as the reducing gas.
 ボイラ11から排出される排ガス22には、還元酸化助剤供給手段31からNH4Cl溶液が供給される。還元酸化助剤供給手段31は、NH4Cl溶液を排ガス22に液体状で噴霧し、還元脱硝装置12に充填されている脱硝触媒層に充填されている脱硝触媒上で排ガス22中に含まれるNOxを還元すると共に、Hg0を酸化する。 The NH 4 Cl solution is supplied from the reduction oxidation aid supply means 31 to the exhaust gas 22 discharged from the boiler 11. The reduction oxidation auxiliary agent supply means 31 sprays the NH 4 Cl solution in a liquid state on the exhaust gas 22 and is contained in the exhaust gas 22 on the denitration catalyst filled in the denitration catalyst layer filled in the reduction denitration device 12. NOx is reduced and Hg 0 is oxidized.
 噴霧装置のノズルヘッドから煙道23内に噴霧されたNH4Cl溶液の液滴は、排ガス22の高温雰囲気温度により蒸発して気化され、微細なNH4Clの固体粒子を生成し、下記式(3)のように、HClとNH3とに分解し、昇華する。よって、噴霧装置から噴霧されたNH4Cl溶液は分解されて、HCl、NH3を生じ、NH3ガス、HClガスを煙道23内に供給することができる。
NH4Cl → NH3+HCl ・・・(3)
The droplets of the NH 4 Cl solution sprayed into the flue 23 from the nozzle head of the spraying device are evaporated and vaporized by the high-temperature atmosphere temperature of the exhaust gas 22 to generate fine NH 4 Cl solid particles. As in (3), it decomposes into HCl and NH 3 and sublimes. Accordingly, the NH 4 Cl solution sprayed from the spray device is decomposed to generate HCl and NH 3 , and NH 3 gas and HCl gas can be supplied into the flue 23.
NH 4 Cl → NH 3 + HCl (3)
 NH3ガスは還元剤として作用し、HClガスは水銀塩素化剤(酸化助剤)として作用する。即ち、還元脱硝装置12に充填されている脱硝触媒上で、NH3ガスは下記式(4)のように排ガス22中のNOxと還元反応が進行し、HClガスは下記式(5)のように排ガス22中のHg0と酸化反応が進行する。HClガスは脱硝触媒上でNH3を還元脱硝すると共に、金属水銀(Hg0)を酸化(Hg→Hg2+)し、水溶性の塩化水銀(HgCl2)とした後、後流側に設置した湿式脱硫装置15でHgCl2を水に溶解させて排ガス22中に含まれる水銀を除去する。
4NO+4NH3+O2 → 4N2+6H2O・・・(4)
Hg0+1/2O2+2HCl → HgCl2+H2O・・・(5)
NH 3 gas acts as a reducing agent, and HCl gas acts as a mercury chlorinating agent (oxidation aid). That is, on the denitration catalyst filled in the reductive denitration apparatus 12, NH 3 gas undergoes a reduction reaction with NOx in the exhaust gas 22 as shown in the following equation (4), and HCl gas as shown in the following equation (5). In addition, the oxidation reaction proceeds with Hg 0 in the exhaust gas 22. HCl gas reductively denitrates NH 3 on a denitration catalyst, oxidizes metallic mercury (Hg 0 ) (Hg 0 → Hg 2+ ) to form water-soluble mercury chloride (HgCl 2 ), and is installed on the downstream side The wet desulfurization apparatus 15 dissolves HgCl 2 in water to remove mercury contained in the exhaust gas 22.
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (4)
Hg 0 + 1 / 2O 2 + 2HCl → HgCl 2 + H 2 O (5)
 また、本実施例においては、NH4Cl以外の臭化アンモニウム(NH4Br)、ヨウ化アンモニウム(NH4I)などのハロゲン化アンモニウムを還元酸化助剤32として用い、水に溶解した溶液を用いてもよい。さらに、NH4Clとアンモニア水、または塩酸の混合液を用いてもよい。また、還元酸化助剤32は液体として説明したが、これに限ることはなく気体(例えば、塩化水素ガスとアンモニアガス)を供給してもよい。 In this example, ammonium halides such as ammonium bromide (NH 4 Br) and ammonium iodide (NH 4 I) other than NH 4 Cl were used as the reduction oxidation aid 32, and a solution dissolved in water was used. It may be used. Further, a mixed solution of NH 4 Cl and aqueous ammonia or hydrochloric acid may be used. Moreover, although the reduction oxidation aid 32 has been described as a liquid, the present invention is not limited to this, and a gas (for example, hydrogen chloride gas and ammonia gas) may be supplied.
 また、本実施例においては還元酸化助剤32に代わり、酸化助剤及び還元剤をそれぞれ供給するようにしてもよい。酸化助剤としてはHCl溶液を例示することができるが、本実施例はこれに限定されるものではなく、酸化助剤は気化した際に酸化性ガスを生成するものであれば用いることができる。例えば、臭化水素(HBr)、ヨウ化水素(HI)などのハロゲン化水素などを挙げることができる。また、酸化助剤は液体として説明したが、これに限ることはなく気体(例えば、塩化水素ガス)を供給してもよい。還元剤としてはNH溶液を例示することができるが、本実施例はこれに限定されるものではなく、還元剤は気化した際に還元性ガスを生成するものであれば用いることができる。例えば、尿素((NHCO)などを挙げることができる。また、還元剤は液体として説明したが、これに限ることはなく気体(例えば、アンモニアガス)を供給してもよい。 In this embodiment, instead of the reduction oxidation aid 32, an oxidation aid and a reduction agent may be supplied. An HCl solution can be exemplified as the oxidation aid, but the present embodiment is not limited to this, and the oxidation aid can be used as long as it generates an oxidizing gas when vaporized. . Examples thereof include hydrogen halides such as hydrogen bromide (HBr) and hydrogen iodide (HI). Moreover, although the oxidation aid has been described as a liquid, the present invention is not limited to this, and a gas (for example, hydrogen chloride gas) may be supplied. An NH 3 solution can be exemplified as the reducing agent, but the present embodiment is not limited to this, and any reducing agent that generates a reducing gas when vaporized can be used. For example, urea ((NH 2 ) 2 CO) can be used. Although the reducing agent has been described as a liquid, the present invention is not limited to this, and a gas (for example, ammonia gas) may be supplied.
 NH4Cl溶液、HCl溶液及びNH溶液をボイラ11の煙道23内に供給する手段は、例えば二流体ノズル等を用いるようにすればよい。なお本実施例はこれに限定されるものではなく、通常の液体噴霧用の噴射ノズルを用いてもよい。またNH4Cl溶液、HCl溶液及びNH溶液の供給量は任意に調整することができる。 As a means for supplying the NH 4 Cl solution, the HCl solution, and the NH 3 solution into the flue 23 of the boiler 11, for example, a two-fluid nozzle or the like may be used. In addition, a present Example is not limited to this, You may use the injection nozzle for normal liquid spraying. The supply amounts of the NH 4 Cl solution, the HCl solution, and the NH 3 solution can be arbitrarily adjusted.
 煙道23内の排ガス22の温度は、ボイラ11の燃焼条件にもよるが、例えば320℃以上420℃以下が好ましく、320℃以上380℃以下がより好ましく、350℃以上380℃以下が更に好ましい。これはこれらの温度帯において脱硝触媒上でNOxの脱硝反応と、Hgの酸化反応とを効率的に生じさせることができるためである。 Although the temperature of the exhaust gas 22 in the flue 23 depends on the combustion conditions of the boiler 11, it is preferably 320 ° C. or higher and 420 ° C. or lower, more preferably 320 ° C. or higher and 380 ° C. or lower, and further preferably 350 ° C. or higher and 380 ° C. or lower. . This is because NOx denitration reaction and Hg oxidation reaction can be efficiently generated on the denitration catalyst in these temperature zones.
 本実施例においては、還元酸化助剤(NH4Cl溶液)32と、酸化助剤(HCl溶液)と、還元剤(NH溶液)との何れか一つ以上をボイラ11の後流側で還元脱硝装置12の前流側である煙道23内に供給することができる。例えば、排ガス22成分の含有量によって、NH4Cl溶液でHCl成分が足りない場合には、NH4Cl溶液とHCl溶液の二つを供給してもよいし、HN成分が足りない場合には、NH4Cl溶液とNH溶液の二つを供給してもよい。また、HCl溶液とNH溶液の二つを供給してもよい。さらにNH4Cl溶液、HCl溶液、NH溶液の三つを供給してもよい。また、還元酸化助剤(NH4Cl溶液)32の供給だけでNOx、SOx、Hgの除去が可能な場合は、還元酸化助剤(NH4Cl溶液)32一つを供給してもよい。 In the present embodiment, any one or more of the reducing oxidation assistant (NH 4 Cl solution) 32, the oxidation assistant (HCl solution), and the reducing agent (NH 3 solution) are provided on the downstream side of the boiler 11. It can be supplied into the flue 23 on the upstream side of the reductive denitration device 12. For example, when the HCl component is insufficient in the NH 4 Cl solution due to the content of the exhaust gas 22 component, two of the NH 4 Cl solution and the HCl solution may be supplied, or when the HN 3 component is insufficient May supply two of NH 4 Cl solution and NH 3 solution. Further, two of an HCl solution and an NH 3 solution may be supplied. Further solution of NH 4 Cl, HCl solutions, may be supplied with three NH 3 solution. Further, NOx only supply of the reducing oxidizing aid (NH 4 Cl solution) 32, SOx, if possible removal of Hg is, (4 Cl solution NH) reducing oxidizing aid 32 one may be supplied.
 よって、本実施例に係る排ガス処理装置10Aは、NH4Cl溶液、HCl溶液、NH3溶液の各々の供給量は、排ガス22中に含まれるNOx、SOx、Hgの各々の含有量を求めて、その値によって調整することができる。また図1においては、還元酸化助剤(NH4Cl溶液)32を、供給するような構成を示しているが、これに限ることはなく、上記の三つの溶液を混合して供給するようにしてもよい。また、HCl溶液、NH3溶液、NH4Cl溶液の他に、還元酸化助剤32を溶解させた溶液、還元剤を溶解させた溶液、酸化助剤(水銀塩素化剤)を溶解させた溶液を更に、複数混合させて供給するようにしてもよい。 Therefore, in the exhaust gas treatment apparatus 10A according to the present embodiment, the supply amounts of the NH 4 Cl solution, the HCl solution, and the NH 3 solution are obtained by determining the contents of NOx, SOx, and Hg contained in the exhaust gas 22, respectively. , Can be adjusted by its value. Further, FIG. 1 shows a configuration in which the reduction oxidation assistant (NH 4 Cl solution) 32 is supplied. However, the present invention is not limited to this, and the above three solutions are mixed and supplied. May be. In addition to the HCl solution, NH 3 solution, and NH 4 Cl solution, a solution in which the reduction oxidation aid 32 is dissolved, a solution in which the reduction agent is dissolved, and a solution in which the oxidation aid (mercury chlorinating agent) is dissolved. Further, a plurality of these may be mixed and supplied.
(還元脱硝装置)
 還元脱硝装置12は、排ガス22中のNOxをNH3ガスで還元すると共に、HClガス共存下で金属水銀(Hg0)を酸化する脱硝触媒(不図示)を有するものである。図1に示すように、排ガス22は、例えば、還元酸化助剤供給手段31から煙道23内に噴霧されたNH4Cl溶液の液滴から生じたHClガス、NH3ガスを含んだ後、還元脱硝装置12に送給される。還元脱硝装置12では、NH4Clが分解して生じたNH3ガスはNOxの還元脱硝用に用いられ、HClガスはHgの酸化用に用いられ、NOx及びHgを排ガス22から除去する。
(Reduction denitration equipment)
The reductive denitration device 12 has a denitration catalyst (not shown) that reduces NOx in the exhaust gas 22 with NH 3 gas and oxidizes metallic mercury (Hg 0 ) in the presence of HCl gas. As shown in FIG. 1, the exhaust gas 22 contains, for example, HCl gas and NH 3 gas generated from droplets of the NH 4 Cl solution sprayed into the flue 23 from the reducing oxidation assistant supply means 31, The reduced denitration device 12 is fed. In the reductive denitration device 12, NH 3 gas generated by decomposition of NH 4 Cl is used for NOx reductive denitration, and HCl gas is used for Hg oxidation, and NOx and Hg are removed from the exhaust gas 22.
 即ち、還元脱硝装置12に充填されている脱硝触媒層に充填されている脱硝触媒上でNH3ガスは、下記式(6)のようにNOxを還元脱硝し、HClガスは、下記式(7)のようにHgを酸化(塩素化)する。
4NO+4NH3+O2 → 4N2+6H2O ・・・(6)
Hg+1/2O2+2HCl → HgCl2+H2O ・・・(7)
That is, NH 3 gas reduces and denitrates NOx as in the following formula (6) on the denitration catalyst filled in the denitration catalyst layer filled in the reductive denitration device 12, and HCl gas represents the following formula (7 Hg is oxidized (chlorinated) as shown in FIG.
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (6)
Hg + 1 / 2O 2 + 2HCl → HgCl 2 + H 2 O (7)
 還元脱硝装置12は、脱硝触媒層を1つ備えているが、本実施例はこれに限定されるものではなく、還元脱硝装置12は、脱硝性能に応じて脱硝触媒層の数を適宜変更することができる。 The reduction denitration device 12 includes one denitration catalyst layer, but the present embodiment is not limited to this, and the reduction denitration device 12 appropriately changes the number of denitration catalyst layers according to the denitration performance. be able to.
 排ガス22は、還元脱硝装置12において排ガス22中のNOxの還元とHgの酸化がされた後、排ガス22中の熱を回収する空気予熱器13、熱回収後の排ガス22中の煤塵を除去する集塵器(ESP)14を通過して除塵された後、湿式脱硫装置15に送られ、脱硫処理される。集塵器14としては、慣性力集塵機、電気集塵機、遠心力集塵機、濾過式集塵機、洗浄集塵機等が挙げられるが、特に限定されない。 After the NOx reduction in the exhaust gas 22 and the oxidation of Hg are performed in the reductive denitration device 12, the exhaust gas 22 removes dust in the exhaust gas 22 after recovering the air preheater 13 that recovers the heat in the exhaust gas 22. After passing through a dust collector (ESP) 14 and dedusting, it is sent to a wet desulfurization apparatus 15 for desulfurization treatment. Examples of the dust collector 14 include, but are not limited to, an inertial dust collector, an electric dust collector, a centrifugal dust collector, a filtration dust collector, and a cleaning dust collector.
(湿式脱硫装置)
 湿式脱硫装置15は、煤塵が除去された後の排ガス22中のSOx及び酸化された2価のHg2+を湿式で除去するものである。湿式脱硫装置15では、排ガス22を装置本体内の塔底部の壁面側から送給し、アルカリ吸収液として用いられる石灰石膏スラリ34を石灰石膏スラリ供給手段33からスラリ吸収液供給ラインより装置本体内に供給し、ノズル15cより塔頂部側15bに向かって噴流させる。装置本体内の底部側から上昇してくる排ガス22と、ノズル15cから噴流して流下する石灰石膏スラリ34とを対向して気液接触させ、排ガス22中のHgCl、SOxは石灰石膏スラリ34中に吸収され、排ガス22から分離、除去され、排ガス22は浄化される。石灰石膏スラリ34により浄化された排ガス22は、塔頂部側15bより排出され、その後処理排ガス24として煙突16から外部(以下、「系外」という。)に排出される。
(Wet desulfurization equipment)
The wet desulfurization apparatus 15 removes SOx and oxidized divalent Hg 2+ in the exhaust gas 22 after removing the dust in a wet manner. In the wet desulfurization apparatus 15, the exhaust gas 22 is fed from the wall surface side of the tower bottom in the apparatus main body, and the lime gypsum slurry 34 used as the alkali absorption liquid is supplied from the lime gypsum slurry supply means 33 into the apparatus main body from the slurry absorption liquid supply line. And jetted from the nozzle 15c toward the tower top side 15b. The exhaust gas 22 rising from the bottom side in the apparatus main body and the lime gypsum slurry 34 jetted from the nozzle 15 c are brought into gas-liquid contact with each other, and HgCl 2 and SOx in the exhaust gas 22 are in a lime gypsum slurry 34. It is absorbed in, separated and removed from the exhaust gas 22, and the exhaust gas 22 is purified. The exhaust gas 22 purified by the lime gypsum slurry 34 is discharged from the tower top side 15b, and then discharged from the chimney 16 to the outside (hereinafter referred to as “outside of the system”) as the treated exhaust gas 24.
 排ガス22の脱硫反応に用いられる石灰石膏スラリ34は、スラリ吸収液供給ラインから湿式脱硫装置15の塔底部15aに供給される。石灰石膏スラリ34は、水に石灰石粉末を溶解させた石灰スラリCaCO3と、石灰と排ガス22中のSOxが反応し更に酸化させた石膏スラリCaSO4と、水とを混合させて生成される。石灰石膏スラリ34は、例えば湿式脱硫装置15の装置本体の塔底部15aに貯留した液を揚水(L)したものが用いられる。装置本体内で排ガス22中のSOxは石灰石膏スラリ34中の石灰(CaCO3)と下記式(8)のような反応を生じる。
CaCO3+SO2+0.5H2O → CaSO3・0.5H2O+CO2 ・・・(8)
Lime gypsum slurry 34 used for the desulfurization reaction of the exhaust gas 22 is supplied to the tower bottom 15a of the wet desulfurization apparatus 15 from the slurry absorbent supply line. Limestone gypsum slurry 34, a lime slurry CaCO 3 dissolved limestone powder in water, SOx lime and the flue gas 22 and then the gypsum slurry CaSO 4 obtained by further oxidation reaction, is produced by mixing with water. As the lime gypsum slurry 34, for example, a pumped liquid (L 1 ) of the liquid stored in the tower bottom 15 a of the apparatus main body of the wet desulfurization apparatus 15 is used. In the apparatus main body, SOx in the exhaust gas 22 reacts with lime (CaCO 3 ) in the lime-gypsum slurry 34 as shown in the following formula (8).
CaCO 3 + SO 2 + 0.5H 2 O → CaSO 3 .0.5H 2 O + CO 2 (8)
 一方、排ガス22中のSOxを吸収した石灰石膏スラリ34は、装置本体内に供給される水35と混合され、装置本体の塔底部15aに供給される酸素を含む酸化剤(次亜塩素酸)の溶液55により酸化処理される。このとき、装置本体内を流下した石灰石膏スラリ34は、水35、酸素(空気)と下記式(9)のような反応を生じる。
CaSO3・0.5H2O+0.5O2+1.5H2O → CaSO4・2H2O ・・・(9)
On the other hand, the lime-gypsum slurry 34 that has absorbed SOx in the exhaust gas 22 is mixed with water 35 supplied into the apparatus main body, and an oxidant (hypochlorous acid) containing oxygen supplied to the tower bottom 15a of the apparatus main body. The solution 55 is oxidized. At this time, the lime gypsum slurry 34 that has flowed down in the apparatus main body undergoes a reaction such as the following formula (9) with water 35 and oxygen (air).
CaSO 3 · 0.5H 2 O + 0.5O 2 + 1.5H 2 O → CaSO 4 · 2H 2 O (9)
 このようにして、排ガス22中のSOは、湿式脱硫装置15において石膏CaSO・2HOの形で捕獲される。この際、排ガス22中の塩化水銀(HgCl2)は水溶性であるので、石灰石膏スラリ34側に移行される。 In this way, SO x in the exhaust gas 22 is captured in the form of gypsum CaSO 4 .2H 2 O in the wet desulfurization apparatus 15. At this time, since mercury chloride (HgCl 2 ) in the exhaust gas 22 is water-soluble, it is transferred to the lime gypsum slurry 34 side.
 本実施例では、アルカリ吸収液として石灰石膏スラリ34を用いているが、排ガス22中のHgClを吸収できるものであれば他の溶液をアルカリ吸収液として用いることができる。石灰石膏方式以外のアルカリ吸収液としては、例えば、水酸化ナトリウム溶液、亜硫酸ナトリウム溶液、アンモニア水、水酸化マグネシウム溶液などを例示することができる。この場合、水銀の除去を促進する方法として、例えば、重金属捕集剤としてキレート剤や高分子系凝集剤を混合する方法を併用することができる。 In this embodiment, lime gypsum slurry 34 is used as the alkali absorbing liquid, but other solutions can be used as the alkali absorbing liquid as long as it can absorb HgCl 2 in the exhaust gas 22. Examples of the alkali absorbing solution other than the lime gypsum method include sodium hydroxide solution, sodium sulfite solution, ammonia water, magnesium hydroxide solution and the like. In this case, as a method for promoting the removal of mercury, for example, a method of mixing a chelating agent or a polymer flocculant as a heavy metal scavenger can be used in combination.
 石灰石膏スラリ34の供給方法は、ノズル15cより塔頂部側15bに向かって噴流させる方法に限定されるものではなく、例えばノズル15cから排ガス22と対向するように流下させてもよい。 The method of supplying the lime gypsum slurry 34 is not limited to the method of jetting from the nozzle 15c toward the tower top side 15b, and may be caused to flow downward from the nozzle 15c so as to face the exhaust gas 22, for example.
(固液分離手段)
 本実施例では、湿式脱硫装置15の後流側に固液分離手段41を設けている。固液分離手段41は、湿式脱硫装置15の塔底部15aに貯留される脱硫反応に用いた石灰石膏スラリ34を塔底部15aより抜き出し(L)、固液分離処理により固体分である水銀塩(HgSO等)を含んだ脱水ケーキ(石膏)42と、液体分である分離液(脱水ろ液)46とに分離するものである。
(Solid-liquid separation means)
In this embodiment, the solid-liquid separation means 41 is provided on the downstream side of the wet desulfurization apparatus 15. The solid-liquid separation means 41 extracts the lime gypsum slurry 34 used for the desulfurization reaction stored in the tower bottom 15a of the wet desulfurization apparatus 15 from the tower bottom 15a (L 2 ), and a mercury salt that is a solid content by solid-liquid separation processing. It is separated into a dehydrated cake (gypsum) 42 containing (HgSO 4 or the like) and a separation liquid (dehydrated filtrate) 46 which is a liquid component.
 固液分離手段41としては、例えばベルトフィルタ、重力式沈殿濃縮槽、液体サイクロン、遠心分離機、デカンタ型遠心沈降機などが用いられる。分離された脱水ケーキ(石膏)42は排ガス処理装置10Aの系外に排出される。また、分離液(脱水ろ液)46は、供給ラインLを通って電気分解装置54に供給され、電気分解装置54で電気分解して生成した次亜塩素酸(酸化剤)の溶液55を湿式脱硫装置15に供給(L)して、再利用される。再利用されなかった残りの分離液(脱水ろ液)36は排水処理装置43に送給(L)され排水処理される。 As the solid-liquid separation means 41, for example, a belt filter, a gravity precipitation concentration tank, a liquid cyclone, a centrifuge, a decanter type centrifugal sedimentator, or the like is used. The separated dehydrated cake (gypsum) 42 is discharged out of the system of the exhaust gas treatment apparatus 10A. The separation liquid (dehydrated filtrate) 46 is supplied to the electrolysis apparatus 54 through the supply line L 4, and a solution 55 of hypochlorous acid (oxidant) generated by electrolysis in the electrolysis apparatus 54 is obtained. It is supplied to the wet desulfurization apparatus 15 (L 6 ) and reused. The remaining separation liquid (dehydrated filtrate) 36 that has not been reused is fed (L 3 ) to the wastewater treatment device 43 and subjected to wastewater treatment.
(排水処理装置)
 本実施例では、固液分離手段41の後流側に排水処理装置43を設けている。排水処理装置43は、固液分離手段41から電気分解装置54に供給されなかった残りの分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44の除去を行うものである。除去された分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44は系外に排出される。そして懸濁物、重金属、水銀等44が除去された処理液はpH調整などの排水処理が行われる。この排水処理された処理液は排水45として処理される。
(Wastewater treatment equipment)
In this embodiment, a waste water treatment device 43 is provided on the downstream side of the solid-liquid separation means 41. The waste water treatment device 43 removes suspended matter, heavy metals, mercury, etc. 44 in the remaining separation liquid (dehydrated filtrate) 36 that has not been supplied from the solid-liquid separation means 41 to the electrolysis apparatus 54. The suspended matter, heavy metal, mercury, etc. 44 in the removed separated liquid (dehydrated filtrate) 36 are discharged out of the system. The treatment liquid from which the suspended matter, heavy metal, mercury, and the like 44 have been removed is subjected to wastewater treatment such as pH adjustment. This waste water-treated treatment liquid is treated as waste water 45.
 排水処理装置43における懸濁物、重金属、水銀等44の処理方法としては、例えば、沈殿法、イオン交換法、吸着法などを挙げることができる。沈殿法としては、例えば、重金属捕集剤として硫酸第一鉄と硫化ナトリウム混液(沈殿法)、キレート剤や凝集剤などを用いる方法や、水銀と選択的に反応する「水銀キレート」を用いる方法などを挙げることができる。イオン交換法としては、例えば、イオン交換体を用いる方法などを挙げることができる。吸着法としては、例えば、活性炭吸着、キレート樹脂等を用いる方法などを挙げることができる。本実施例は上記のような処理方法に限定されるものではない。 Examples of the treatment method of the suspended matter, heavy metal, mercury and the like 44 in the waste water treatment apparatus 43 include a precipitation method, an ion exchange method, an adsorption method, and the like. Examples of the precipitation method include, for example, a method using a mixed liquid of ferrous sulfate and sodium sulfide (precipitation method), a chelating agent or an aggregating agent as a heavy metal scavenger, or a method using “mercury chelate” which selectively reacts with mercury. And so on. Examples of the ion exchange method include a method using an ion exchanger. Examples of the adsorption method include activated carbon adsorption and a method using a chelate resin. The present embodiment is not limited to the above processing method.
 また、上記のような排水処理や無害化処理などの最終処理は図示しない最終処理装置により行うようにしてもよい。この最終処理装置における排水処理としては、硫化物凝集沈殿処理装置、キレート剤処理装置、キレート樹脂処理装置、イオン交換樹脂処理装置、活性炭処理装置などの公知の最終処理を行う装置を適用するようにすればよい。また、図示しない無害化処理装置としては、例えばセメント固化処理装置を挙げることができる。 Further, final treatment such as waste water treatment and detoxification treatment as described above may be performed by a final treatment apparatus (not shown). As the waste water treatment in this final treatment device, a known final treatment device such as a sulfide coagulation sedimentation treatment device, a chelating agent treatment device, a chelate resin treatment device, an ion exchange resin treatment device, or an activated carbon treatment device is applied. do it. Moreover, as a detoxification processing apparatus which is not illustrated, a cement solidification processing apparatus can be mentioned, for example.
(電気分解装置)
 本実施例では、固液分離手段41で処理された分離液(脱水ろ液)46を電気分解した後に、湿式脱硫装置15に供給する電気分解装置54を設けた構成となっている。電気分解装置54は、分離液(脱水ろ液)46に含まれる塩素イオン(Cl)を電気分解して次亜塩素酸(HClO)を生成するものである。電気分解装置54で生成された次亜塩素酸は酸化剤(次亜塩素酸)の溶液55として湿式脱硫装置15に供給(L)される。湿式脱硫装置15に供給される酸化剤(次亜塩素酸)の溶液55の供給量は、制御手段51に制御される開閉バルブVにより調整されている。
(Electrolysis device)
In the present embodiment, an electrolyzer 54 that supplies the wet desulfurizer 15 after electrolyzing the separated liquid (dehydrated filtrate) 46 processed by the solid-liquid separator 41 is provided. The electrolyzer 54 electrolyzes chlorine ions (Cl ) contained in the separated liquid (dehydrated filtrate) 46 to generate hypochlorous acid (HClO). Hypochlorous acid generated in the electrolysis apparatus 54 is supplied to the wet desulfurization apparatus 15 as a solution 55 of an oxidizing agent (hypochlorous acid) (L 6 ). The supply amount of the oxidant (hypochlorous acid) solution 55 supplied to the wet desulfurization apparatus 15 is adjusted by an open / close valve V 4 controlled by the control means 51.
 本実施例においては、電気分解装置54に供給する電解液として塩素イオンが豊富(例えば、20000mg/L程度)に含まれている分離液(脱水ろ液)46を使用する。分離液(脱水ろ液)46中の塩素イオンは電気分解により下記式(10)のような反応を生じる。
2Cl → Cl + 2e  ・・・(10)
In the present embodiment, a separated liquid (dehydrated filtrate) 46 containing abundant chlorine ions (for example, about 20000 mg / L) is used as the electrolytic solution supplied to the electrolyzer 54. Chlorine ions in the separation liquid (dehydrated filtrate) 46 undergo a reaction represented by the following formula (10) by electrolysis.
2Cl → Cl 2 + 2e (10)
 生成したClは水(HO)に溶解して次亜塩素酸(HClO)となり、ClOイオンとして溶存する。本実施例では、電気分解装置54で生成した次亜塩素酸(ClOイオン含有)を酸化剤(次亜塩素酸)の溶液55として湿式脱硫装置15のスラリ吸収液34に供給する。 The generated Cl 2 dissolves in water (H 2 O) to form hypochlorous acid (HClO) and dissolves as ClO ions. In this embodiment, the generated hypochlorite electrolysis device 54 - to be supplied to the slurry absorption liquid 34 of the wet desulfurization system 15 (ClO ion-containing) as a solution 55 of the oxidizing agent (hypochlorite).
 なお、本実施例で用いられる電気分解装置54は、一般に市販の電気分解装置等を適用することができる。 Note that a commercially available electrolyzer or the like can be generally used as the electrolyzer 54 used in this embodiment.
 本実施例では、分離液(脱水ろ液)46を全て再利用して排水を出さない場合(以下、これを「無排水系」という。)、電気分解装置54で次亜塩素酸を生成するための塩素イオンが不足するおそれがある。そのため、再利用する分離液(脱水ろ液)46、電気分解装置54内、及び湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の電気伝導率を電気伝導率(EC)計61により計測して、電気伝導率が所定の値以下になった場合には、塩素イオンが不足であると判断して、電気分解装置54内に酸化剤原料供給手段52で酸化剤原料(塩素化合物)53を供給するようになっている。これにより塩素イオンの不足を解消することができる。 In the present embodiment, when all the separated liquid (dehydrated filtrate) 46 is reused and wastewater is not discharged (hereinafter referred to as “no drainage system”), hypochlorous acid is generated by the electrolyzer 54. There is a risk of lack of chlorine ions. Therefore, the electric conductivity (EC) of the separated liquid (dehydrated filtrate) 46 to be reused, the inside of the electrolyzer 54, and the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15 is obtained. When the electric conductivity becomes a predetermined value or less as measured by the meter 61, it is determined that the chlorine ion is insufficient, and the oxidant raw material (with the oxidant raw material supply means 52 in the electrolyzer 54). (Chlorine compound) 53 is supplied. Thereby, the shortage of chlorine ions can be solved.
 また、電気伝導率が所定の値以下になった場合に、電解液の性能(電解の効率)を高めるためpHを5以上7以下の範囲に制御するようにしてもよいし、電気分解装置54の出力を上げるようにしてもよい。 In addition, when the electric conductivity is equal to or lower than a predetermined value, the pH may be controlled in the range of 5 or more and 7 or less in order to improve the performance (electrolysis efficiency) of the electrolytic solution, or the electrolysis device 54. You may make it raise the output of.
 なお、電気伝導率が所定の値以下というのは、電気分解装置54内の電気伝導率 < 湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の電気伝導率、となった場合である。電気伝導率の範囲としては、1mS/cm以上100μS/cm以下が好ましく、更に好ましくは2mS/cm以上60mS/cm以下が好ましい。 Note that the electric conductivity is equal to or less than a predetermined value is the electric conductivity in the electrolyzer 54 <the electric conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15. Is the case. The range of electrical conductivity is preferably 1 mS / cm or more and 100 μS / cm or less, more preferably 2 mS / cm or more and 60 mS / cm or less.
 電気分解装置54に添加する酸化剤原料(塩素化合物)53としては、例えば、塩化カルシウム(CaCl)溶液、塩化ナトリウム(NaCl)溶液、塩酸(HCL)溶液等を挙げることができる。中でもCaとClはスラリ吸収液34に元から含まれている成分であるため塩化カルシウム(CaCl)溶液が好ましい。 Examples of the oxidant raw material (chlorine compound) 53 added to the electrolyzer 54 include a calcium chloride (CaCl 2 ) solution, a sodium chloride (NaCl) solution, and a hydrochloric acid (HCL) solution. Among these, since Ca + and Cl are components originally contained in the slurry absorbing liquid 34, a calcium chloride (CaCl 2 ) solution is preferable.
 なお、塩素イオンの不足を電気伝導率で判断する以外に、後述する酸化還元電位(ORP)で判断することもできる。その場合、図示しないがORP計58では電気分解装置54内、及び湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55のORPを計測して比較する。この場合、酸化還元電位(ORP)が所定の値以下というのは、電気伝導率と同様に、電気分解装置54内の酸化還元電位 < 湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の酸化還元電位、となった場合である。 In addition, it can also be judged by the oxidation-reduction potential (ORP) mentioned later other than judging the shortage of a chlorine ion by electrical conductivity. In this case, although not shown, the ORP meter 58 measures and compares the ORP of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the electrolyzer 54 and the wet desulfurizer 15. In this case, the oxidation-reduction potential (ORP) is equal to or less than a predetermined value because, like the electrical conductivity, the oxidation-reduction potential in the electrolyzer 54 <the oxidant (hypochlorous acid) supplied to the wet desulfurizer 15 In this case, the redox potential of the solution 55 is obtained.
 本実施例の電気分解装置54は、上述した脱硫排水の分離液(脱水ろ液)46を電気分解するため、電極表面に例えば、Ca(OH)、Mg(OH)等のスケールが生成するおそれがある。本実施例の電気分解装置54では、電極に与える電流をパルス状の電流にすることで電極表面にスケールが生成することを抑制することができる。このパルス電解方式によれば、例えば、電極にCa2+の付着している時間を短くすることができるため電極表面にスケールが生成するのを抑制することができる。 Since the electrolyzer 54 of the present embodiment electrolyzes the above desulfurized wastewater separation liquid (dehydrated filtrate) 46, scales such as Ca (OH) 2 and Mg (OH) 2 are generated on the electrode surface. There is a risk. In the electrolysis apparatus 54 of the present embodiment, the generation of scale on the electrode surface can be suppressed by making the current applied to the electrode into a pulsed current. According to this pulse electrolysis method, for example, the time during which Ca 2+ adheres to the electrode can be shortened, so that the generation of scale on the electrode surface can be suppressed.
 また、電気分解装置54の電極としては、例えば、カソードにチタン(Ti)、アノードに白金(Pt)や酸化イリジウム(IrO)などを使用することができる。これにより、次亜塩素酸(ClO)を安定的に生成して、湿式脱硫装置15のスラリ吸収液34に供給することができる。 Further, as the electrode of the electrolyzer 54, for example, titanium (Ti) can be used for the cathode, platinum (Pt), iridium oxide (IrO 2 ), or the like can be used for the anode. Thereby, hypochlorous acid (ClO ) can be stably generated and supplied to the slurry absorbent 34 of the wet desulfurization apparatus 15.
 本実施例では、電極表面にスケールが生成してしまい、次亜塩素酸を生成する効率が低下した場合には、酸性薬品(例えば、塩酸HCl、クエン酸など)で酸洗浄することでスケールを除去することができる。 In this example, when scale is generated on the electrode surface and the efficiency of generating hypochlorous acid is reduced, the scale is removed by acid cleaning with an acidic chemical (for example, hydrochloric acid HCl, citric acid, etc.). Can be removed.
<酸化還元電位の制御>
 本実施例における酸化還元電位(以下、ORPともいう。)の制御は、湿式脱硫装置15で脱硫反応に用いた石灰石膏スラリ34を固液分離処理した後の分離液(脱水ろ液)46を電気分解装置54で電気分解して生成した次亜塩素酸(酸化剤)の溶液55を湿式脱硫装置15に供給してスラリ吸収液(石灰石膏スラリ)34のORP制御を行うものである。これにより適正な量の酸化剤(次亜塩素酸)の溶液55を生成して供給することができる。また、脱硫排水を固液分離した分離液(脱水ろ液)46を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
<Control of redox potential>
The control of the oxidation-reduction potential (hereinafter also referred to as ORP) in the present embodiment is carried out by using the separation liquid (dehydrated filtrate) 46 after the solid-liquid separation treatment of the lime gypsum slurry 34 used for the desulfurization reaction in the wet desulfurization apparatus 15. A solution 55 of hypochlorous acid (oxidant) generated by electrolysis in the electrolysis device 54 is supplied to the wet desulfurization device 15 to perform ORP control of the slurry absorbing liquid (lime gypsum slurry) 34. As a result, an appropriate amount of the oxidizing agent (hypochlorous acid) solution 55 can be generated and supplied. In addition, a wet solution for supplying an oxidant (hypochlorous acid) solution 55 generated by electrolyzing a separated liquid (dehydrated filtrate) 46 obtained by solid-liquid separation of desulfurized wastewater to the wet desulfurization apparatus 15. The desulfurization waste water can be recycled in the desulfurization device 15.
 本実施例の排ガス処理装置10Aは、湿式脱硫装置15の塔底部15aのスラリ吸収液(石灰石膏スラリ)34のORPを制御する制御手段51と、酸化剤原料(塩素化合物)53を電気分解装置54に供給する酸化剤原料供給手段52と、ORPを測定する酸化還元電位計(以下、ORP計ともいう。)58と、電気分解装置54で生成された酸化剤(次亜塩素酸)の溶液55を湿式脱硝装置15に供給する供給ラインLと、脱水ろ液46、電気分解装置54内及び湿式脱硫装置15に供給される酸化剤(次亜塩素酸)の溶液55の電気伝導率を計測する電気伝導率計(以下、EC計ともいう。)61とが設けられている。 The exhaust gas treatment apparatus 10 </ b> A of the present embodiment electrolyzes a control means 51 that controls the ORP of the slurry absorbing liquid (lime gypsum slurry) 34 in the tower bottom 15 a of the wet desulfurization apparatus 15, and an oxidant raw material (chlorine compound) 53. A solution of an oxidant raw material supply means 52 to be supplied to 54, an oxidation-reduction potentiometer (hereinafter also referred to as an ORP meter) 58 for measuring ORP, and an oxidant (hypochlorous acid) generated by the electrolyzer 54. The electric conductivity of the supply line L 6 for supplying 55 to the wet denitration device 15, and the dehydrated filtrate 46, the electrolyzer 54, and the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurization device 15. An electrical conductivity meter (hereinafter also referred to as an EC meter) 61 for measurement is provided.
 制御手段51は、ORP計58により湿式脱硫装置15の塔底部15aのスラリ吸収液(石灰石膏スラリ)34のORPの値を測定する。測定されたORPの値に基づいて湿式脱硫装置15の塔底部15aに供給される酸化剤(次亜塩素酸)の溶液55の供給量を制御する。湿式脱硫装置15の塔底部15aに供給される酸化剤(次亜塩素酸)の溶液55の供給量を開閉バルブVを制御して調整することでスラリ吸収液34のORPを制御して、湿式脱硫装置15の塔底部15aに貯留するスラリ吸収液34内に捕集されている酸化されたHgが還元(Hg2+→Hg)されるのを防止し、煙突16より放散されるのを防止することができる。 The control means 51 measures the ORP value of the slurry absorbing liquid (lime gypsum slurry) 34 at the tower bottom 15 a of the wet desulfurization device 15 by the ORP meter 58. Based on the measured ORP value, the supply amount of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the tower bottom 15a of the wet desulfurization apparatus 15 is controlled. Oxidizing agent supplied to the bottom portion 15a of the wet desulfurization system 15 by controlling the ORP of the slurry absorbing solution 34 by adjusting and controlling the opening and closing valve V 4 the supply of the solution 55 (hypochlorous acid), It prevents the oxidized Hg collected in the slurry absorbing liquid 34 stored in the tower bottom 15a of the wet desulfurization apparatus 15 from being reduced (Hg 2+ → Hg 0 ) and released from the chimney 16. Can be prevented.
 ORPの制御としては、ORP計58により測定したORPが所定より低い場合には、湿式脱硫装置15の塔底部15aに供給する酸化剤(次亜塩素酸)の溶液55の供給量を増加させるようにする。具体的には、例えば、以下の4つを挙げることができる。1)酸化剤原料53を電気分解装置54に供給して電解効率(電流から塩素が発生する比率)を上げることにより電解液中のClOイオン濃度を増加させるようにする。2)電気分解装置54の電解液のpHを酸性側にすることで、酸化力の強いHCLO(次亜塩素酸)を増加させるようにする。pHとHCLOの関係は、HCLO⇔CLO+Hで説明することができるため、pHを酸性側とすることで平衡が左側に移行し、HCLOが増加する。このpH調整には、例えば硫酸、塩酸、炭酸などの溶液を使用することができる。3)電気分解装置54への電気供給量を上げるようにする。例えば、電流値を増加させることで電解液中のCLOイオン濃度を増加させることができる。4)電気分解装置54で生成した電解液の供給流速を増加させるようにする。これは電気分解装置54で生成した次亜塩素酸(ClOイオン含有)を酸化剤(次亜塩素酸)の溶液55として湿式脱硫装置15のスラリ吸収液34に供給する供給流速を増加させることである。 As the ORP control, when the ORP measured by the ORP meter 58 is lower than a predetermined value, the supply amount of the oxidizing agent (hypochlorous acid) solution 55 supplied to the tower bottom 15a of the wet desulfurization apparatus 15 is increased. To. Specifically, the following four can be mentioned, for example. 1) The oxidant raw material 53 is supplied to the electrolyzer 54 so as to increase the electrolysis efficiency (ratio in which chlorine is generated from the current), thereby increasing the ClO ion concentration in the electrolytic solution. 2) By making the pH of the electrolytic solution of the electrolyzer 54 acidic, HCLO (hypochlorous acid) having strong oxidizing power is increased. Since the relationship between pH and HCLO can be explained by HCLO⇔CLO + H + , when pH is set to the acidic side, the equilibrium shifts to the left side and HCLO increases. For this pH adjustment, for example, a solution of sulfuric acid, hydrochloric acid, carbonic acid or the like can be used. 3) Increase the amount of electricity supplied to the electrolyzer 54. For example, the CLO ion concentration in the electrolyte can be increased by increasing the current value. 4) The supply flow rate of the electrolytic solution generated by the electrolyzer 54 is increased. This hypochlorous acid generated by the electrolyzer 54 - increasing the feed flow rate to be supplied to the slurry absorption liquid 34 of the wet desulfurization system 15 as a solution 55 (ClO ion-containing) an oxidizing agent (hypochlorite) It is.
 湿式脱硫装置15内のスラリ吸収液(石灰石膏スラリ)34のORPは、スラリ吸収液34からのHgの再飛散を防止するためには、例えば0mV以上600mV以下の範囲内にあることが好ましい。さらに好ましくは50mV以上300mV以下の範囲であり、最も好ましくは100mV以上200mV以下の範囲である。さらに最適には150mV以上200mVを下回る(未満)範囲である。これはORPが上記範囲内であればスラリ吸収液34中にHgCl2として捕集されたHgが安定な領域であり、大気中への再飛散を防ぐことができるためである。 The ORP of the slurry absorbing liquid (lime gypsum slurry) 34 in the wet desulfurization apparatus 15 is preferably in the range of, for example, 0 mV or more and 600 mV or less in order to prevent re-scattering of Hg from the slurry absorbing liquid 34. More preferably, it is in the range of 50 mV to 300 mV, and most preferably in the range of 100 mV to 200 mV. More optimally, the range is 150 mV or more and less than (less than) 200 mV. This is because if the ORP is within the above range, Hg collected as HgCl 2 in the slurry absorbing liquid 34 is a stable region, and re-scattering into the atmosphere can be prevented.
 また、酸化剤の溶液55が次亜塩素酸(ClO)含有電解液であることにより、一般的なORP制御に用いる酸素(空気)よりも酸化力が強いためスラリ吸収液34中のORP計58の電位を少なくとも100mV以上200mV以下の範囲とすることができる。スラリ吸収液34中のORP計58の電位を少なくとも100mV以上200mV以下の範囲に維持することにより、酸化水銀(Hg2+)の還元(Hg2+→Hg)を防止すること、及び、水銀の再飛散を防止することができる。 Further, since the oxidizing agent solution 55 is hypochlorous acid (ClO ) -containing electrolytic solution, the oxidizing power is stronger than oxygen (air) used for general ORP control, so the ORP meter in the slurry absorbing liquid 34 is used. The potential of 58 can be in the range of at least 100 mV and 200 mV. By maintaining the potential of the ORP meter 58 in the slurry absorbing liquid 34 in a range of at least 100 mV to 200 mV, reduction of mercury oxide (Hg 2+ ) (Hg 2+ → Hg 0 ) is prevented, and Scattering can be prevented.
 酸化水銀(Hg2+)の還元(Hg2+→Hg)により水銀の再飛散が問題となるのはORP計58の電位が100mV以下の範囲であるため、水銀の還元を防止するにはORP計58の電位が100mV以上であれば良いことになる。ORP計58の電位を200mV以上とする場合には、供給する酸化剤の量、及び濃度ともに過剰となってしまい、あまり経済的ではない。 Reduction of mercury oxide (Hg 2+ ) (Hg 2+ → Hg 0 ) causes mercury re-scattering because the potential of the ORP meter 58 is in the range of 100 mV or less. It is sufficient that the potential of 58 is 100 mV or more. When the potential of the ORP meter 58 is set to 200 mV or more, both the amount and concentration of the oxidant to be supplied are excessive, and it is not very economical.
 また、一般的な石炭焚きボイラの排ガス22には、水銀と同様にセレン(Se)が含まれている場合がある。排ガス22中のセレンは湿式脱硫装置15のスラリ吸収液34に吸収され、排ガス22から除去される。スラリ吸収液34中のセレンの処理方法としては、酸化鉄による共沈法、活性炭や活性アルミナによる吸着法などを挙げることができるが、これは4価のSe(IV)に対する有効な処理方法であり、6価のSe(VI)に対する有効な処理方法ではない。 Further, the exhaust gas 22 of a general coal-fired boiler may contain selenium (Se) as well as mercury. Selenium in the exhaust gas 22 is absorbed by the slurry absorbent 34 of the wet desulfurization device 15 and removed from the exhaust gas 22. Examples of a method for treating selenium in the slurry absorbing liquid 34 include a coprecipitation method using iron oxide and an adsorption method using activated carbon or activated alumina. This is an effective treatment method for tetravalent Se (IV). Yes, it is not an effective processing method for hexavalent Se (VI).
 一方、ORP計58の電位が200mV以上の場合には、4価のSe(IV)が6価のSe(VI)に酸化が促進されてしまい、セレン(Se)の処理が困難な場合があるという問題がある。よって、上述した理由から、酸化還元電位が100mV以上200mVを下回る範囲にすることで、効率的・経済的に水銀の還元を防止し、再飛散を低減でき、かつ、セレン(Se)の処理性の悪化などの副作用を防止することができる。 On the other hand, when the potential of the ORP meter 58 is 200 mV or more, oxidation of tetravalent Se (IV) is promoted to hexavalent Se (VI), and it may be difficult to treat selenium (Se). There is a problem. Therefore, for the reasons described above, by setting the oxidation-reduction potential within the range of 100 mV or more and less than 200 mV, it is possible to efficiently and economically prevent the reduction of mercury, reduce re-scattering, and treat selenium (Se). It can prevent side effects such as deterioration.
 また、本実施例では、スラリ吸収液34のORPを判断の指標としているが、ORPの判断以外に、亜硫酸イオン(SO 2-)濃度を判断の指標とするようにしてもよい。スラリ吸収液34中に含まれる亜硫酸イオンの濃度を制御する場合、亜硫酸イオンの濃度としては、例えば、0.1mmol/L以上2.0mmol/L以下であり、好ましくは0.5mmol/L以上1.0mmol/L以下であり、さらに好ましくは1.0mmol/L以下である。 In this embodiment, the ORP of the slurry absorbing liquid 34 is used as an index for determination. However, in addition to the ORP determination, the concentration of sulfite ion (SO 3 2− ) may be used as an index for determination. When controlling the concentration of sulfite ions contained in the slurry absorbent 34, the concentration of sulfite ions is, for example, 0.1 mmol / L or more and 2.0 mmol / L or less, preferably 0.5 mmol / L or more and 1 0.0 mmol / L or less, more preferably 1.0 mmol / L or less.
 なお、亜硫酸イオン濃度と酸化還元電位(ORP)は良好な相関性を示すことが分かっているため(例えば、特開平11-169657号公報)、ORPの制御により、亜硫酸イオンの濃度の制御も可能である。この場合、例えばORPの値「150mV~200mV」に対応する亜硫酸イオン(SO 2-)の値は、略「1.0mmol/L」である。従って、一点で判断する場合には、亜硫酸イオン(SO 2-)の値は、「1.0mmol/L」で判断するようにしてもよい。よって、ORPでの制御の代わりに、亜硫酸イオン(SO 2-)の濃度を判断の指標とすることができる。 Since it is known that the sulfite ion concentration and the oxidation-reduction potential (ORP) show a good correlation (for example, JP-A-11-169657), the concentration of sulfite ions can be controlled by controlling the ORP. It is. In this case, for example, the value of sulfite ion (SO 3 2− ) corresponding to the ORP value “150 mV to 200 mV” is approximately “1.0 mmol / L”. Therefore, when judging at one point, the value of sulfite ion (SO 3 2− ) may be judged as “1.0 mmol / L”. Therefore, the concentration of sulfite ion (SO 3 2− ) can be used as an index for judgment instead of control by ORP.
 本実施例における排ガス処理装置10AのORP制御は、スラリ吸収液(石灰石膏スラリ)34ではなく、湿式脱硫装置15に返送されて再利用される分離液(脱水ろ液)46を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため、酸化剤(次亜塩素酸)の溶液55を過剰に供給する必要がなく、適切な量の酸化剤(次亜塩素酸)の溶液55によりスラリ吸収液34のORPを制御することができる。また、脱硫排水を固液分離した分離液(脱水ろ液)46を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。 In the present embodiment, the ORP control of the exhaust gas treatment apparatus 10A is not the slurry absorbing liquid (lime gypsum slurry) 34, but the electrolyzing apparatus 54 for the separated liquid (dehydrated filtrate) 46 that is returned to the wet desulfurization apparatus 15 and reused. Since the solution 55 of the oxidizing agent (hypochlorous acid) generated by electrolysis in step 1 is supplied to the wet desulfurization apparatus 15, it is not necessary to supply the solution 55 of the oxidizing agent (hypochlorous acid) excessively. The ORP of the slurry absorbing liquid 34 can be controlled by the amount 55 of the oxidizing agent (hypochlorous acid) solution 55. In addition, a wet solution for supplying an oxidant (hypochlorous acid) solution 55 generated by electrolyzing a separated liquid (dehydrated filtrate) 46 obtained by solid-liquid separation of desulfurized wastewater to the wet desulfurization apparatus 15. The desulfurization waste water can be recycled in the desulfurization device 15.
 以上説明したように、本実施例1に係る排ガス処置装置10Aは、脱硫反応に用いたスラリ吸収液(石灰石膏スラリ)34を固液分離処理する固液分離手段41と、分離された分離液(脱水ろ液)46を電気分解して酸化剤(次亜塩素酸)の溶液55を生成する電気分解装置54と、電気分解装置54に酸化剤原料(塩素化合物)53を供給する酸化剤原料供給手段52と、生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するための供給ラインLと、湿式脱硫装置15に酸化剤(次亜塩素酸)の溶液55を供給してスラリ吸収液34のORP制御をする制御手段51とを有する構成としている。 As described above, the exhaust gas treatment apparatus 10A according to the first embodiment includes the solid-liquid separation means 41 for performing the solid-liquid separation process on the slurry absorbing liquid (lime gypsum slurry) 34 used for the desulfurization reaction, and the separated separation liquid. An electrolysis device 54 that electrolyzes (dehydrated filtrate) 46 to produce a solution 55 of an oxidant (hypochlorous acid), and an oxidant material that supplies an oxidant material (chlorine compound) 53 to the electrolysis device 54 solution supply means 52, a supply line L 6 for supplying the generated oxidizing agent solution 55 (hypochlorous acid) to the wet desulfurization system 15, oxidant wet desulfurization system 15 (hypochlorite) 55 And a control means 51 for performing ORP control of the slurry absorbing liquid 34.
 本実施例1に係る排ガス処理装置10Aによれば、硫黄酸化物(SOx)と還元脱硝装置12において酸化された2価のHg2+を湿式脱硫装置15で除去する際に分離液(脱水ろ液)46を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給してORP制御を行うようにしたことで適正な量の酸化剤(次亜塩素酸)の溶液55を供給することができ排ガス22中に含まれるNOx、SOx、特にHgを効率的に除去することができ、脱硫における酸化阻害を抑制することができる。また、脱硫排水を固液分離した分離液(脱水ろ液)46を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。 According to the exhaust gas treatment apparatus 10A according to the first embodiment, the separation liquid (dehydration filter) is removed when the sulfur oxide (SOx) and the divalent Hg 2+ oxidized in the reduction denitration apparatus 12 are removed by the wet desulfurization apparatus 15. Liquid) 46 is electrolyzed by an electrolyzer 54, and a solution 55 of oxidant (hypochlorous acid) is supplied to the wet desulfurizer 15 to perform ORP control. A solution 55 of (hypochlorous acid) can be supplied, NOx, SOx, particularly Hg contained in the exhaust gas 22 can be efficiently removed, and oxidation inhibition in desulfurization can be suppressed. In addition, a wet solution for supplying an oxidant (hypochlorous acid) solution 55 generated by electrolyzing a separated liquid (dehydrated filtrate) 46 obtained by solid-liquid separation of desulfurized wastewater to the wet desulfurization apparatus 15. The desulfurization waste water can be recycled in the desulfurization device 15.
 図2は、本実施例に係る排ガス処理装置10Bの概略構成図である。なお、上述した実施例1と同一の構成には同一の符号を付し、重複した説明を省略する。図2に示すように、本実施例に係る排ガス処理装置10Bは、固液分離手段41で分離された分離液(脱水ろ液)36をさらに排水処理装置43で処理された処理液47を再利用して電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給する構成となっている。また、本実施例のORPの制御は、処理液47を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給してスラリ吸収液34のORP制御を行うものである。 FIG. 2 is a schematic configuration diagram of the exhaust gas treatment apparatus 10B according to the present embodiment. In addition, the same code | symbol is attached | subjected to the structure same as Example 1 mentioned above, and the duplicate description is abbreviate | omitted. As shown in FIG. 2, the exhaust gas treatment apparatus 10 </ b> B according to the present embodiment recycles the separation liquid (dehydrated filtrate) 36 separated by the solid-liquid separation means 41 and the treatment liquid 47 treated by the waste water treatment apparatus 43. A solution 55 of the oxidizing agent (hypochlorous acid) generated by electrolysis using the electrolyzer 54 is supplied to the wet desulfurizer 15. In addition, the ORP control of this embodiment is performed by supplying a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing the treatment liquid 47 by the electrolysis apparatus 54 to the wet desulfurization apparatus 15 and supplying the slurry absorbing liquid 34. ORP control is performed.
 本実施例では、分離液(処理液)47、電気分解装置54内、及び湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の電気伝導率をEC計61により計測して、電気伝導率が所定の値以下になった場合には、塩素イオンが不足であると判断して、電気分解装置54内に酸化剤原料供給手段52で酸化剤原料(塩素化合物)53を供給するようになっている。これにより塩素イオンの不足を解消することができる。 In this embodiment, the electrical conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the separation liquid (treatment liquid) 47, the electrolysis apparatus 54, and the wet desulfurization apparatus 15 is measured by the EC meter 61. When the electrical conductivity falls below a predetermined value, it is determined that the chlorine ions are insufficient, and the oxidant material (chlorine compound) 53 is supplied into the electrolyzer 54 by the oxidant material supply means 52. It is supposed to be. Thereby, the shortage of chlorine ions can be solved.
 なお、電気伝導率が所定の値以下というのは、電気分解装置54内の電気伝導率 < 湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の電気伝導率、となった場合である。 Note that the electric conductivity is equal to or less than a predetermined value is the electric conductivity in the electrolyzer 54 <the electric conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15. Is the case.
 排水処理装置43で処理された処理液47は、脱水ろ液36と比較してさらに懸濁物、重金属、水銀等44が除去されており、処理液47を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給した場合、湿式脱硫装置15内のスラリ吸収液(石灰石膏スラリ)34中に含まれる懸濁物、重金属、水銀等44の濃度を低減させることができる。つまり、スラリ吸収液(石灰石膏スラリ)34中に含まれるトータルの水銀の量を減らすことができる。 The treatment liquid 47 treated by the waste water treatment apparatus 43 is further removed of suspended matter, heavy metals, mercury, and the like 44 as compared with the dehydrated filtrate 36, and the treatment liquid 47 is electrolyzed by the electrolysis apparatus 54. When the generated oxidant (hypochlorous acid) solution 55 is supplied to the wet desulfurization apparatus 15, the suspension, heavy metal, mercury, etc. contained in the slurry absorbing liquid (lime gypsum slurry) 34 in the wet desulfurization apparatus 15 The density of 44 can be reduced. That is, the total amount of mercury contained in the slurry absorbing liquid (lime gypsum slurry) 34 can be reduced.
 本実施例2における排ガス処理装置10BのORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。また、脱硫排水を固液分離した分離液(脱水ろ液)36をさらに処理した処理液47を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。 According to the ORP control of the exhaust gas treatment apparatus 10B according to the second embodiment, the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases. As a result, the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization apparatus 15 can be reduced. Further, a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing a treatment liquid 47 obtained by further treating a separated liquid (dehydrated filtrate) 36 obtained by solid-liquid separation of desulfurized wastewater with an electrolyzer 54 is subjected to wet desulfurization. The desulfurization effluent can be recycled in the wet desulfurization device 15 for supply to the device 15.
 図3は、本実施例に係る排ガス処理装置10Cの概略構成図である。なお、上述した実施例1及び実施例2と同一の構成には同一の符号を付し、重複した説明を省略する。図3に示すように、本実施例に係る排ガス処理装置10Cは、固液分離手段41で処理された分離液(脱水ろ液)46の一部と、残りの脱水ろ液36を排水処理装置43で処理された分離液(処理液)47との何れか一方又は両方を供給ラインL、Lにより電気分解装置54に供給して電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給する構成となっている。 FIG. 3 is a schematic configuration diagram of an exhaust gas treatment apparatus 10C according to the present embodiment. In addition, the same code | symbol is attached | subjected to the structure same as Example 1 and Example 2 mentioned above, and the duplicate description is abbreviate | omitted. As shown in FIG. 3, the exhaust gas treatment apparatus 10 </ b> C according to the present embodiment is a wastewater treatment apparatus for separating a part of the separation liquid (dehydrated filtrate) 46 processed by the solid-liquid separation means 41 and the remaining dehydrated filtrate 36. One or both of the separation liquid (processing liquid) 47 processed in 43 is supplied to the electrolysis apparatus 54 through the supply lines L 4 and L 5 and is generated by electrolysis in the electrolysis apparatus 54 ( A solution 55 of hypochlorous acid) is supplied to the wet desulfurization apparatus 15.
 また、本実施例のORPの制御は、脱水ろ液46、又は処理液47の何れか一方又は両方を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給してスラリ吸収液34のORP制御を行うものである。 Further, the ORP control of this embodiment is performed by using a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing either one or both of the dehydrated filtrate 46 and the treatment liquid 47 with an electrolyzer 54. This is supplied to the wet desulfurization apparatus 15 to perform ORP control of the slurry absorbent 34.
 本実施例では、分離液(脱水ろ液46、処理液47)、電気分解装置54内、及び湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の電気伝導率をEC計61により計測して、電気伝導率が所定の値以下になった場合には、塩素イオンが不足であると判断して、電気分解装置54内に酸化剤原料供給手段52で酸化剤原料(塩素化合物)53を供給するようになっている。これにより塩素イオンの不足を解消することができる。 In this embodiment, the electric conductivity of the solution 55 of the oxidant (hypochlorous acid) supplied to the separation liquid (dehydrated filtrate 46, treatment liquid 47), the electrolysis apparatus 54, and the wet desulfurization apparatus 15 is measured with an EC meter. When the electric conductivity becomes a predetermined value or less as measured by 61, it is determined that the chlorine ion is insufficient, and the oxidant raw material (chlorine) is supplied to the electrolyzer 54 by the oxidant raw material supply means 52. Compound) 53 is supplied. Thereby, the shortage of chlorine ions can be solved.
 なお、電気伝導率が所定の値以下というのは、電気分解装置54内の電気伝導率 < 湿式脱硫装置15に供給する酸化剤(次亜塩素酸)の溶液55の電気伝導率、となった場合である。 Note that the electric conductivity is equal to or less than a predetermined value is the electric conductivity in the electrolyzer 54 <the electric conductivity of the solution 55 of the oxidizing agent (hypochlorous acid) supplied to the wet desulfurizer 15. Is the case.
 電気分解装置54への脱水ろ液46、及び処理液47の供給量は、スラリ吸収液34に含まれる成分の量に基づいて判断して制御するようにする。スラリ吸収液34に含まれる成分としては、例えば石膏、亜硫酸石膏、炭酸カルシウム、水銀、重金属などを挙げることができる。 The supply amount of the dehydrated filtrate 46 and the treatment liquid 47 to the electrolyzer 54 is determined and controlled based on the amount of components contained in the slurry absorbing liquid 34. Examples of components contained in the slurry absorbing liquid 34 include gypsum, sulfite gypsum, calcium carbonate, mercury, and heavy metals.
 また、最小限の水(工業用水)35の補給で済むように湿式脱硫装置15から排出される脱硫排水の再利用等の水バランスを考慮することが好ましい。 Also, it is preferable to consider water balance such as reuse of desulfurization drainage discharged from the wet desulfurization apparatus 15 so that a minimum amount of water (industrial water) 35 can be replenished.
 本実施例3における排ガス処理装置10CのORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。また、脱硫排水を固液分離した分離液(脱水ろ液46、及び処理液47)を再利用して電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。 According to the ORP control of the exhaust gas treatment apparatus 10C in the third embodiment, the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases. As a result, the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced. In addition, a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing with an electrolyzer 54 by reusing separated liquids (dehydrated filtrate 46 and processing liquid 47) obtained by solid-liquid separation of desulfurized wastewater. In order to supply the wet desulfurization apparatus 15, the desulfurization waste water can be recycled in the wet desulfurization apparatus 15.
 次に、図4~図6を参照して本実施例に係る排ガス処理装置10D~10Fについて説明する。図4~図6は、本実施例に係る排ガス処理装置10D~10Fの概略構成図である。なお、上述した実施例1~3と同一の構成には同一の符号を付し、重複した説明を省略する。図4~図6に示すように、本実施例に係る排ガス処理装置10D~10Fは、実施例1~3の構成に加えて、電気分解装置54で分離液(脱水ろ液46、処理液47)を電気分解して生成した酸化剤(次亜塩素酸)の溶液55と、脱水ろ液48及び処理液49の何れか一方又は両方とを混合する混合槽56と、固液分離手段41で処理された脱水ろ液46の一部、及び排水処理装置43で処理された処理液47の一部の何れか一方又は両方を電気分解装置54に供給する供給ラインL、Lと、脱水ろ液の残り48及び処理液の残り49の何れか一方又は両方を混合槽56に供給するための供給ラインL、Lと、酸化剤(次亜塩素酸)の溶液55を混合槽56に供給する供給ラインLと、混合槽56の混合液57を湿式脱硫装置15に戻す混合液返送ラインLと、水(工業用水)37を混合槽56に補給するラインとを設けた構成となっている。なお、図4~図6中、V1~Vは開閉バルブを図示する。 Next, the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment will be described with reference to FIGS. 4 to 6 are schematic configuration diagrams of the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment. Note that the same components as those in the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted. As shown in FIGS. 4 to 6, the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment are separated from the separation liquid (dehydrated filtrate 46, treatment liquid 47) by the electrolysis apparatus 54 in addition to the configurations of the first to third embodiments. ) And the mixing tank 56 for mixing one or both of the dehydrated filtrate 48 and the treatment liquid 49, and the solid-liquid separation means 41. Supply lines L 4 and L 5 for supplying either or both of a part of the treated dehydrated filtrate 46 and a part of the treated liquid 47 treated by the waste water treatment device 43 to the electrolyzer 54, and dehydration Supply lines L 6 and L 7 for supplying one or both of the remaining filtrate 48 and the remaining treatment liquid 49 to the mixing tank 56, and the oxidizing agent (hypochlorous acid) solution 55 are mixed into the mixing tank 56. to the supply line L 8 and supplies the mixture 57 of the mixing tank 56 the wet desulfurization system The mixed liquid return line L 9 for returning to 15 and a line for supplying water (industrial water) 37 to the mixing tank 56 are provided. In FIG. 4 to FIG. 6, V 1 to V 4 indicate open / close valves.
 本実施例のORPの制御は、混合槽56で混合された混合液57の酸化還元電位を制御した混合液57を湿式脱硫装置15のスラリ吸収液34に供給(L)してスラリ吸収液34のORP制御を行うものである。 In this embodiment, the ORP is controlled by supplying the mixed liquid 57 in which the redox potential of the mixed liquid 57 mixed in the mixing tank 56 is controlled to the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 (L 9 ). 34 ORP control is performed.
 混合槽56で混合された混合液57の酸化還元電位は、湿式脱硫装置15でのスラリ吸収液34からのHgの再飛散を防止するためには、例えば0mV以上600mV以下の範囲内にあることが好ましい。さらに好ましくは50mV以上300mV以下の範囲であり、最も好ましくは100mV以上200mV以下の範囲である。さらに最適には150mV以上200mV以下の範囲である。本実施例では、湿式脱硫装置15のスラリ吸収液34に供給される混合液57の酸化還元電位が上記の範囲内であるため、例えば、混合液57の酸化還元電位を100mV以上200mV以下の範囲にORP制御した場合、湿式脱硫装置15のスラリ吸収液34の酸化還元電位は200mVを下回ることになり、200mV以上となることはない。 The oxidation-reduction potential of the mixed solution 57 mixed in the mixing tank 56 is, for example, in the range of 0 mV to 600 mV in order to prevent re-scattering of Hg from the slurry absorbent 34 in the wet desulfurization apparatus 15. Is preferred. More preferably, it is in the range of 50 mV to 300 mV, and most preferably in the range of 100 mV to 200 mV. More optimally, the range is 150 mV or more and 200 mV or less. In this embodiment, since the oxidation-reduction potential of the mixed liquid 57 supplied to the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is within the above range, for example, the oxidation-reduction potential of the mixed liquid 57 is in the range of 100 mV to 200 mV. When the ORP control is performed, the oxidation-reduction potential of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is less than 200 mV, and does not exceed 200 mV.
 よって、混合液57の酸化還元電位が上記範囲内であれば湿式脱硫装置15のスラリ吸収液34中にHgCl2として捕集されたHgが安定な領域であり、大気中への再飛散を防ぐことができる。さらに好ましくは酸化還元電位を150mV以上200mV以下の範囲にすることで、効率的・経済的に水銀の還元を防止し、再飛散を低減でき、かつ、実施例1において説明したようにセレン(Se)の処理性の悪化などの副作用を防止することができる。 Therefore, if the oxidation-reduction potential of the mixed liquid 57 is within the above range, Hg collected as HgCl 2 in the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is a stable region and prevents re-scattering into the atmosphere. be able to. More preferably, by setting the oxidation-reduction potential in the range of 150 mV or more and 200 mV or less, reduction of mercury can be efficiently and economically prevented, re-scattering can be reduced, and as described in Example 1, selenium (Se ) Side effects such as deterioration of processability can be prevented.
 本実施例では、分離液(脱水ろ液46、48、及び処理液47、49)、電気分解装置54内、及び湿式脱硫装置15に供給する混合液57の電気伝導率をEC計61により計測して、電気伝導率が所定の値以下になった場合には、塩素イオンが不足であると判断して、電気分解装置54内に酸化剤原料供給手段52で酸化剤原料(塩素化合物)53を供給するようになっている。これにより塩素イオンの不足を解消することができる。 In this example, the EC meter 61 measures the electrical conductivity of the separation liquid (dehydrated filtrates 46 and 48 and treatment liquids 47 and 49), the electrolysis apparatus 54, and the mixed liquid 57 supplied to the wet desulfurization apparatus 15. When the electrical conductivity becomes a predetermined value or less, it is determined that the chlorine ions are insufficient, and the oxidant material (chlorine compound) 53 is contained in the electrolyzer 54 by the oxidant material supply means 52. To supply. Thereby, the shortage of chlorine ions can be solved.
 なお、電気伝導率が所定の値以下というのは、電気分解装置54内の電気伝導率 < 湿式脱硫装置15に供給する混合液57の電気伝導率、となった場合である。 Note that the electric conductivity is equal to or lower than a predetermined value is a case where the electric conductivity in the electrolysis apparatus 54 <the electric conductivity of the mixed liquid 57 supplied to the wet desulfurization apparatus 15.
 本実施例4における排ガス処理装置10D~10FのORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。 According to the ORP control of the exhaust gas treatment apparatuses 10D to 10F in the fourth embodiment, it is possible to reduce the concentration of metallic mercury re-scattered to the exhaust gas 22 side as the metallic mercury concentration in the slurry absorbing liquid 34 decreases. As a result, the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
 また、脱硫排水を固液分離した分離液(脱水ろ液46及び脱水ろ液36を処理した処理液47)を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。 Further, a solution of an oxidizing agent (hypochlorous acid) generated by electrolyzing a separation liquid (a treatment liquid 47 obtained by treating the dehydrated filtrate 46 and the dehydrated filtrate 36) obtained by solid-liquid separation of desulfurized wastewater with an electrolyzer 54. Since 55 is supplied to the wet desulfurization apparatus 15, the desulfurization waste water can be recycled in the wet desulfurization apparatus 15.
 また、スラリ吸収液34に供給する前の混合槽56で混合された混合液57の酸化還元電位を100mV以上200mV以下の範囲内に制御することから湿式脱硫装置15のスラリ吸収液34の酸化還元電位は200mVを下回ることになり、200mV以上となることはない。 Further, since the redox potential of the mixed liquid 57 mixed in the mixing tank 56 before being supplied to the slurry absorbing liquid 34 is controlled within the range of 100 mV to 200 mV, the redox of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is controlled. The potential will be below 200 mV and will not be above 200 mV.
 以上説明したように、本実施例に係る排ガス処置装置10は、脱硫反応に用いた石灰石膏スラリ34を固液分離処理する固液分離手段41と、分離された分離液(脱水ろ液46及び処理液47)を電気分解して酸化剤(次亜塩素酸)の溶液55を生成する電気分解装置54と、電気分解装置54に酸化剤原料(塩素化合物)53を供給する酸化剤原料供給手段52と、生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するための供給ラインL、L及び混合液返送ラインLと、湿式脱硫装置15に酸化剤(次亜塩素酸)の溶液55を供給してスラリ吸収液34のORP制御する制御手段51とを有する構成としている。 As described above, the exhaust gas treatment apparatus 10 according to the present embodiment includes the solid-liquid separation means 41 for performing the solid-liquid separation treatment on the lime gypsum slurry 34 used for the desulfurization reaction, and the separated liquid (dehydrated filtrate 46 and An electrolyzer 54 for electrolyzing the treatment liquid 47) to produce an oxidant (hypochlorous acid) solution 55; and an oxidant material supply means for supplying an oxidant material (chlorine compound) 53 to the electrolyzer 54. 52, supply lines L 6 and L 8 and a mixed liquid return line L 9 for supplying the generated oxidant (hypochlorous acid) solution 55 to the wet desulfurization apparatus 15, and an oxidant ( And a control means 51 for supplying the solution 55 of hypochlorous acid and controlling the ORP of the slurry absorbent 34.
 このように、本実施例に係る排ガス処理装置10によれば、硫黄酸化物(SOx)と還元脱硝装置12において酸化された2価のHg2+を湿式脱硫装置15で除去する際に分離液(脱水ろ液46及び処理液47)を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給してスラリ吸収液34のORP制御を行うようにしたことで適正な量の酸化剤(次亜塩素酸)の溶液55を供給することができ排ガス22中に含まれるNOx、SOx、特にHgを効率的に除去することができ、脱硫における酸化阻害を抑制できる。 As described above, according to the exhaust gas treatment apparatus 10 according to the present embodiment, when the wet oxide desulfurization apparatus 15 removes the sulfur oxide (SOx) and the divalent Hg 2+ oxidized in the reductive denitration apparatus 12, the separated liquid. An oxidant (hypochlorous acid) solution 55 generated by electrolyzing (dehydrated filtrate 46 and treatment liquid 47) with an electrolyzer 54 is supplied to the wet desulfurizer 15 to perform ORP control of the slurry absorbent 34. By doing so, an appropriate amount of an oxidant (hypochlorous acid) solution 55 can be supplied, and NOx, SOx, especially Hg contained in the exhaust gas 22 can be efficiently removed, and desulfurization is performed. Oxidation inhibition in can be suppressed.
 また、本実施例における排ガス処理装置10のORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。 Further, according to the ORP control of the exhaust gas treatment apparatus 10 in the present embodiment, the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases. As a result, the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
 さらに、本実施例のORP制御によれば、効率的・経済的に水銀の還元を防止し、再飛散を低減でき、かつ、セレン(Se)の処理性の悪化などの副作用を防止することができる。 Furthermore, according to the ORP control of this embodiment, it is possible to efficiently and economically prevent the reduction of mercury, reduce re-scattering, and prevent side effects such as deterioration of the processability of selenium (Se). it can.
 また、脱硫排水を固液分離した分離液(脱水ろ液46及び処理液47)を電気分解装置54で電気分解して生成した酸化剤(次亜塩素酸)の溶液55を湿式脱硫装置15に供給するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。 Further, a solution 55 of an oxidizing agent (hypochlorous acid) generated by electrolyzing the separated liquid (dehydrated filtrate 46 and treatment liquid 47) obtained by solid-liquid separation of the desulfurized wastewater with the electrolyzer 54 is supplied to the wet desulfurizer 15. In order to supply, desulfurization waste water can be recycled within the wet desulfurization apparatus 15.
 10 排ガス処理装置
 11 ボイラ
 12 還元脱硝装置
 13 空気予熱器(エアヒータ:AH)
 14 集塵器(ESP)
 15 湿式脱硫装置
 15a 塔底部
 15b 塔頂部側
 15c ノズル
 16 煙突
 21 燃料
 22 排ガス
 23 煙道
 24 処理排ガス
 31 還元酸化助剤供給手段
 32 還元酸化助剤(塩化アンモニウム(NH4Cl)溶液)
 33 石灰石膏スラリ供給手段
 34 石灰石膏スラリ(スラリ、スラリ吸収液、アルカリ吸収液)
 35、37 水(工業用水)
 36、46、48 分離液(脱水ろ液)
 41 固液分離手段
 42 脱水ケーキ(石膏)
 43 排水処理装置
 44 懸濁物、重金属、水銀等
 45 排水
 47、49 分離液(処理液)
 51 制御手段
 52 酸化剤原料供給手段
 53 酸化剤原料(塩素化合物)
 54 電気分解装置
 55 酸化剤(次亜塩素酸)の溶液
 56 混合槽
 57 混合液
 58 酸化還元電位計(ORP計)
10 Exhaust gas treatment device 11 Boiler 12 Reduction denitration device 13 Air preheater (Air heater: AH)
14 Dust collector (ESP)
15 wet desulfurization system 15a column bottom 15b top portion 15c nozzle 16 chimney 21 fuel 22 gas 23 flue 24 treated flue gas 31 reduction-oxidation auxiliary agent supply means 32 reduction-oxidation auxiliary agent (ammonium chloride (NH 4 Cl) solution)
33 Lime-gypsum slurry supply means 34 Lime-gypsum slurry (slurry, slurry absorbent, alkali absorbent)
35, 37 water (industrial water)
36, 46, 48 Separation liquid (dehydrated filtrate)
41 Solid-liquid separation means 42 Dehydrated cake (gypsum)
43 Wastewater treatment equipment 44 Suspensions, heavy metals, mercury, etc. 45 Wastewater 47, 49 Separation liquid (treatment liquid)
51 Control means 52 Oxidant raw material supply means 53 Oxidant raw material (chlorine compound)
54 Electrolyzer 55 Solution of oxidizing agent (hypochlorous acid) 56 Mixing tank 57 Mixed solution 58 Redox potential meter (ORP meter)

Claims (12)

  1.  ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給手段と、
     前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、
     前記排ガス中の硫黄酸化物と前記還元脱硝装置において酸化された水銀を吸収液により吸収除去する湿式脱硫装置と、
     前記吸収液の酸化還元電位を計測する酸化還元電位計と、
     前記湿式脱硫装置から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離手段と、
     前記固液分離手段で分離処理された分離液を電気分解して次亜塩素酸を生成する電気分解装置と、
     前記吸収液に前記次亜塩素酸を供給して前記吸収液の酸化還元電位を制御する制御手段と、
     を有することを特徴とする排ガス処理装置。
    Reducing oxidation aid supply means for supplying a reduction oxidation aid that generates hydrogen chloride and ammonia when vaporized in a flue that discharges exhaust gas from the boiler;
    A reduction denitration apparatus having a denitration catalyst that reduces nitrogen oxides in the exhaust gas with ammonia and oxidizes mercury in the presence of hydrogen chloride;
    A wet desulfurization device that absorbs and removes sulfur oxides in the exhaust gas and mercury oxidized in the reductive denitration device with an absorbing solution;
    An oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the absorbing solution;
    Solid-liquid separation means for separating the solid and mercury in the desulfurization effluent discharged from the wet desulfurization apparatus, and the liquid, and
    An electrolysis apparatus for electrolyzing the separated liquid separated by the solid-liquid separation means to produce hypochlorous acid;
    Control means for controlling the redox potential of the absorbing liquid by supplying the hypochlorous acid to the absorbing liquid;
    An exhaust gas treatment apparatus comprising:
  2.  前記分離液は、前記固液分離手段で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする請求項1に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to claim 1, wherein the separation liquid is a dehydrated filtrate separated by the solid-liquid separation means, or a treatment liquid obtained by removing heavy metals from the dehydrated filtrate.
  3.  前記分離液の電気伝導率を計測する電気伝導率計測手段と、
     前記電気分解装置に酸化剤原料を供給する酸化剤原料供給手段と、
     を有し、
     前記酸化剤原料供給手段は、前記計測した電気伝導率が所定の値以下の場合に酸化剤原料を供給することを特徴とする請求項1または2に記載の排ガス処理装置。
    Electrical conductivity measuring means for measuring the electrical conductivity of the separated liquid;
    An oxidant raw material supply means for supplying an oxidant raw material to the electrolyzer;
    Have
    3. The exhaust gas treatment apparatus according to claim 1, wherein the oxidant material supply unit supplies the oxidant material when the measured electrical conductivity is equal to or lower than a predetermined value.
  4.  前記制御手段は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項1から3の何れか1項に記載の排ガス処理装置。 The control means controls the oxidation-reduction potential of the absorption liquid to a range of 100 mV to 200 mV, or controls the sulfite ions in the absorption liquid to 0.1 mmol / L or more and 2.0 mmol / L or less. The exhaust gas treatment apparatus according to any one of claims 1 to 3.
  5.  前記次亜塩素酸と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合槽と、
     前記混合槽で混合された混合液を前記湿式脱硫装置に戻す混合液返送ラインと、
     を有し、
     前記制御手段は、前記混合液の酸化還元電位を計測し、前記混合液に前記次亜塩素酸を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項1から4の何れか1項に記載の排ガス処理装置。
    A mixing tank for mixing the hypochlorous acid, the dehydrated filtrate, or one or both of the treatment liquids;
    A mixed liquid return line for returning the mixed liquid mixed in the mixing tank to the wet desulfurization apparatus;
    Have
    The control means measures the oxidation-reduction potential of the mixed solution, supplies the hypochlorous acid to the mixed solution, and sets the oxidation-reduction potential of the mixed solution in the range of 100 mV to 200 mV, or in the mixed solution The exhaust gas treatment apparatus according to any one of claims 1 to 4, wherein the sulfite ion is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
  6.  前記電気分解装置は、パルス状の電流で前記分離液から次亜塩素酸を生成することを特徴とする請求項1から5の何れか1項に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to any one of claims 1 to 5, wherein the electrolyzer generates hypochlorous acid from the separated liquid with a pulsed current.
  7.  ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給工程と、
     前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝工程と、
     前記排ガス中の硫黄酸化物と前記還元脱硝工程において酸化された水銀を吸収液により吸収除去する湿式脱硫工程と、
     前記吸収液の酸化還元電位を計測する酸化還元電位計測工程と、
     前記湿式脱硫工程から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離工程と、
     前記固液分離工程で分離処理された分離液を電気分解して次亜塩素酸を生成する電気分解工程と、
     前記吸収液に前記次亜塩素酸を供給して前記吸収液の酸化還元電位を制御する制御工程と、
     を有することを特徴とする排ガス処理装置のORP制御方法。
    A reduction oxidation auxiliary agent supplying step for supplying a reduction oxidation auxiliary for generating hydrogen chloride and ammonia when vaporized in a flue for discharging exhaust gas from the boiler;
    A reduction denitration step having a denitration catalyst that reduces nitrogen oxides in the exhaust gas with ammonia and oxidizes mercury in the presence of hydrogen chloride; and
    A wet desulfurization step of absorbing and removing sulfur oxides in the exhaust gas and mercury oxidized in the reductive denitration step with an absorbent;
    A redox potential measuring step for measuring a redox potential of the absorbing solution;
    A solid-liquid separation step for separating the solid and mercury in the desulfurization effluent discharged from the wet desulfurization step, and the liquid, and
    An electrolysis step of electrolyzing the separated liquid separated in the solid-liquid separation step to produce hypochlorous acid;
    A control step of supplying the hypochlorous acid to the absorption liquid to control a redox potential of the absorption liquid;
    An ORP control method for an exhaust gas treatment apparatus, comprising:
  8.  前記分離液は、前記固液分離工程で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする請求項7に記載の排ガス処理装置のORP制御方法。 8. The ORP control method for an exhaust gas treatment apparatus according to claim 7, wherein the separation liquid is a dehydrated filtrate separated in the solid-liquid separation step or a treatment liquid obtained by removing heavy metals from the dehydrated filtrate. .
  9.  前記分離液の電気伝導率を計測する電気伝導率計測工程と、
     前記電気分解工程に酸化剤原料を供給する酸化剤原料供給工程と、
     を有し、
     前記酸化剤原料供給工程は、前記計測した電気伝導率が所定の値以下の場合に酸化剤原料を供給することを特徴とする請求項7または8に記載の排ガス処理装置のORP制御方法。
    An electrical conductivity measurement step for measuring electrical conductivity of the separated liquid;
    An oxidant raw material supply step for supplying an oxidant raw material to the electrolysis step;
    Have
    9. The ORP control method for an exhaust gas treatment apparatus according to claim 7, wherein the oxidant raw material supply step supplies an oxidant raw material when the measured electrical conductivity is equal to or lower than a predetermined value.
  10.  前記制御工程は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項7から9の何れか1項に記載の排ガス処理装置のORP制御方法。 In the control step, the oxidation-reduction potential of the absorbing solution is controlled in a range of 100 mV to 200 mV, or the sulfite ion in the absorbing solution is controlled to 0.1 mmol / L to 2.0 mmol / L. The ORP control method for an exhaust gas treatment apparatus according to any one of claims 7 to 9.
  11.  前記次亜塩素酸と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合工程と、
     前記混合工程で混合された混合液を前記湿式脱硫工程に戻す混合液返送工程と、
     を有し、
     前記制御工程は、前記混合液の酸化還元電位を計測し、前記混合液に前記次亜塩素酸を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項7から10の何れか1項に記載の排ガス処理装置のORP制御方法。
    A mixing step for mixing the hypochlorous acid with either one or both of the dehydrated filtrate and the treatment liquid;
    A liquid mixture returning step for returning the liquid mixture mixed in the mixing step to the wet desulfurization step;
    Have
    In the control step, the oxidation-reduction potential of the mixed solution is measured, and the hypochlorous acid is supplied to the mixed solution so that the oxidation-reduction potential of the mixed solution is in the range of 100 mV to 200 mV, or in the mixed solution. The method of controlling an ORP of an exhaust gas treatment apparatus according to any one of claims 7 to 10, wherein the sulfite ion is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
  12.  前記電気分解工程は、パルス状の電流で前記分離液から次亜塩素酸を生成することを特徴とする請求項7から11の何れか1項に記載の排ガス処理装置のORP制御方法。 The ORP control method for an exhaust gas treatment apparatus according to any one of claims 7 to 11, wherein the electrolysis step generates hypochlorous acid from the separated liquid with a pulsed current.
PCT/JP2012/064818 2011-06-23 2012-06-08 Exhaust gas treatment apparatus and orp control method therefor WO2012176634A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139796A JP2013006144A (en) 2011-06-23 2011-06-23 Exhaust gas treatment apparatus, and orp control method therefor
JP2011-139796 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176634A1 true WO2012176634A1 (en) 2012-12-27

Family

ID=47422474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064818 WO2012176634A1 (en) 2011-06-23 2012-06-08 Exhaust gas treatment apparatus and orp control method therefor

Country Status (2)

Country Link
JP (1) JP2013006144A (en)
WO (1) WO2012176634A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170236A (en) * 2013-03-01 2013-06-26 广东电网公司电力科学研究院 Intelligent demercuration addition agent adding system for coal-fired power plant
WO2014011349A1 (en) * 2012-07-12 2014-01-16 Babcock & Wilcox Power Generation Group, Inc. Method for controlling compounds and conditions in a wet flue gas desulfurization (wfgd) unit
EP3275529A4 (en) * 2015-03-27 2018-03-28 Mitsubishi Hitachi Power Systems, Ltd. Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device
CN109092045A (en) * 2018-10-11 2018-12-28 华北电力大学(保定) A kind of limestone-gypsum method flue gas desulfurization slurries oxidation controlling method
CN113251411A (en) * 2021-05-31 2021-08-13 国能神东煤炭集团有限责任公司 Multi-pollutant cooperative control system and method for coal-fired industrial boiler

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039651A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water
CN103566725B (en) * 2013-10-15 2016-03-02 中国科学院过程工程研究所 A kind of circulating fluid bed semi-drying method combined desulfurization and denitration mercury removal device and method
US10780473B2 (en) * 2015-02-27 2020-09-22 Mitsubishi Hitachi Power Systems, Ltd. Cement solidification device for waste and method therefor, and zero-liquid discharge air pollution control system and method therefor
JP6504856B2 (en) * 2015-02-27 2019-04-24 三菱日立パワーシステムズ株式会社 Non-drained waste gas treatment system and method
JP6723793B2 (en) * 2016-03-31 2020-07-15 三菱日立パワーシステムズ株式会社 Desulfurization treatment apparatus and method of operating desulfurization treatment apparatus
JP2018171583A (en) 2017-03-31 2018-11-08 三菱日立パワーシステムズ株式会社 Non-draining exhaust gas treatment system and non-draining exhaust gas treatment method
JP6985084B2 (en) * 2017-09-25 2021-12-22 関西電力株式会社 Desulfurization method and desulfurization equipment for gases containing sulfur oxides
JP7164344B2 (en) * 2018-07-23 2022-11-01 三菱重工業株式会社 Oxidation-reduction potential determination device, desulfurization device provided with the same, and oxidation-reduction potential determination method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656217A (en) * 1979-10-12 1981-05-18 Ngk Insulators Ltd Deodorizing method
JPH08240310A (en) * 1995-03-06 1996-09-17 Ishikawajima Harima Heavy Ind Co Ltd Treating apparatus for exhaust gas from melting furnace
JP2004313833A (en) * 2003-04-11 2004-11-11 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2009166013A (en) * 2008-01-21 2009-07-30 Mitsubishi Heavy Ind Ltd Exhaust gas treatment system of coal fired boiler
JP2010000453A (en) * 2008-06-20 2010-01-07 Ihi Corp Exhaust gas clarification method and equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656217A (en) * 1979-10-12 1981-05-18 Ngk Insulators Ltd Deodorizing method
JPH08240310A (en) * 1995-03-06 1996-09-17 Ishikawajima Harima Heavy Ind Co Ltd Treating apparatus for exhaust gas from melting furnace
JP2004313833A (en) * 2003-04-11 2004-11-11 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2009166013A (en) * 2008-01-21 2009-07-30 Mitsubishi Heavy Ind Ltd Exhaust gas treatment system of coal fired boiler
JP2010000453A (en) * 2008-06-20 2010-01-07 Ihi Corp Exhaust gas clarification method and equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011349A1 (en) * 2012-07-12 2014-01-16 Babcock & Wilcox Power Generation Group, Inc. Method for controlling compounds and conditions in a wet flue gas desulfurization (wfgd) unit
AU2013289074B2 (en) * 2012-07-12 2017-11-16 The Babcock & Wilcox Company Method for controlling compounds and conditions in a wet flue gas desulfurization (WFGD) unit
CN103170236A (en) * 2013-03-01 2013-06-26 广东电网公司电力科学研究院 Intelligent demercuration addition agent adding system for coal-fired power plant
CN103170236B (en) * 2013-03-01 2015-04-22 广东电网公司电力科学研究院 Intelligent demercuration addition agent adding system for coal-fired power plant
EP3275529A4 (en) * 2015-03-27 2018-03-28 Mitsubishi Hitachi Power Systems, Ltd. Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device
CN109092045A (en) * 2018-10-11 2018-12-28 华北电力大学(保定) A kind of limestone-gypsum method flue gas desulfurization slurries oxidation controlling method
CN113251411A (en) * 2021-05-31 2021-08-13 国能神东煤炭集团有限责任公司 Multi-pollutant cooperative control system and method for coal-fired industrial boiler

Also Published As

Publication number Publication date
JP2013006144A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2012176634A1 (en) Exhaust gas treatment apparatus and orp control method therefor
WO2012176635A1 (en) Exhaust gas treatment apparatus and orp control method therefor
JP5716929B2 (en) Mercury treatment system in exhaust gas
JP5656649B2 (en) Exhaust gas treatment system and exhaust gas treatment method
EP2937131B1 (en) Exhaust gas purifying apparatus
JP5529701B2 (en) Gas analyzer, mercury removal system, and mercury removal method
JP5972983B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP6522114B2 (en) Wet flue gas desulfurization device and operating method of wet flue gas desulfurization device
JP2009262081A (en) System for treating discharge gas and method of removing mercury from discharge gas
JP6095923B2 (en) Mercury treatment system in exhaust gas
JP2012073106A5 (en)
TWI566825B (en) Flue gas desulfurization and denitrification method
WO2014041951A1 (en) System for treating mercury in exhaust gas
JP2008132413A (en) Combustion exhaust gas treatment apparatus and wastewater treatment method of wet type dust collector
KR101910635B1 (en) Method for treating wastewater from flue gas desulfurization using electrolysis device
JP2015213888A (en) Exhaust gas treatment method and exhaust gas treatment device
KR101638971B1 (en) Wet gas cleaning system using oxidizing agent produced from the wastewater
CN104028103A (en) Method for catalyzing and oxidizing boiler smoke gas through chlorine dioxide and simultaneously desulfurizing and denitrating boiler smoke gas
JP2008006409A (en) Method for regenerating exhaust gas absorbed solution
JP4777133B2 (en) Mercury removal apparatus and method
CN205570069U (en) While SOx/NOx control&#39;s processing apparatus
Kim et al. A study on the NOx reduction of flue gas using seawater electrolysis
JP2010000453A (en) Exhaust gas clarification method and equipment
JP5467586B2 (en) Selenium-containing liquid treatment system, wet desulfurization apparatus, and selenium-containing liquid treatment method
JP2006136856A (en) Mercury removing device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802339

Country of ref document: EP

Kind code of ref document: A1