JP3748861B2 - Exhaust gas desulfurization method by metathesis method - Google Patents

Exhaust gas desulfurization method by metathesis method Download PDF

Info

Publication number
JP3748861B2
JP3748861B2 JP2003033754A JP2003033754A JP3748861B2 JP 3748861 B2 JP3748861 B2 JP 3748861B2 JP 2003033754 A JP2003033754 A JP 2003033754A JP 2003033754 A JP2003033754 A JP 2003033754A JP 3748861 B2 JP3748861 B2 JP 3748861B2
Authority
JP
Japan
Prior art keywords
exhaust gas
slurry liquid
liquid
slurry
metathesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003033754A
Other languages
Japanese (ja)
Other versions
JP2004243169A (en
Inventor
崇良 張本
憲道 松本
一男 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Kasui Corp
Original Assignee
Kubota Kasui Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Kasui Corp filed Critical Kubota Kasui Corp
Priority to JP2003033754A priority Critical patent/JP3748861B2/en
Publication of JP2004243169A publication Critical patent/JP2004243169A/en
Application granted granted Critical
Publication of JP3748861B2 publication Critical patent/JP3748861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体燃料、固体燃料、気体燃料を燃焼した設備(ボイラー、炉等)から排出された硫黄酸化物(SOx)を含有する各種燃焼排ガスの脱硫方法に関する。
【0002】
【従来の技術】
排ガスの脱硫技術としては既に数多の方法が知られ、実用化されている。そのような脱硫方法の中で、高い硫黄酸化物吸収能力を有する水酸化マグネシウム等のマグネシウム系化合物を用いる方法が知られている。具体例としては、例えば図3に示すように、特許文献1,2及び3に、水酸化マグネシウム石膏法と呼ばれる脱硫技術が開示されている。この技術では、優れた品質の石膏を回収することができるという特長を有している。
【0003】
【特許文献1】
特開平8−155263号公報
【特許文献2】
特開平11−70316号公報
【特許文献3】
特開2000−84351号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来の水酸化マグネシウム石膏法には、(1)プロセスフロー、特殊構造の吸収塔の使用、吸収液のCODコントロール、副生亜硫酸石膏の低減管理、高対ガス吸収液比(L/G)運転、複雑な運転管理、長期安定運転に対する要求、建設及び運転コストの低下、環境への優しさ排出排ガス等の排出による二次災害のない技術等に関しての改善、改良もしくは画期的な新プロセスの開発が要求されている。
更に(2)海岸近くだけでなく内陸でも容易に建設でき、運転維持できる環境に優しいプロセスも要求されており、特に優れた品質の石膏を回収することには必ずしも頓着せず、上記(1)及び(2)に力点をおいたプロセスの開発が望まれている。
【0005】
従って、本発明は、特開平11−290643号公報、特公昭51−31036号公報、特公昭60−18208号公報に開示したモレタナ塔を用いる排ガス処理技術及びモレタナ塔方式の石灰石膏法技術を基本にして、従来の水酸化マグネシウム石膏法を再構築し、高脱硫効率、長期安定運転、安易な運転操作、安価な設備、安易な運転管理体制、安易なメンテナンス、環境に優しい設備等を特長とする排ガスの脱硫方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に従えば、硫黄酸化物を含む排ガス中の不純物の除去及び排ガスの調湿をする前処理工程と、硫黄酸化物を含む排ガスと吸収スラリー液とをモレタナ吸収塔内で接触させて排ガス中に含まれる硫黄酸化物を吸収除去する脱硫工程と、脱硫工程後の処理液を酸素を含むガスで処理する酸化工程と、酸化工程後の処理液を二水石膏と上澄液とに分離する分離工程と、二水石膏を分離した後の上澄液を水酸化カルシウムを主成分とするスラリー液と反応させて二水石膏の生成と水酸化マグネシウムの再生を行う複分解工程を含み、複分解工程で生成したスラリー液をそのまま脱硫工程に吸収スラリー液として返送する排ガス脱硫方法であって、(1)モレタナ吸収塔への吸収スラリー液のpHを、モレタナ吸収塔出口スラリー液を溢流方式で受液槽に供給し、これに返送される複分解工程からのスラリー液で所定の値に保持し、(2)モレタナ吸収塔出口スラリー液のpHが所定値にない場合には、吸収スラリー液の一部をモレタナ吸収塔内に供給して所定のpHに保持し、(3)酸化工程からの処理液のpHを、酸素を含むガスの供給量及び/又は滞留時間で調整して酸化効率を変動させて、所定の値に保持し、そして(4)複分解工程からのスラリー液のpHを水酸化カルシウムを主成分とするスラリー液を補助剤として複分解工程に供給して、所定の値に保持することを特徴とする排ガス脱硫方法が提供される。
【0007】
本発明に従えば、また各工程のpH値を以下の範囲に保持する前記排ガス脱硫方法が提供される。
(1)モレタナ吸収塔への吸収スラリー液 6〜8
(2)モレタナ吸収塔出口スラリー液 4〜6
(3)酸化工程からの処理液 4〜5
(4)複分解工程からのスラリー液 9〜12
【0008】
本発明に従えば、更に吸収スラリー液中に水酸化アルミニウムを存在させる請求項1又は2に記載の排ガス脱硫方法が提供される。
【0009】
本発明者らは、前記目的を達成すべく鋭意検討を進めた結果、
(イ)好ましくは、硫黄酸化物を含む供給排ガスを調湿する前処理工程を用いることによって、モレタナプレート下面へのスケーリングを低減できること、
(ロ)モレタナ吸収塔への吸収スラリー液、モレタナ吸収塔出口スラリー液、酸化槽出口スラリー液、複分解槽内スラリー液のpHを一定値内に管理することによって安定運転ができること、
(ハ)好ましくは、閉塞が懸念される脱硫システム系内に数+ppm オーダーの水酸化アルミニウムを固体状態で存在させることによって、スケーリング防止、閉塞防止に寄与できること、
(ニ)好ましくは、吸収液スラリーに添加されている水酸化マグネシウム及び水酸化アルミニウムは原則として閉鎖系であるが、副生石膏と共に僅かに系外に排出される分を補充するだけでよいこと、
(ホ)前記脱硫の各工程は単位操作として独立しており、プロセスフローの流れに逆らって前工程に一部を返送する運転管理をしなくてよいこと、
(ヘ)副生二水石膏を主成分とする固形物は通常の沈降分離で容易に分離できること、
(ト)好ましくは、吸収塔内のL/G(リットル/m3 )は3〜5位のオーダーで高吸収効率(95〜99%)及び安定運転ができること、
(チ)モレタナ吸収塔出口スラリー液のpHが所定値内にならない場合には、吸収スラリー液の一部をモレタナ塔内に供給して所定のpHに保持し、安定したバッファーを維持して安定運転ができること、
(リ)原排ガス中の不純物が少ない場合には、前処理工程から排水として一部を定期的にブローダウンすることなく安定運転できること
を見出して本発明をするに至った。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して説明する。
【0011】
本発明を実施するプロセスの主要部は、図1及び図2に示すように、本発明の好ましい態様で使用する前処理工程に対応する前処理槽1、脱硫工程に対応するモレタナ吸収塔2及び受液槽3、酸化工程に対応する酸化槽4、分離工程に対応する沈降槽5及び上澄液貯槽6、複分解工程に対応する複分解槽7及び補助剤供給貯槽8並びにこれらに付属する汎用のブロワー、ポンプ、撹拌機、計装、電気、配管等から構成される。
【0012】
受液槽3、酸化槽4、複分解槽7には、スラリー液のpH測定装置が設置されている。受液槽3及び複分解槽7のpHの管理は本発明の重要な部分であり、一般的な方法で自動制御方式でコントロールすることができる。
【0013】
脱硫設備のスタート時、原排ガス性状の変化、原料中ガス発生設備の運転時の変動等でモレタナ吸収塔出口スラリー液のpHが不安定になる時には、吸収スラリー液の一部をモレタナ塔内に一時的に供給することによって所定のpHに保持する。
【0014】
受液槽3には複分解槽7で再生された水酸化マグネシウム、副生した二水石膏、水酸化アルミニウム、水酸化カルシウムの混合スラリー液を導入して、モレタナ吸収塔への吸収スラリー液のpHを調整して吸収塔に供給する(この調整された液が“吸収スラリー液”である)。
【0015】
吸収スラリー液をモレタナ吸収塔2の塔頂に供給し、モレタナ吸収塔2内の多段モレタナで排ガスと吸収スラリー液とをダイナミックに(動的に?具体的にはどういう意味かお教え下さい)接触させて硫黄酸化物が排ガスから吸収スラリー液に吸収、固定される。
【0016】
本発明を以下の機構に限定するものではないが、本発明のプロセスの化学原理を硫黄酸化物成分が亜硫酸ガス(SO2 )の場合について以下に説明する。
即ち、亜硫酸ガス(SO2 )はモレタナ吸収塔2内で吸収スラリー液に吸収された後(以下“吸収塔処理液”という)、主として式(I)に示す通り、亜硫酸水素マグネシウムとして固定される。
【0017】
2SO2 +2H2 O→2H2 SO3
2H2 SO3 →2H+ +2HSO3 -
Mg(OH)2 +2HSO3 - →Mg(HSO32 +2OH- …(I)
【0018】
吸収塔処理液は受液槽3に送り、受液槽3内に設置された仕切板から溢流する前にその一部が酸化槽4に送られる。酸化槽では、例えば空気によって酸化された後(以下“酸化槽処理液”という)、主として式(II)の通りに、易溶性の硫酸マグネシウム及び硫酸に変換される。
Mg(HSO32 +O2 →MgSO4 +H2 SO4 …(II)
【0019】
酸化槽処理液は沈降槽5に送られ、そこで、例えば自然沈降方式で二水石膏を主成分とする固形物と上澄液に分離される。この上澄液は主として硫酸マグネシウムを含む液である。
【0020】
沈降槽5で分離された上澄液中の硫酸マグネシウムは複分解槽7に送られ、そこで補助剤供給貯槽8から供給されるスラリー液中の水酸化カルシウムと反応して、主として式(III)の通りに硫酸マグネシウムと二水石膏に変換され、再びモレタナ吸収塔2に返送される。
MgSO4 +Ca(OH)2 +2H2 O→
CaSO4 ・2H2 O+Mg(OH)2 …(III)
【0021】
このようにして、本発明に従えば、多段モレタナ塔を適用し、水酸化マグネシウムを主吸収剤とし、水酸化アルミニウムをスケーリング防止剤等として有効利用し、脱硫設備として高脱硫率化、プロセスの簡易化、設備のコンパクト化、環境に優しい技術化、長期安定運転化、運転管理の容易化、建設及び運転コストの低減化をさせる手段を提供することに成功したものである。
【0022】
本発明において使用するモレタナ塔は、堰及び溢流部などを有していない、開口比Fcが0.25〜0.5、好ましくは0.3〜0.4の多孔板や目皿板などからなる「モレタナ」を少なくとも一段、好ましくは複数段含んで成る塔で既に排ガス処理技術に多用されている。かかるモレタナ(漏れ棚)塔を用いる排ガス処理技術については、特公昭51−31036号公報及び特公昭60−18208号公報に記載されており、具体的な運転条件は、塔に供給されるガス流量G(m3 /hr)と吸収液流量L(リットル/hr)との比L/Gが2.5以上好ましくは3〜5で、モレタナ塔を通過するガス空塔速度Ug(m/sec )が2以上好ましくは、2.5〜4である。
【0023】
本発明によれば、最終的に原排ガス中の硫黄分の大部分及び不純物(Hg,Pb&F等)の一部は二水石膏を主成分とする固形物として系外に分離され、そして原排ガス中の不純物(Hg,Pb&F等)の大部分は好ましくは前処理工程で外部に分離する。また原則として排水は産業廃水として系外に排出されないので環境に優しい技術として、本発明は硫黄酸化物による酸性雨や大気汚染などの被害を効果的に防止することができる。更に本脱硫設備は環境に優しい技術に立脚しているので、例えば海岸近くとか、内陸地域等の立地規制にとらわれることなく、経済的にも十分なフィージビリティ性を有している。
【0024】
【実施例】
以下、本発明の排ガスの脱硫方法を実施例によって詳細に説明するが、本発明を以下の実施例に限定するものではない。
【0025】
実施例1
図2に示す設備で実験を行った。運転スタート時は吸収スラリー液の性能が不十分のため、水酸化マグネシウムを利用して運転を開始し、吸収剤としてのバッファーが安定してから、定常運転条件にして運転した。
尚、実験テスト時に周囲への環境汚染問題が生じないようにするための安全対策として、モレタナ吸収塔2からの処理排ガス及び酸化槽4に供給した空気は全量水酸化ナトリウム溶液槽に導入して十分脱硫してから大気放出した。
【0026】
原排ガスは実排ガスの条件に近づけるため、ブロワーで加圧された空気を加熱炉で加熱し、その中にボンベから亜硫酸ガスを添加して、136℃、亜硫酸ガス950ppm 、520mmH2 Oの原排ガスを作って利用した。
この原排ガス320m3 /hr(wet)を前処理槽1に導入して調湿し、42℃に冷却された排ガスをモレタナ吸収塔2に導入した。
【0027】
複分解槽内スラリー液(pH設定値10.80)を受液槽3に自動制御方式で供給してモレタナ吸収塔への吸収スラリー液(pH設定値7.0)のpHを一定値内に調整して、吸収塔の上部に1.4m3 /hrを送って多段モレタナ塔内でダイナミックに接触させ、この繰返しによって吸収スラリー液をモレタナ吸収塔内に連続的に循環した。
【0028】
モレタナ吸収塔出口スラリー液の一部(0.1m3 /hr、pH5.7(必ずしも一定ではなく目安として))を定期的に抜き出して、酸化槽4に供給した。
【0029】
酸化槽に供給したスラリー液は例えば空気を供給して酸化し、この酸化程度はモレタナ吸収塔出口スラリー液のスラリー性状、滞留時間、空気量、空気の吹込み機構にもよるが、必ずしも一定ではなく目安として空気量3Nm3 /hr、滞留時間1.5hr 、pH4.4として管理した。
【0030】
酸化槽出口スラリー液は沈降槽5に供給し、自然沈降方式で二水石膏を主成分とする固形物と上澄液に分離し、上澄液は上澄液貯槽6に導入する。この上澄液貯槽6はバッファー槽としても寄与する。酸化槽出口スラリー液量は必ずしも一定ではなく目安として、0.1m3 /hrを沈降槽5に供給した。
沈降槽5内での上澄液分離時間は17分程度であり、濃縮液からの固形物沈降時間は16分程度であり、比較的容易に自然沈降分離ができる。
濃縮液に含有されている水分は回収し、上澄液貯槽6に供給する。
【0031】
上澄液貯槽6中の上澄液は複分解槽7に供給し、補助剤供給貯槽8内の塩基性スラリー液を自動制御方式によって供給することによって複分解槽内スラリー液を一定pH値(pH設定値10.80)内にコントロールする。なお、pHの測定は、pHメーターによって連続的に測定した。
【0032】
なお、吸収塔内の吸収液の温度は34℃、処理排ガスの亜硫酸ガス濃度は20ppm で、脱硫率は約98%であった。
【0033】
【発明の効果】
以上説明した通り、本発明に従って、多段モレタナ塔を利用し、水酸化マグネシウムを主要吸収剤とし、水酸化アルミニウムを添加してスケーリングを防止し、排ガス中の硫黄酸化物の固定化に水酸化カルシウムを利用し、及びpHコントロールによって運転管理をすることによって、高脱硫率化、プロセスの簡易化、設備のコンパクト化、環境に優しい技術化、長期安定運転化、運転管理の容易化、建設及び運転コストの低減化をさせることができ、環境保全を簡便でコンパクトな装置を用いて低コストに実施できる。
【図面の簡単な説明】
【図1】本発明の実施例を示すブロックフローダイヤグラム図である。
【図2】本発明の実施例を示すブロックフローダイヤグラム図である。
【図3】従来技術の一例を示すブロックフローダイヤグラム図である。
【符号の説明】
1…前処理槽
2…モレタナ吸収塔
3…受液槽
4…酸化槽
5…沈降槽
6…上澄液貯槽
7…複分解槽
8…補助剤供給貯槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for desulfurization of various combustion exhaust gases containing sulfur oxide (SOx) discharged from equipment (boiler, furnace, etc.) combusting liquid fuel, solid fuel, and gaseous fuel.
[0002]
[Prior art]
Numerous methods have already been known and put into practical use as exhaust gas desulfurization techniques. Among such desulfurization methods, a method using a magnesium-based compound such as magnesium hydroxide having a high sulfur oxide absorption capability is known. As a specific example, as shown in FIG. 3, for example, Patent Documents 1, 2, and 3 disclose a desulfurization technique called a magnesium hydroxide gypsum method. This technique has a feature that it is possible to collect an excellent quality gypsum.
[0003]
[Patent Document 1]
JP-A-8-155263 [Patent Document 2]
Japanese Patent Laid-Open No. 11-70316 [Patent Document 3]
Japanese Patent Laid-Open No. 2000-84351
[Problems to be solved by the invention]
However, in the conventional magnesium hydroxide gypsum method, (1) process flow, use of absorption tower with special structure, COD control of absorption liquid, reduction management of by-product sulfite gypsum, high to gas absorption liquid ratio (L / G ) Improvements, improvements, or groundbreaking new technologies related to operation, complex operation management, long-term stable operation requirements, reduction of construction and operation costs, environmental friendliness, and technologies without secondary disasters due to emissions Process development is required.
Furthermore, (2) environmentally friendly processes that can be easily constructed not only near the coast but also inland and can be operated and maintained are also required, and it is not always possible to recover particularly good quality plaster. And the development of a process that focuses on (2) is desired.
[0005]
Therefore, the present invention is based on the exhaust gas treatment technology using the Moretana tower and the Moretana tower type lime gypsum method technology disclosed in JP-A-11-290643, JP-B-51-31036, and JP-B-60-18208. The existing magnesium hydroxide gypsum method has been restructured and features high desulfurization efficiency, long-term stable operation, easy operation, inexpensive equipment, easy operation management system, easy maintenance, environmentally friendly equipment, etc. An object of the present invention is to provide a method for desulfurizing exhaust gas.
[0006]
[Means for Solving the Problems]
According to the present invention, the pretreatment process for removing impurities in the exhaust gas containing sulfur oxide and conditioning the exhaust gas, and the exhaust gas containing sulfur oxide and the absorbing slurry liquid are brought into contact with each other in the Moretana absorption tower to exhaust the exhaust gas. A desulfurization process for absorbing and removing sulfur oxides contained therein, an oxidation process for treating the treatment liquid after the desulfurization process with a gas containing oxygen, and a treatment liquid after the oxidation process are separated into dihydrate gypsum and a supernatant liquid A separation process, and a metathesis process in which the supernatant after separating the dihydrate gypsum is reacted with a slurry liquid mainly composed of calcium hydroxide to generate dihydrate gypsum and regenerate magnesium hydroxide. An exhaust gas desulfurization method in which the slurry liquid generated in the process is directly returned to the desulfurization process as an absorption slurry liquid. (1) The pH of the absorption slurry liquid to the Moretana absorption tower is set to the overflow of the Moretana absorption tower outlet slurry liquid. Receiving A slurry liquid from the metathesis step that is supplied to the tank and returned to the tank is held at a predetermined value. (2) When the pH of the slurry liquid at the outlet of the moletana absorption tower is not at the predetermined value, a part of the absorbed slurry liquid Is supplied into the Moretana absorption tower and maintained at a predetermined pH. (3) The pH of the treatment liquid from the oxidation step is adjusted by the supply amount of oxygen-containing gas and / or the residence time to vary the oxidation efficiency. (4) The pH of the slurry liquid from the metathesis step is supplied to the metathesis step using the slurry liquid mainly composed of calcium hydroxide as an auxiliary agent, and is kept at the predetermined value. An exhaust gas desulfurization method is provided.
[0007]
According to the present invention, there is also provided the exhaust gas desulfurization method that maintains the pH value of each step in the following range.
(1) Absorption slurry liquid to Moretana absorption tower 6-8
(2) Moretana absorption tower outlet slurry liquid 4-6
(3) Treatment liquid from oxidation process 4-5
(4) Slurry liquid from double decomposition process 9-12
[0008]
According to the present invention, there is provided the exhaust gas desulfurization method according to claim 1 or 2, wherein aluminum hydroxide is further present in the absorbing slurry liquid.
[0009]
As a result of intensive studies to achieve the above object, the present inventors have
(B) Preferably, scaling to the lower surface of the Moretana plate can be reduced by using a pretreatment step of conditioning the supplied exhaust gas containing sulfur oxide.
(B) Stable operation can be achieved by controlling the pH of the absorption slurry liquid to the Moretana absorption tower, the Moretana absorption tower outlet slurry liquid, the oxidation tank outlet slurry liquid, the slurry liquid in the metathesis tank within a certain value,
(C) Preferably, the presence of aluminum hydroxide in the order of several ppm in the solid state in the desulfurization system where the clogging is concerned can contribute to prevention of scaling and clogging.
(D) Preferably, the magnesium hydroxide and aluminum hydroxide added to the absorbent slurry are in principle a closed system, but it is only necessary to replenish the portion discharged with the byproduct gypsum slightly out of the system.
(E) Each step of the desulfurization is independent as a unit operation, and it is not necessary to perform operation management to return a part to the previous step against the flow of the process flow.
(F) Solids mainly composed of byproduct dihydrate gypsum can be easily separated by ordinary sedimentation separation,
(G) Preferably, L / G (liter / m 3 ) in the absorption tower is capable of high absorption efficiency (95 to 99%) and stable operation in the order of 3-5.
(H) If the pH of the slurry liquid at the outlet of the Moretana absorption tower does not fall within the specified value, a part of the absorption slurry is supplied into the Moretana tower and maintained at the specified pH, and a stable buffer is maintained and stabilized. Being able to drive,
(I) When there are few impurities in the raw exhaust gas, the inventors have found that stable operation can be performed without periodically blowing down a part of the wastewater from the pretreatment process, leading to the present invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0011]
As shown in FIGS. 1 and 2, the main part of the process for carrying out the present invention is a pretreatment tank 1 corresponding to the pretreatment step used in the preferred embodiment of the present invention, a moletana absorption tower 2 corresponding to the desulfurization step, and Liquid receiving tank 3, oxidation tank 4 corresponding to the oxidation process, sedimentation tank 5 and supernatant liquid storage tank 6 corresponding to the separation process, metathesis tank 7 and auxiliary agent supply storage tank 8 corresponding to the metathesis process, and general-purpose accessories attached to these. Consists of blower, pump, stirrer, instrumentation, electricity, piping, etc.
[0012]
In the liquid receiving tank 3, the oxidation tank 4, and the metathesis tank 7, a slurry liquid pH measuring device is installed. Management of the pH of the liquid receiving tank 3 and the metathesis tank 7 is an important part of the present invention, and can be controlled by an automatic control method by a general method.
[0013]
When the pH of the slurry liquid at the outlet of the Moretana absorption tower becomes unstable due to changes in the properties of the raw exhaust gas at the start of the desulfurization equipment, fluctuations during operation of the raw material gas generation equipment, etc., part of the absorbed slurry liquid is put into the Moretana tower A predetermined pH is maintained by supplying temporarily.
[0014]
A mixed slurry liquid of magnesium hydroxide regenerated in the metathesis tank 7, byproduct dihydrate gypsum, aluminum hydroxide, and calcium hydroxide is introduced into the liquid receiving tank 3, and the pH of the absorbed slurry liquid to the Moretana absorption tower is introduced. Is supplied to the absorption tower (this adjusted liquid is the “absorbing slurry liquid”).
[0015]
Supply the absorption slurry to the top of the Moretana absorption tower 2 and contact the exhaust gas and the absorption slurry with the multi-stage Moretana in the Moretana absorption tower 2 dynamically (please tell me what it means) Thus, the sulfur oxide is absorbed and fixed from the exhaust gas to the absorbing slurry.
[0016]
Although the present invention is not limited to the following mechanism, the chemical principle of the process of the present invention will be described below in the case where the sulfur oxide component is sulfurous acid gas (SO 2 ).
That is, sulfurous acid gas (SO 2 ) is absorbed in the absorbing slurry liquid in the Moretana absorption tower 2 (hereinafter referred to as “absorbing tower treatment liquid”) and then fixed as magnesium bisulfite mainly as shown in the formula (I). .
[0017]
2SO 2 + 2H 2 O → 2H 2 SO 3
2H 2 SO 3 → 2H + + 2HSO 3
Mg (OH) 2 + 2HSO 3 → Mg (HSO 3 ) 2 + 2OH (I)
[0018]
The absorption tower treatment liquid is sent to the liquid receiving tank 3, and a part thereof is sent to the oxidation tank 4 before overflowing from the partition plate installed in the liquid receiving tank 3. In the oxidation tank, for example, after being oxidized by air (hereinafter referred to as “oxidation tank treatment liquid”), it is converted into readily soluble magnesium sulfate and sulfuric acid mainly as in the formula (II).
Mg (HSO 3 ) 2 + O 2 → MgSO 4 + H 2 SO 4 (II)
[0019]
The oxidation tank treatment liquid is sent to the sedimentation tank 5, where it is separated into a solid and a supernatant mainly composed of dihydrate gypsum, for example, by a natural sedimentation method. This supernatant is a liquid mainly containing magnesium sulfate.
[0020]
Magnesium sulfate in the supernatant separated in the settling tank 5 is sent to the metathesis tank 7, where it reacts with calcium hydroxide in the slurry liquid supplied from the auxiliary agent supply storage tank 8, and mainly of the formula (III) Then, it is converted into magnesium sulfate and dihydrate gypsum and returned to the Moretana absorption tower 2 again.
MgSO 4 + Ca (OH) 2 + 2H 2 O →
CaSO 4 .2H 2 O + Mg (OH) 2 (III)
[0021]
Thus, according to the present invention, a multi-stage Moretana tower is applied, magnesium hydroxide is used as a main absorbent, aluminum hydroxide is effectively used as a scaling inhibitor, etc., and a high desulfurization rate is achieved as a desulfurization facility. simplification, downsizing of the equipment, environmentally friendly technologies of long-term stable operation of, ease of operation and management, in which have succeeded in providing a means for the reduction of such construction and operating costs.
[0022]
The Moretana tower used in the present invention does not have a weir, an overflow part, etc., and a perforated plate or a countersunk plate having an opening ratio Fc of 0.25 to 0.5, preferably 0.3 to 0.4. A tower comprising at least one stage, preferably a plurality of stages, is already widely used in exhaust gas treatment technology. Exhaust gas treatment technology using such a Moretana (leakage shelf) tower is described in Japanese Patent Publication Nos. 51-31036 and 60-18208. Specific operating conditions are the flow rate of gas supplied to the tower. The ratio L / G of G (m 3 / hr) to the absorption liquid flow rate L (liter / hr) is 2.5 or more, preferably 3 to 5, and the gas superficial velocity Ug (m / sec) passing through the Moretana tower Is 2 or more, preferably 2.5-4.
[0023]
According to the present invention, most of the sulfur content and a part of impurities (Hg, Pb & F, etc.) in the raw exhaust gas are finally separated out of the system as solids mainly composed of dihydrate gypsum, and the raw exhaust gas. Most of the impurities (Hg, Pb & F, etc.) therein are preferably separated outside in the pretreatment step. In principle, since the wastewater is not discharged out of the system as industrial wastewater, the present invention can effectively prevent damage such as acid rain and air pollution caused by sulfur oxides as an environmentally friendly technology. Furthermore, since this desulfurization facility is based on environmentally friendly technology, it has sufficient feasibility economically without being restricted by location regulations such as near the coast or inland areas.
[0024]
【Example】
Hereinafter, the exhaust gas desulfurization method of the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples.
[0025]
Example 1
Experiments were conducted with the equipment shown in FIG. Since the performance of the absorbing slurry liquid was insufficient at the start of operation, the operation was started using magnesium hydroxide, and the operation was performed under steady operating conditions after the buffer as the absorbent was stabilized.
As a safety measure to prevent environmental pollution problems to the surroundings during the experimental test, the exhaust gas treated from the Moretana absorption tower 2 and the air supplied to the oxidation tank 4 are all introduced into the sodium hydroxide solution tank. After sufficient desulfurization, it was released into the atmosphere.
[0026]
Since the raw exhaust gas is close to the actual exhaust gas conditions, air pressurized by a blower is heated in a heating furnace, sulfurous acid gas is added from a cylinder to the raw exhaust gas, 136 ° C, sulfurous acid gas 950 ppm, 520 mmH 2 O raw exhaust gas Made and used.
This raw exhaust gas 320 m 3 / hr (wet) was introduced into the pretreatment tank 1 to adjust the humidity, and the exhaust gas cooled to 42 ° C. was introduced into the moletana absorption tower 2.
[0027]
The slurry liquid in the metathesis tank (pH set value 10.80) is automatically supplied to the liquid receiving tank 3 to adjust the pH of the absorbent slurry liquid (pH set value 7.0) to the Moretana absorption tower within a certain value. Then, 1.4 m 3 / hr was sent to the upper part of the absorption tower to make dynamic contact in the multi-stage Moretana tower, and by repeating this, the absorption slurry was continuously circulated in the Moretana absorption tower.
[0028]
A part of the slurry at the outlet of the Moretana absorption tower (0.1 m 3 / hr, pH 5.7 (not necessarily constant as a guide)) was periodically extracted and supplied to the oxidation tank 4.
[0029]
The slurry liquid supplied to the oxidation tank is oxidized by supplying air, for example. The degree of oxidation depends on the slurry properties of the Moretana absorption tower outlet slurry liquid, the residence time, the amount of air, the air blowing mechanism, etc. , but is not necessarily constant. Instead, the amount of air was controlled as 3 Nm 3 / hr, the residence time was 1.5 hr, and the pH was 4.4.
[0030]
The slurry at the outlet of the oxidation tank is supplied to the settling tank 5 and separated into a solid and a supernatant mainly composed of dihydrate gypsum by a natural sedimentation method, and the supernatant is introduced into the supernatant storage tank 6. This supernatant storage tank 6 also serves as a buffer tank. The amount of slurry at the oxidation tank outlet was not necessarily constant, and 0.1 m 3 / hr was supplied to the settling tank 5 as a guide.
The supernatant liquid separation time in the sedimentation tank 5 is about 17 minutes, and the solid sedimentation time from the concentrate is about 16 minutes, so that natural sedimentation separation can be performed relatively easily.
The water contained in the concentrate is recovered and supplied to the supernatant storage tank 6.
[0031]
The supernatant liquid in the supernatant liquid storage tank 6 is supplied to the metathesis tank 7, and the basic slurry liquid in the auxiliary agent supply storage tank 8 is supplied by an automatic control system so that the slurry liquid in the metathesis tank is kept at a constant pH value (pH setting). Control within the value 10.80). The pH was measured continuously with a pH meter.
[0032]
The temperature of the absorption liquid in the absorption tower was 34 ° C., the concentration of sulfurous acid gas in the treated exhaust gas was 20 ppm, and the desulfurization rate was about 98%.
[0033]
【The invention's effect】
As described above, according to the present invention, a multi-stage Moretana tower is used, magnesium hydroxide is a main absorbent, aluminum hydroxide is added to prevent scaling, and calcium hydroxide is used to immobilize sulfur oxides in exhaust gas. And control the operation by controlling the pH, thereby increasing the desulfurization rate, simplifying the process, making the equipment compact, environmentally friendly technology, long-term stable operation, facilitating operation management, construction and operation It can be a reduction or the like of the cost, can be implemented at low cost by using a simple and compact device environmental conservation.
[Brief description of the drawings]
FIG. 1 is a block flow diagram showing an embodiment of the present invention.
FIG. 2 is a block flow diagram showing an embodiment of the present invention.
FIG. 3 is a block flow diagram showing an example of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pretreatment tank 2 ... Moretana absorption tower 3 ... Receiving tank 4 ... Oxidation tank 5 ... Sedimentation tank 6 ... Supernatant storage tank 7 ... Metathesis tank 8 ... Auxiliary agent supply storage tank

Claims (6)

硫黄酸化物を含む排ガス中の不純物の除去及び排ガスの調湿をする前処理工程と、硫黄酸化物を含む排ガスと吸収スラリー液とをモレタナ吸収塔内で接触させて排ガス中に含まれる硫黄酸化物を吸収除去する脱硫工程と、脱硫工程後の処理液を酸素を含むガスで処理する酸化工程と、酸化工程後の処理液を二水石膏と上澄液とに分離する分離工程と、二水石膏を分離した後の上澄液を水酸化カルシウムを主成分とするスラリー液と反応させて二水石膏の生成と水酸化マグネシウムの再生を行う複分解工程を含み、複分解工程で生成したスラリー液をそのまま脱硫工程に吸収スラリー液として返送する排ガス脱硫方法であって、(1)モレタナ吸収塔への吸収スラリー液のpHを、モレタナ吸収塔出口スラリー液を溢流方式で受液槽に供給し、これに返送される複分解工程からのスラリー液で所定の値に保持し、(2)モレタナ吸収塔出口スラリー液のpHが所定値にない場合には、吸収スラリー液の一部をモレタナ吸収塔内に供給して所定のpHに保持し、(3)酸化工程からの処理液のpHを、酸素を含むガスの供給量及び/又は滞留時間で調整して酸化効率を変動させて、所定の値に保持し、そして(4)複分解工程からのスラリー液のpHを水酸化カルシウムを主成分とするスラリー液を補助剤として複分解工程に供給して、所定の値に保持することを特徴とする排ガス脱硫方法。Oxidation of sulfur contained in exhaust gas by contacting the exhaust gas containing sulfur oxide with the absorption slurry liquid in a pretreatment process for removing impurities in the exhaust gas containing sulfur oxide and conditioning the exhaust gas, and in the Moretana absorption tower A desulfurization step for absorbing and removing substances, an oxidation step for treating the treatment liquid after the desulfurization step with a gas containing oxygen, a separation step for separating the treatment liquid after the oxidation step into dihydrate gypsum and a supernatant, Slurry liquid produced in the metathesis process, including a metathesis process in which the supernatant after separating the hydrogypsum is reacted with a slurry liquid mainly composed of calcium hydroxide to produce dihydrate gypsum and regeneration of magnesium hydroxide Is an exhaust gas desulfurization method in which it is returned to the desulfurization process as an absorption slurry liquid. This (2) When the pH of the slurry liquid at the outlet of the moletana absorption tower is not at the predetermined value, a part of the absorption slurry liquid is put into the moletana absorption tower. (3) The pH of the treatment liquid from the oxidation step is adjusted with the supply amount of oxygen-containing gas and / or the residence time to vary the oxidation efficiency to a predetermined value. (4) Exhaust gas desulfurization characterized in that the pH of the slurry solution from the metathesis step is supplied to the metathesis step using a slurry solution mainly composed of calcium hydroxide as an auxiliary agent and maintained at a predetermined value. Method. 各工程のpH値を以下の範囲に保持する請求項1に記載の排ガス脱硫方法。
(1)モレタナ吸収塔への吸収スラリー液 6〜8
(2)モレタナ吸収塔出口スラリー液 4〜6
(3)酸化工程からの処理液 4〜5
(4)複分解工程からのスラリー液 9〜12
The exhaust gas desulfurization method according to claim 1, wherein the pH value of each step is maintained within the following range.
(1) Absorption slurry liquid to Moretana absorption tower 6-8
(2) Moretana absorption tower outlet slurry liquid 4-6
(3) Treatment liquid from oxidation process 4-5
(4) Slurry liquid from metathesis process 9-12
吸収スラリー液中に水酸化アルミニウムを存在させる請求項1又は2に記載の排ガス脱硫方法。The exhaust gas desulfurization method according to claim 1 or 2, wherein aluminum hydroxide is present in the absorbent slurry. 水酸化カルシウムを主成分とする補助剤スラリー液に少量のアルミニウム塩溶液及び小量の酸化マグネシウム粉末を添加して水酸化アルミニウム及び水酸化マグネシウムを実質的に閉鎖系で循環する請求項1〜3のいずれか1項に記載の排ガス脱硫方法。A small amount of an aluminum salt solution and a small amount of magnesium oxide powder are added to an auxiliary slurry liquid containing calcium hydroxide as a main component, and aluminum hydroxide and magnesium hydroxide are circulated substantially in a closed system. The exhaust gas desulfurization method according to any one of the above. 前記脱硫、酸化、分離及び複分解工程をこの順に順流方式で各工程毎にpH管理することによって運転する請求項1〜4のいずれか1項に記載の排ガス脱硫方法。The exhaust gas desulfurization method according to any one of claims 1 to 4, wherein the desulfurization, oxidation, separation, and metathesis steps are operated in this order by controlling the pH for each step in a forward flow manner. 原則として各工程から排水を排出することなく運転する請求項1〜5のいずれか1項に記載の排ガス脱硫方法。6. The exhaust gas desulfurization method according to any one of claims 1 to 5, which is operated without discharging waste water from each step in principle.
JP2003033754A 2003-02-12 2003-02-12 Exhaust gas desulfurization method by metathesis method Expired - Fee Related JP3748861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033754A JP3748861B2 (en) 2003-02-12 2003-02-12 Exhaust gas desulfurization method by metathesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033754A JP3748861B2 (en) 2003-02-12 2003-02-12 Exhaust gas desulfurization method by metathesis method

Publications (2)

Publication Number Publication Date
JP2004243169A JP2004243169A (en) 2004-09-02
JP3748861B2 true JP3748861B2 (en) 2006-02-22

Family

ID=33019643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033754A Expired - Fee Related JP3748861B2 (en) 2003-02-12 2003-02-12 Exhaust gas desulfurization method by metathesis method

Country Status (1)

Country Link
JP (1) JP3748861B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181756A (en) * 2006-01-05 2007-07-19 Japan Energy Corp Wastewater treatment method for flue gas desulfurization equipment
CN103585876B (en) * 2013-10-25 2016-01-20 北京中航泰达环保科技股份有限公司 Oxidation wind blowoff
CN104759194B (en) * 2015-03-20 2017-06-20 金隆铜业有限公司 The method of flue gas desulfurization
CN111715048A (en) * 2020-06-16 2020-09-29 中粮糖业辽宁有限公司 Desulfurization system process for sugar industry
CN114150349A (en) * 2021-11-19 2022-03-08 赤峰金通铜业有限公司 Method for reducing silver content in cathode copper

Also Published As

Publication number Publication date
JP2004243169A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
RU2435628C2 (en) Off-gas treatment
EP0487102B1 (en) Recycling system for the recovery and utilization of CO2 gas
MX2008005635A (en) System and method for obtaining load measurements in a wellbore.
JP4719228B2 (en) Exhaust gas treatment system for coal fired boiler
WO2015099171A1 (en) Method for desulfurizing sulfurous acid gas-containing exhaust gas and desulfurizing device
JPH0815533B2 (en) Method for removing sulfur dioxide and nitrogen oxides from flue gas
JPH1060449A (en) Purification of coke oven gas
JP3748861B2 (en) Exhaust gas desulfurization method by metathesis method
JPH10109013A (en) Magnesium oxide and regenerated sulfuric acid recovering type flue gas desulfurization apparatus
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
US4837001A (en) Production of sulfur from sulfur dioxide obtained from flue gas
JPH0557141A (en) Flue gas desulfurization apparatus
JP2003144849A (en) Exhaust gas desulfurization system and method therefor
JPH10128053A (en) Stack gas treating device and treatment of stack gas
JPH11290643A (en) Removal of acidic component of combustion gas by sea water
JP2001348346A (en) Method for purifying methane fermentation gas
JPH06210126A (en) Method and device for treating waste gas
CN101549250B (en) Method for inhibiting effective desulfurization components in double-alkali method flue gas desulfurization slurry from catalytic oxidation
CN101816891B (en) Ozonation and wet-method flue gas desulphurization process for use in carbide slag pretreatment
JPH0929060A (en) Treatment of exhaust gas
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPH0929063A (en) Exhaust gas treatment method and apparatus therefor
JPS631090B2 (en)
JPH10202050A (en) Suppressing method of oxidation of selenium in flue gas desulfurization apparatus and device therefor
JPS63336Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees