JPS6058229A - Control of flow amount of compressed air in oxidizing tower - Google Patents

Control of flow amount of compressed air in oxidizing tower

Info

Publication number
JPS6058229A
JPS6058229A JP58165106A JP16510683A JPS6058229A JP S6058229 A JPS6058229 A JP S6058229A JP 58165106 A JP58165106 A JP 58165106A JP 16510683 A JP16510683 A JP 16510683A JP S6058229 A JPS6058229 A JP S6058229A
Authority
JP
Japan
Prior art keywords
slurry
compressed air
amount
tower
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58165106A
Other languages
Japanese (ja)
Inventor
Kengo Hamanaka
浜中 健吾
Susumu Kono
進 河野
Ichiro Toyoda
一郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58165106A priority Critical patent/JPS6058229A/en
Publication of JPS6058229A publication Critical patent/JPS6058229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To perform economical operation, in the oxidizing tower of a wet waste gas desulfurization apparatus, by detecting the amount of CaSO4 in a slurry withdrawn from an absorbing tower, and regulating the amount of compressed air supplied to the oxidizing tower corresponding to the detected value. CONSTITUTION:A slurry 2 based on CaSO3 and gypsum withdrawn from an absorbing tower is guided to an oxidizing tower 1 while compressed air 5 and sulfuric acid 4 are supplied to the slurry 2 and air oxidation is performed to prepare a gypsum slurry 3. In this case, the CaSO4-concn. of the withdrawn slurry 2 is detected by a CaSO4-concn. detector 20 and the flow amount thereof is detected by a flow amount detector 21 while both detected values are sent to a multiplier 22. This multiplier 22 multiplies both detected values to detect the CaSO3-amount of the withdrawn slurry 2. When this detected value is sent to a high selector 24, the high selector 24 controls the amount of compressed air 5 supplied to the oxidizing tower 1 by using the detection signal.

Description

【発明の詳細な説明】 本発明は、湿式排煙脱硫装置の酸化塔において、吸収塔
抜出しスラリ中の亜硫酸カルシウム量を検出し、この値
に応じて酸化塔忙供絶する圧縮空気流量を調節し、圧縮
空気流−鼠の過剰供給をな(した経済運転を行なう制御
方法に関するものである。
[Detailed Description of the Invention] The present invention detects the amount of calcium sulfite in the slurry extracted from the absorption tower in the oxidation tower of a wet flue gas desulfurization equipment, and adjusts the flow rate of compressed air used in the oxidation tower according to this value. This invention relates to a control method for economical operation with excessive supply of compressed air flow.

従来の酸化塔における計装フローを第1図に第1図にお
いて、亜硫酸カルシウムと未反J5カルシウム化合物と
石こうとを主体とした吸1区塔抜出しスラリ2は、酸化
塔1へ導び力′−ねる。
Figure 1 shows the instrumentation flow in a conventional oxidation tower. In Figure 1, the slurry 2 drawn out from the tower in the suction 1 section, which is mainly composed of calcium sulfite, unregenerated J5 calcium compound, and gypsum, is guided to the oxidation tower 1 with a force ' -Neru.

酸化塔1内では、この吸収塔抜出しスラIJ 2 r、
ilの亜硫酸カルシウムを空気酸化し、石こうと−1−
べ(、塔底よつ圧縮空気5を供給し、排出空気6は塔頂
より系外へ排出される。供給圧脂d空気流量は、流量が
常に一定になるように、流量イ灸出器7、流量調節計8
を設けて、流量操イ′「弁9を操作し、酸化塔1へ供給
さtして−・る。
In the oxidation tower 1, this absorption tower extraction slug IJ 2 r,
Air oxidation of calcium sulfite in il, gypsum and -1-
Compressed air 5 is supplied from the bottom of the column, and exhaust air 6 is discharged from the top of the column to the outside of the system. 7. Flow rate controller 8
is provided, and the flow rate is controlled by operating the valve 9 and supplying it to the oxidation tower 1.

また、空気酸化に際して酸化塔の石こうスラリのρ11
を詞整するために、PH検出器1o 、 pi(調節計
11を設けて操作弁12を操作し、f流量4を酸化塔1
へ供給している。
In addition, during air oxidation, ρ11 of the gypsum slurry in the oxidation tower
In order to prepare the equation, a PH detector 1o, a pi (controller 11) are installed, and an operation valve 12 is operated to adjust the f flow rate 4 to the oxidation tower 1.
is supplied to.

酸化塔内で析出した石こうを含む石こうスラリ3は、分
離工程に送られMlj生石こうとして回収される。
The gypsum slurry 3 containing the gypsum precipitated in the oxidation tower is sent to a separation step and recovered as Mlj raw gypsum.

このフローににいて、酸化塔内で亜硫酸カルシウムを師
化すべ(供給する圧縮空気流量5)よ、が、吸収塔にお
いて脱硫される亜硫酸ガス量によって太き(増減する忙
もかかわらず、常に一定流量供給さねておつ、亜硫酸カ
ルシウム量減少時圧は、かなりの無駄があった。
In this flow, calcium sulfite should be cultivated in the oxidation tower (supplied compressed air flow rate 5), but it increases depending on the amount of sulfur dioxide gas desulfurized in the absorption tower (always constant despite the increase and decrease). There was considerable waste in supplying the flow rate and reducing the pressure when the amount of calcium sulfite decreased.

酸化塔内へ供給する圧縮空気流量は、酸化塔内の酸化す
べき亜硫酸カルシウム量に対し、酸素利用率(つまり酸
化塔への供給圧縮空気量中の酸素量に対する酸化塔内ス
ラリに吸収される酸素量)が一定(通常6o〜50%)
の時が最つども効率的である。
The flow rate of compressed air supplied into the oxidation tower is determined by the oxygen utilization rate (i.e., the amount of oxygen absorbed by the slurry in the oxidation tower relative to the amount of oxygen in the amount of compressed air supplied to the oxidation tower) relative to the amount of calcium sulfite to be oxidized within the oxidation tower. Oxygen amount) is constant (usually 6o~50%)
It is always most efficient when

本発明は、上記した従来法の不具合をなくすために、吸
収塔抜出しスラリ中の亜硫酸カルシウム量を検出し、こ
の値を用いて酸素利用率が所定値になるよう、酸化塔へ
供給する圧縮空気流量を制御し、省エネルギー化を図る
ことを目的としてなされたものである。
In order to eliminate the problems of the conventional method described above, the present invention detects the amount of calcium sulfite in the slurry extracted from the absorption tower, and uses this value to supply compressed air to the oxidation tower so that the oxygen utilization rate becomes a predetermined value. This was done to control the flow rate and save energy.

すなわち本発明は、亜硫酸カルシウムと石こうとを主体
とした吸収塔抜出しスラリを酸化塔へ導びき、酸化塔に
て圧縮空気と@酸とを供絶し空気酸化を行ない石こうス
ラリとなす工程において、吸収塔抜出しスラリ中の亜硫
酸カルシウム量を検出し、該検出信号を用いて酸化塔に
供給する圧m空気流量を制御することを特徴とする湿式
排煙脱硫装部における酸化塔圧縮空気流量制御方法に関
するものである。
That is, in the process of the present invention, a slurry extracted from an absorption tower mainly composed of calcium sulfite and gypsum is led to an oxidation tower, and compressed air and @acid are cut off in the oxidation tower to perform air oxidation to form a gypsum slurry. A method for controlling the flow rate of compressed air in an oxidation tower in a wet flue gas desulfurization section, the method comprising: detecting the amount of calcium sulfite in the slurry taken out from the absorption tower, and using the detected signal to control the flow rate of air (pressure m) supplied to the oxidation tower. It is related to.

まず、本発明における亜硫酸カルシウム濃度連続測定方
法について、その原理を説明する。
First, the principle of the method for continuously measuring calcium sulfite concentration according to the present invention will be explained.

密閉反応容器に吸収塔抜出しスラリを一定流量導びき、
同反応容器保持量以上の液はオーバーフローとして抜き
だす。
A constant flow rate of slurry extracted from the absorption tower is introduced into a closed reaction vessel.
The liquid in excess of the amount held in the reaction vessel is discharged as overflow.

この反応容器内液の市を5以下とするように硫酸を供給
すれば、吸収塔抜出しスラリ中の亜硫酸カルシウムと、
炭酸カルシウムは、硫酸と反応して下記の反応式に従っ
て量論的に等しい量の802及びC02を発生して硫酸
カルシウムとなる。
If sulfuric acid is supplied so that the concentration of the liquid in this reaction vessel is 5 or less, calcium sulfite in the slurry extracted from the absorption tower,
Calcium carbonate reacts with sulfuric acid to generate stoichiometrically equal amounts of 802 and C02 according to the reaction formula below, resulting in calcium sulfate.

CILS03+H2SO4→CaSO4+H20十SO
2↑ (1)caco、−+−H2so4−+caso
4刊、o+co2↑ (2)反応容器に一定流量のキャ
リア空気を供給し、fi+ 、 +21式で発生したS
O2,co2 をキャリア空気と共に同反応容器より抜
き出し、除湿した後、SO2濃度計、 co2濃度計に
てSO2,co2濃度を検出すれば、以下の(3)式に
より吸収塔抜出しスラリ中の亜硫酸カルシウム濃度を連
続測定できる。
CILS03+H2SO4→CaSO4+H20SO
2↑ (1) caco, −+−H2so4−+caso
4th edition, o+co2↑ (2) Supply a constant flow of carrier air to the reaction vessel, and reduce the S generated by fi+, +21 formula.
After extracting O2 and CO2 from the reaction vessel together with carrier air and dehumidifying them, if the SO2 and CO2 concentrations are detected using an SO2 concentration meter and a CO2 concentration meter, calcium sulfite in the slurry extracted from the absorption tower can be determined using the following equation (3). Concentration can be measured continuously.

亜硫酸カルシウム濃度[mol/e]=ここでxlはC
02濃度(ppm〕y X2は502a度(ppm〕+
F、はキャリア空気流量(Nl / m1n−) 。
Calcium sulfite concentration [mol/e] = where xl is C
02 concentration (ppm) y X2 is 502a degrees (ppm) +
F, carrier air flow rate (Nl/m1n−);

F2は吸収塔抜出しスラリ検出流!−[#/min’l
lを各々示す。
F2 is the slurry detection flow taken out from the absorption tower! -[#/min'l
l is shown respectively.

次に、前述の亜硫酸カルシウム検出器を用いた本発明の
具体的実施例について説明する。本発明の計装フローの
例を第2図に示す。図中。
Next, a specific example of the present invention using the above-mentioned calcium sulfite detector will be described. An example of the instrumentation flow of the present invention is shown in FIG. In the figure.

1〜12は第1図と同じであり、20〜25が新たに本
発明で追加された機器である。
1 to 12 are the same as in FIG. 1, and 20 to 25 are devices newly added according to the present invention.

吸収塔抜出しスラリ中の亜硫酸カルシウム量は、前述の
亜硫酸カルシウム濃度検出器20の出力信号と、吸収塔
抜出しス2す流量検出器される。乗算器22の出力信号
の一部は遅延器(−次遅れフィルタでも可能)23に入
力される。遅延器23の出力信号と乗算器22の出力信
号はハイセレクタ24に入力され、ハイセレクタ24で
は大きい方の信号を選択し、出力する。これにより、ハ
イセレクタ24の出力信号は吸収塔抜出しスラリ中の亜
硫酸カルシウム量が増加するときは乗算器22のそのま
まの信号であり、亜硫酸カルシウム量が減少するときに
は遅延器23の信号である。
The amount of calcium sulfite in the slurry extracted from the absorption tower is determined by the output signal of the aforementioned calcium sulfite concentration detector 20 and the flow rate detector of the slurry extracted from the absorption tower. A part of the output signal of the multiplier 22 is input to a delay device (a negative order lag filter is also possible) 23. The output signal of the delay device 23 and the output signal of the multiplier 22 are input to the high selector 24, and the high selector 24 selects and outputs the larger signal. As a result, the output signal of the high selector 24 is the same signal from the multiplier 22 when the amount of calcium sulfite in the slurry extracted from the absorption tower increases, and is the signal from the delay device 23 when the amount of calcium sulfite decreases.

遅延器23の設定遅延時間は、酸化塔内での亜硫酸カル
シウムの溶解速度(pi(に影響される。)に依存し、
プロセスによって異なるが、5分〜10分程度とする。
The set delay time of the delay device 23 depends on the dissolution rate (PI) of calcium sulfite in the oxidation tower,
Although it varies depending on the process, it takes about 5 to 10 minutes.

なお、吸収塔抜出しスラリ中の亜硫酸カルシウム量の急
激減少のないプロセスでは、遅延器23、ハイセレクタ
24は必ずしも必要としない場合もある。
Note that in a process in which the amount of calcium sulfite in the slurry extracted from the absorption tower does not decrease rapidly, the retarder 23 and the high selector 24 may not necessarily be necessary.

また、増幅器25では、酸素利用率が一定とハイセレク
タ24の出力信号を増幅し、その信号を流量町節旧8の
設定値とする。
Further, the amplifier 25 amplifies the output signal of the high selector 24 when the oxygen utilization rate is constant, and uses the signal as the set value of the flow rate town section 8.

ここでゲインCは、以下の式で表わされる。Here, the gain C is expressed by the following formula.

α@yo2 ここでαは設定酸素利用率〔%〕 Yo2は供給圧縮空気中の酸素濃度〔%〕を各々示す。α@yo2 Here, α is the set oxygen utilization rate [%] Yo2 each indicates the oxygen concentration [%] in the supplied compressed air.

今、吸収塔抜出しスラリ流液あるいは吸収塔抜出しスラ
リ中の亜硫酸カルシウム@度が犬となり、酸化塔へ供給
される亜硫酸カルシウム量が増加した場合について説明
する。この亜硫酸カルシウムの増加は亜硫酸カルシウム
濃度検出器2a、吸収塔抜出しスラリ流量検出器21に
より検出され1乗算器22の出力信号の増加として表わ
される。乗算器22の出力信号は、ノ1イセレクタ24
で選択出力され、増@器25で圧縮空気流量設定値とし
て増幅された後、流量n筒針8へ入力される。その結果
、酸化塔へ供i8される圧縮空気流量は、亜硫酸カルシ
ウムの増加に見合った分だけ増加される、 逆に、吸水塔抜出しスラリ中の亜硫酸カルシウム量が減
少した場合には、乗n器22の出力信号が減少する。こ
の場合には遅延器23を通った信号が、遅延器23の設
定遅延時間の間、ハイセレクタ24で選択出力され、吸
収塔抜出しスラリ中の亜硫酸カルシウム量で算出した供
給圧縮空気流量より多めの亜硫酸カルシウム減少前の流
量が供給され、その後、酸素利用率が所定の値になるよ
う供給圧縮空気流量は減少される。
Now, a case will be explained in which the concentration of calcium sulfite in the slurry stream extracted from the absorption tower or the slurry extracted from the absorption tower becomes large, and the amount of calcium sulfite supplied to the oxidation tower increases. This increase in calcium sulfite is detected by the calcium sulfite concentration detector 2a and the absorption tower extraction slurry flow rate detector 21, and is expressed as an increase in the output signal of the 1 multiplier 22. The output signal of the multiplier 22 is sent to the NO1 selector 24.
After being selectively outputted by the amplifier 25 and amplified as the compressed air flow rate setting value, the flow rate is inputted to the flow rate n cylinder needle 8. As a result, the flow rate of compressed air supplied to the oxidation tower is increased by an amount commensurate with the increase in calcium sulfite.Conversely, when the amount of calcium sulfite in the slurry extracted from the water absorption tower decreases, 22 output signal decreases. In this case, the signal passing through the delay device 23 is selectively outputted by the high selector 24 during the set delay time of the delay device 23, and the flow rate of compressed air to be supplied is higher than the amount of calcium sulfite in the slurry extracted from the absorption tower. The flow rate before calcium sulfite reduction is supplied, and then the supplied compressed air flow rate is reduced so that the oxygen utilization rate becomes a predetermined value.

これにより、急激に吸収塔抜出しスラリ中の亜硫酸カル
シウム量が減少した場合でも、供給空気流量が急激に減
少せず、もし酸化塔内に亜硫酸カルシウムが残存してい
ても未反応のまま流出してくることはない。
As a result, even if the amount of calcium sulfite in the slurry extracted from the absorption tower suddenly decreases, the supply air flow rate will not decrease suddenly, and even if calcium sulfite remains in the oxidation tower, it will not flow out unreacted. It never comes.

以上より1本発明方法によれば、従来の供給圧縮空気流
量一定の運転に比べ、未反応亜硫酸カルシウムを流出さ
せることな(、大幅な経済運転が可能となる。
From the above, according to the method of the present invention, compared to the conventional operation in which the flow rate of supplied compressed air is constant, it is possible to perform a significantly more economical operation without causing unreacted calcium sulfite to flow out.

なお、本発明方法において、プラントにより吸収塔抜出
しスラリ中の亜硫酸カルシウム量が少なく酸化塔へ供給
する圧縮空気流量が減少し過ぎる場合には、供給圧縮空
気流量に下限値を設ける場合もある。
In addition, in the method of the present invention, if the amount of calcium sulfite in the slurry extracted from the absorption tower is small in the plant and the flow rate of compressed air supplied to the oxidation tower decreases too much, a lower limit value may be set for the flow rate of compressed air supplied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の計装フローである。 第2図は本発明の一実施態様の計装フローである。 第2図において 20・・・亜硫酸カルシウム濃度検出器21・・・流量
検出器 22・・・乗算器 26・・・遅延器 24・・・ハイセレクタ 25・・・増幅器 である。 復代理人 内 1) 明 榎代理人 萩 原 亮 − 第1図
FIG. 1 shows a conventional instrumentation flow. FIG. 2 is an instrumentation flow of one embodiment of the present invention. In FIG. 2, 20...calcium sulfite concentration detector 21...flow rate detector 22...multiplier 26...delay device 24...high selector 25...amplifier. Sub-agents 1) Meinoki agent Ryo Hagiwara - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 亜硫酸カルシウムと石こうとを主体とした吸収塔抜出し
スラリな酸化塔へ導びき、酸化塔にて圧縮空気と硫酸と
を供給し空気酸化を行ない石こうスラリとなす工程にお
いて、吸収塔抜出しスラリ中の亜硫酸カルシウム量を検
出し、該検出(f4号を用いて酸化塔K IJI;給す
る圧縮空気流量を制御することを特徴とする湿式排煙脱
硫装置における酸化塔圧縮空気流量制御方法。
The slurry extracted from the absorption tower containing mainly calcium sulfite and gypsum is guided to the oxidation tower, and compressed air and sulfuric acid are supplied to the oxidation tower to perform air oxidation to form gypsum slurry. A method for controlling the flow rate of compressed air in an oxidation tower in a wet flue gas desulfurization apparatus, characterized by detecting the amount of calcium and controlling the flow rate of compressed air supplied to the oxidation tower using the detection (F4).
JP58165106A 1983-09-09 1983-09-09 Control of flow amount of compressed air in oxidizing tower Pending JPS6058229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165106A JPS6058229A (en) 1983-09-09 1983-09-09 Control of flow amount of compressed air in oxidizing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165106A JPS6058229A (en) 1983-09-09 1983-09-09 Control of flow amount of compressed air in oxidizing tower

Publications (1)

Publication Number Publication Date
JPS6058229A true JPS6058229A (en) 1985-04-04

Family

ID=15806005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165106A Pending JPS6058229A (en) 1983-09-09 1983-09-09 Control of flow amount of compressed air in oxidizing tower

Country Status (1)

Country Link
JP (1) JPS6058229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204828A (en) * 1986-03-04 1987-09-09 Babcock Hitachi Kk Method for controlling oxidizing air of wet exhaust gas desulfurizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204828A (en) * 1986-03-04 1987-09-09 Babcock Hitachi Kk Method for controlling oxidizing air of wet exhaust gas desulfurizing device

Similar Documents

Publication Publication Date Title
KR100235853B1 (en) Method of controlling oxidation in flue gas desulfurization
GB2159508A (en) Method for regulating concentration of sulfite
JPS6058229A (en) Control of flow amount of compressed air in oxidizing tower
JPH10128053A (en) Stack gas treating device and treatment of stack gas
JPS62225227A (en) Method for controlling operation of wet stack-gas desulfurization facility
JPH0355171B2 (en)
JPS61433A (en) Waste gas desulfurization
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JPS6012119A (en) Method for controlling flow amount of compressed air of oxidizing tower in wet type waste gas desulfurizing apparatus
JPH1057752A (en) Method for measuring oxidation-reduction potential in flue gas desulfurization process
JPH0227867Y2 (en)
JPS60125232A (en) Method for controlling ph of oxidation tower
JPH0275322A (en) Operation of wet desulfurization apparatus
JPH027847Y2 (en)
JPS6048122A (en) Process for controlling oxidation tower
JPS60261531A (en) Wet desulfurizing method of waste gas
JPS6244733Y2 (en)
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JPH04313322A (en) Wet flue gas desulfurization method
JPS6410254B2 (en)
JPH0536367B2 (en)
JPH07204459A (en) Oxidation control of calcium sulfite in absorbing solution
JPH0125627Y2 (en)
JPH01171622A (en) Wet type exhaust gas desulfurization apparatus
JPS61157330A (en) Method for supplying absorbent of waste gas desulfurization apparatus