JPS6410254B2 - - Google Patents

Info

Publication number
JPS6410254B2
JPS6410254B2 JP60243271A JP24327185A JPS6410254B2 JP S6410254 B2 JPS6410254 B2 JP S6410254B2 JP 60243271 A JP60243271 A JP 60243271A JP 24327185 A JP24327185 A JP 24327185A JP S6410254 B2 JPS6410254 B2 JP S6410254B2
Authority
JP
Japan
Prior art keywords
aqueous solution
absorption tower
amount
liquid
sulfur dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60243271A
Other languages
Japanese (ja)
Other versions
JPS62102818A (en
Inventor
Teruo Ueno
Shigeru Nishama
Tsuyoshi Toma
Hitoshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60243271A priority Critical patent/JPS62102818A/en
Publication of JPS62102818A publication Critical patent/JPS62102818A/en
Publication of JPS6410254B2 publication Critical patent/JPS6410254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属精練工程などから発生する排ガス
中に含まれる二酸化硫黄を分離除去する排煙脱硫
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flue gas desulfurization method for separating and removing sulfur dioxide contained in flue gas generated from a metal smelting process or the like.

〔従来の技術〕[Conventional technology]

塩基性硫酸アルミニウム水溶液を用いる排煙脱
硫法は、一般に、第4図に示すフローによつて行
なわれている。すなわち、入口ライン1により排
ガスを吸収塔2に導き、排ガス中に含まれる二酸
化硫黄をライン3から導入される塩基性硫酸アル
ミニウム水溶液に吸収させ、亜硫酸アルミニウム
を生成せしめる。上記二酸化硫黄が除去された排
ガスは、出口ライン4よりスタツクに送られ、大
気中に放出される。一方亜硫酸アルミニウム水溶
液は、タンクおよびポンプとよりなるポンプタン
ク5に導かれ、酸化塔6に送られ、空気ライン7
より導入される空気によつて酸化され、硫酸アル
ミニウムが生成し、空気はライン8より放出され
る。この酸化塔6の硫酸アルミニウム水溶液はオ
ーバフローによつて分岐管(分岐工程)9に導入
され、その一部は吸収塔2に戻され、残部は中和
槽10に送られる。中和槽10に導入された硫酸
アルミニウム水溶液は、炭酸カルシウムスラリー
槽11から導入される炭酸カルシウムによつて中
和され、硫酸カルシウムと塩基性硫酸アルミニウ
ムが生成し、過機12に送られ、硫酸カルシウ
ム13が分離除去され、液の塩基性硫酸アルミ
ニウム水溶液は循環ライン3を介して吸収塔2に
循環される。
The flue gas desulfurization method using a basic aqueous aluminum sulfate solution is generally carried out according to the flow shown in FIG. That is, the exhaust gas is introduced into the absorption tower 2 through the inlet line 1, and the sulfur dioxide contained in the exhaust gas is absorbed into the basic aluminum sulfate aqueous solution introduced through the line 3, thereby producing aluminum sulfite. The exhaust gas from which the sulfur dioxide has been removed is sent to the stack through the outlet line 4 and discharged into the atmosphere. On the other hand, the aluminum sulfite aqueous solution is led to a pump tank 5 consisting of a tank and a pump, sent to an oxidation tower 6, and air line 7.
The aluminum sulfate is oxidized by the air introduced, and aluminum sulfate is produced, and the air is discharged through line 8. The aluminum sulfate aqueous solution from the oxidation tower 6 is introduced into a branch pipe (branching step) 9 by overflow, a part of which is returned to the absorption tower 2, and the remainder is sent to the neutralization tank 10. The aluminum sulfate aqueous solution introduced into the neutralization tank 10 is neutralized by the calcium carbonate introduced from the calcium carbonate slurry tank 11 to produce calcium sulfate and basic aluminum sulfate, which are sent to the filter 12 to produce sulfuric acid. Calcium 13 is separated and removed, and the liquid basic aluminum sulfate aqueous solution is circulated to the absorption tower 2 via the circulation line 3.

上記フローのように、通常吸収塔2と酸化塔6
との間には、吸収塔2から酸化塔6に亜硫酸アル
ミニウム水溶液を送液し、また、分岐工程9によ
つて酸化塔6より導出される硫酸アルミニウム水
溶液の一部を吸収塔2に戻す循環サイクルが組ま
れ、上記吸収塔2に戻された残りの酸化塔導出水
溶液を中和槽10に送つている。これを操作する
場合、酸化塔および吸収塔の保有液量を一定に保
持することが、系全体の水溶液バランスをとるう
えにおいて必要なため、酸化塔への空気吹込量を
一定とし、酸化塔内の気液比が常に一定となるよ
うにしていた。その場合、排ガス中の二酸化硫黄
の含有量は変動するが、どのように変動しても吸
収塔2の出口の二酸化硫黄の濃度を低く押えなけ
ればならないため、空気の吹込量を二酸化硫黄の
最大負荷量に合わせている。したがつて、最大負
荷の場合以外は、過剰の空気が吹込まれており、
無駄なエネルギーを消費する不都合があつた。
As shown in the above flow, normally absorption tower 2 and oxidation tower 6
Between the absorption tower 2 and the oxidation tower 6, there is a circulation system that sends the aluminum sulfite aqueous solution from the absorption tower 2 to the oxidation tower 6, and returns a part of the aluminum sulfite aqueous solution derived from the oxidation tower 6 in the branching step 9 to the absorption tower 2. A cycle is set up, and the remaining aqueous solution derived from the oxidation tower and returned to the absorption tower 2 is sent to the neutralization tank 10. When operating this, it is necessary to maintain a constant amount of liquid in the oxidation tower and absorption tower in order to balance the aqueous solution in the entire system. The gas-liquid ratio was always kept constant. In that case, the content of sulfur dioxide in the exhaust gas fluctuates, but no matter how much it fluctuates, the concentration of sulfur dioxide at the outlet of absorption tower 2 must be kept low. It is adjusted to the load amount. Therefore, except at maximum load, excess air is blown into the
There was an inconvenience that energy was wasted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は、二酸化硫黄負荷量に対応した空
気量を吹込むべく種々実験を行なつたが、酸化塔
に吹込む空気量を変更すると、酸化塔において水
溶液に対する空気量が変動するため、ポンプタン
ク液深を一定に制御しても、吸収塔の保有液量
(真の液量)が変動し、結局、二酸化硫黄の吸収
不足を招来し、吸収塔出口の排ガス中の二酸化硫
黄濃度を低い一定値に保持することが困難であつ
た。
The present inventors conducted various experiments in order to blow in an amount of air corresponding to the amount of sulfur dioxide loaded. However, when changing the amount of air blown into the oxidation tower, the amount of air relative to the aqueous solution in the oxidation tower fluctuates. Even if the liquid depth in the pump tank is controlled to be constant, the amount of liquid held in the absorption tower (true amount of liquid) will fluctuate, resulting in insufficient absorption of sulfur dioxide, and reducing the concentration of sulfur dioxide in the exhaust gas at the outlet of the absorption tower. It was difficult to maintain it at a low constant value.

本発明は上記実験の結果に基き、さらに研究を
進めて達成されたもので、吸収塔の保有液量(真
の液量)を一定に保持しながら、しかも二酸化硫
黄負荷量に応じた空気量を吹き込むことが出来る
塩基性硫酸アルミニウム水溶液を用いた排煙脱硫
方法を提供することを目的とする。
The present invention was achieved through further research based on the results of the above experiments, and it is possible to maintain a constant amount of liquid held in the absorption tower (true liquid amount) while adjusting the amount of air according to the amount of sulfur dioxide loaded. The purpose of the present invention is to provide a flue gas desulfurization method using a basic aluminum sulfate aqueous solution that can be blown with.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するためになされた
もので、その手段は、塩基性硫酸アルミニウムを
用いる排煙脱硫方法において、酸化塔に吸収塔で
吸収された二酸化硫黄の量に対応する量の空気を
吹込み、かつ水溶液と空気の気液比から、あらか
じめ求めた見掛け比重に従つて、ポンプタンクの
液深制御値を補正することにより、吸収塔の保有
液量(真の液量)を一定に保持する排煙脱硫方法
である。
The present invention has been made to achieve the above-mentioned object, and its means are such that, in a flue gas desulfurization method using basic aluminum sulfate, an amount of sulfur dioxide corresponding to the amount of sulfur dioxide absorbed in an absorption tower is added to an oxidation tower. By blowing in air and correcting the liquid depth control value of the pump tank according to the apparent specific gravity determined in advance from the gas-liquid ratio of the aqueous solution and air, the amount of liquid held in the absorption tower (true liquid amount) can be adjusted. This is a flue gas desulfurization method that maintains a constant value.

〔作用〕[Effect]

本発明の方法は、上記の構成となつているの
で、吸収塔に吸収される二酸化硫黄の量に対応す
る空気量が酸化塔に吹込まれ、かつ酸化塔内の水
溶液と空気の気液比から、あらかじめ求めた見掛
け比重に従つて、ポンプタンクの液深制御値を補
正することにより、酸化塔内の真の水溶液の増減
量に応じて、ポンプタンク内の水溶液量を変化さ
せることによつて、吸収塔内の真の水溶液の増減
を防止出来て、吸収塔の保有液量を一定に保持す
ることが出来、従つて、不必要に大量の空気を使
用することがなく省エネルギー的な操作が可能と
なり、しかも、吸収塔出口の排ガス中の二酸化硫
黄濃度を常時基準値以下の低い濃度に保持するこ
とが出来る。
Since the method of the present invention has the above-mentioned configuration, the amount of air corresponding to the amount of sulfur dioxide absorbed in the absorption tower is blown into the oxidation tower, and the gas-liquid ratio of the aqueous solution and air in the oxidation tower is , by correcting the liquid depth control value of the pump tank according to the apparent specific gravity determined in advance, and by changing the amount of aqueous solution in the pump tank according to the increase or decrease of the true aqueous solution in the oxidation tower. , it is possible to prevent the real aqueous solution in the absorption tower from increasing or decreasing, and the amount of liquid held in the absorption tower can be kept constant. Therefore, an energy-saving operation is possible without using a large amount of air unnecessarily. In addition, the sulfur dioxide concentration in the exhaust gas at the outlet of the absorption tower can be maintained at a low concentration below the standard value at all times.

〔実施例〕〔Example〕

以下本発明の方法を図面を参照して説明する。 The method of the present invention will be explained below with reference to the drawings.

第1図は本発明の方法の一例を示すもので第4
図と同一部分には同一符号を付してその説明を省
略する。
FIG. 1 shows an example of the method of the present invention.
Components that are the same as those in the figures are given the same reference numerals and their explanations will be omitted.

排ガスの入口ライン1および出口ライン4に検
出器14,15を設け、計器16によつて排ガス
の量および二酸化硫黄濃度を連続的に計測し、計
器16に内蔵されたマイコンによつて、吸収塔2
で水溶液に吸収された二酸化硫黄の量を計算す
る。この計算に基づく信号によつて、空気ライン
7の調整器17を作動し、吸収した二酸化硫黄に
対応する空気量を酸化塔6に吹込む。
Detectors 14 and 15 are installed in the exhaust gas inlet line 1 and outlet line 4, and the meter 16 continuously measures the amount of exhaust gas and the sulfur dioxide concentration. 2
Calculate the amount of sulfur dioxide absorbed by the aqueous solution. A signal based on this calculation operates the regulator 17 of the air line 7 to blow into the oxidation tower 6 an amount of air corresponding to the absorbed sulfur dioxide.

酸化塔6においては、空気ライン7から吹込ま
れる空気量に応じて水溶液の気液化が変化するた
め、その見掛け比重が変動する。そのため、あら
かじめマイコンに種々な気液比の場合の見掛け比
重を記憶させておき、ポンプタンク5で制御すべ
き液深の設定値をその時の気液比に応じて見掛け
の比重値で補正して変化させることにより、吸収
塔2の保有液量(真の液量)が一定に保持され
る。すなわち、例えば、酸化塔6において空気吹
込量を増加させると、酸化塔6内の見掛けの液量
は変化しないが、酸化塔6内の空気量が増加する
ため、酸化塔6内の真の液量は減少する。この結
果、従来のように上記ポンプタンク5の液深を操
作しない(一定に保持している)と、吸収塔2内
の真の液量が増加してしまうことになるが、本実
施例においては、上記吸収塔2内の余剰の水溶液
をポンプタンク5に回収出来るように、ポンプタ
ンク5の液深を制御するから、吸収塔2内の保有
液量(真の液量)は一定に保持される。
In the oxidation tower 6, the gas-liquid state of the aqueous solution changes depending on the amount of air blown in from the air line 7, so its apparent specific gravity changes. Therefore, the apparent specific gravity for various gas-liquid ratios is stored in advance in the microcomputer, and the set value of the liquid depth to be controlled by the pump tank 5 is corrected with the apparent specific gravity value according to the gas-liquid ratio at that time. By changing the amount, the amount of liquid held in the absorption tower 2 (true amount of liquid) is kept constant. That is, for example, when the amount of air blown into the oxidation tower 6 is increased, the apparent liquid volume within the oxidation tower 6 does not change, but the amount of air within the oxidation tower 6 increases, so that the true liquid inside the oxidation tower 6 increases. quantity decreases. As a result, if the liquid depth in the pump tank 5 is not controlled (maintained constant) as in the conventional case, the true liquid amount in the absorption tower 2 will increase, but in this embodiment Since the liquid depth of the pump tank 5 is controlled so that the excess aqueous solution in the absorption tower 2 can be collected into the pump tank 5, the amount of liquid held in the absorption tower 2 (true liquid amount) is kept constant. be done.

そして、上述したような操作によつて、吸収塔
2の真の液量を一定に保持しながら、第2図に一
例を示すように、二酸化硫黄の負荷aに従つて酸
化塔への空気の吹込量bを変えることが出来るの
で、無駄な空気を吹込む必要がなく、その量が大
幅に減少し、省エネルギー効果の優れた運転が可
能となる。
Then, through the operations described above, while keeping the true liquid volume in the absorption tower 2 constant, air is supplied to the oxidation tower according to the sulfur dioxide load a, as shown in an example in Fig. 2. Since the blowing amount b can be changed, there is no need to blow in wasteful air, the amount is significantly reduced, and operation with excellent energy saving effects is possible.

これに対し従来の方法では、第3図にその一例
を示すように、液量を一定にして吸収塔より出る
排ガス中の二酸化硫黄濃度を低くおさえるため、
二酸化硫黄の負荷aに関係なく、その負荷が最も
高くなつた場合に合わせて一定の空気量bを吹込
まなければならないので、大量の無駄なエネルギ
ーが消費される。
On the other hand, in the conventional method, as shown in Fig. 3, in order to keep the liquid volume constant and keep the sulfur dioxide concentration in the exhaust gas discharged from the absorption tower low,
Regardless of the sulfur dioxide load a, a constant amount of air b must be blown in at the highest load, which results in a large amount of wasted energy being consumed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法は酸化塔での
吹込み空気量が変化しても、この空気吹込量の増
減に応じて、ポンプタンクの液深制御値を補正す
ることにより、吸収塔内の保有液量の増減をポン
プタンクの液深操作で防止出来、吸収塔内の真の
液量を、酸化塔内の真の液量の増減にかかわら
ず、一定に保持出来、従つて、吸収塔内において
二酸化硫黄の吸収反応が円滑にかつ安定的に行な
われるので、中和槽への水溶液の抜出しが安定し
て行なわれ、液量のバランスを失つて、吸収塔出
口の排煙中の二酸化硫黄濃度が高くなつたり、水
溶液中のアルミニウムイオン濃度が減少すること
なく、吹込み空気量を二酸化硫黄の吸収量に応じ
て変化させることが出来、その省エネルギー効果
は大きい。
As described above, even if the amount of air blown into the oxidation tower changes, the method of the present invention corrects the liquid depth control value of the pump tank in accordance with the increase or decrease in the amount of air blown into the absorption tower. Increases and decreases in the amount of liquid held in the oxidation tower can be prevented by controlling the liquid depth of the pump tank, and the true amount of liquid in the absorption tower can be maintained constant regardless of changes in the amount of liquid in the oxidation tower. Since the absorption reaction of sulfur dioxide is carried out smoothly and stably in the absorption tower, the aqueous solution is drawn out to the neutralization tank stably, and the liquid volume is unbalanced, resulting in a drop in the flue gas at the exit of the absorption tower. The amount of blown air can be changed according to the amount of sulfur dioxide absorbed without increasing the sulfur dioxide concentration in the aqueous solution or decreasing the aluminum ion concentration in the aqueous solution, which has a large energy saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法の概略説明図、第2図
は、本発明の方法における二酸化硫黄負荷と、吹
込空気量の一例を示す図、第3図は従来の方法の
二酸化硫黄負荷と吹込空気量の一例を示す図、第
4図は塩基性硫酸アルミニウムを用いる排煙脱硫
のフローを示す概略図である。 1…入口ライン、2…吸収塔、3…循環ライ
ン、4…出口ライン、5…ポンプタンク、6…酸
化塔、7…空気ライン、8…空気出口ライン、9
…分岐管(分岐工程)、10…中和槽、11…炭
酸カルシウムスラリー槽、12…過機、13…
硫酸カルシウム、14,15…検出器、16…計
器、17…調整器、a…二酸化硫黄負荷、b…吹
込み空気量。
Fig. 1 is a schematic explanatory diagram of the method of the present invention, Fig. 2 is a diagram showing an example of the sulfur dioxide load and blown air amount in the method of the present invention, and Fig. 3 is a diagram showing the sulfur dioxide load and the sulfur dioxide load in the conventional method. A diagram showing an example of the amount of blown air, and FIG. 4 is a schematic diagram showing the flow of flue gas desulfurization using basic aluminum sulfate. 1... Inlet line, 2... Absorption tower, 3... Circulation line, 4... Outlet line, 5... Pump tank, 6... Oxidation tower, 7... Air line, 8... Air outlet line, 9
... Branch pipe (branching process), 10... Neutralization tank, 11... Calcium carbonate slurry tank, 12... Filter machine, 13...
Calcium sulfate, 14, 15...detector, 16...meter, 17...regulator, a...sulfur dioxide load, b...blow air amount.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化硫黄を含有する排ガスを吸収塔に導入
して塩基性硫酸アルミニウム水溶液と接触させ、
上記二酸化硫黄を上記水溶液に吸収させて亜硫酸
アルミニウム水溶液とし、上記吸収塔より排出さ
れる亜硫酸アルミニウム水溶液をポンプタンクに
受け、これを酸化塔に送り、空気を吹込んで硫酸
アルミニウムとし、上記酸化塔より排出される硫
酸アルミニウム水溶液の一部を分岐工程によつて
上記吸収塔に戻し、残部の水溶液を中和槽に送
り、炭酸カルシウムを添加して硫酸カルシウムと
塩基性硫酸アルミニウムを生成せしめ、これを
過機によつて上記硫酸カルシウムを固液分離し、
液の塩基性硫酸アルミニウム水溶液を上記吸収
塔に循環する塩基性硫酸アルミニウム水溶液を用
いる排煙脱硫方法において、酸化塔に、上記吸収
塔で吸収された二酸化硫黄の量に対応する量の空
気を吹込み、かつ酸化塔内の水溶液と空気の気液
比から、あらかじめ求めた見掛け比重に従つて、
ポンプタンクの液深制御値を補正することにより
吸収塔の保有液量を一定に保持することを特徴と
する排煙脱硫方法。
1. Introducing exhaust gas containing sulfur dioxide into an absorption tower and contacting it with a basic aluminum sulfate aqueous solution,
The above sulfur dioxide is absorbed into the above aqueous solution to form an aluminum sulfite aqueous solution, and the aluminum sulfite aqueous solution discharged from the above absorption tower is received in a pump tank, and sent to an oxidation tower, where air is blown into the aluminum sulfite solution. A part of the discharged aluminum sulfate aqueous solution is returned to the above-mentioned absorption tower through a branching process, and the remaining aqueous solution is sent to a neutralization tank, where calcium carbonate is added to produce calcium sulfate and basic aluminum sulfate. Separate the calcium sulfate into solid and liquid using a filtration machine,
In a flue gas desulfurization method using a basic aluminum sulfate aqueous solution in which a liquid basic aluminum sulfate aqueous solution is circulated to the absorption tower, an amount of air corresponding to the amount of sulfur dioxide absorbed in the absorption tower is blown into the oxidation tower. according to the apparent specific gravity determined in advance from the gas-liquid ratio of the aqueous solution and air in the oxidation tower.
A flue gas desulfurization method characterized by maintaining a constant amount of liquid in an absorption tower by correcting a liquid depth control value in a pump tank.
JP60243271A 1985-10-30 1985-10-30 Stack gas desulfurizing method Granted JPS62102818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243271A JPS62102818A (en) 1985-10-30 1985-10-30 Stack gas desulfurizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243271A JPS62102818A (en) 1985-10-30 1985-10-30 Stack gas desulfurizing method

Publications (2)

Publication Number Publication Date
JPS62102818A JPS62102818A (en) 1987-05-13
JPS6410254B2 true JPS6410254B2 (en) 1989-02-21

Family

ID=17101384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243271A Granted JPS62102818A (en) 1985-10-30 1985-10-30 Stack gas desulfurizing method

Country Status (1)

Country Link
JP (1) JPS62102818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970744B (en) * 2017-10-17 2020-11-10 上海交通大学 Method for simultaneously recovering sulfur dioxide and zinc sulfate by combined desulfurization of aluminum sulfate/zinc oxide

Also Published As

Publication number Publication date
JPS62102818A (en) 1987-05-13

Similar Documents

Publication Publication Date Title
EP0815923A2 (en) Method for controlling oxidation in flue gas desulfurization
US5560893A (en) Method for controlling the oxidation of sulfites
KR100188552B1 (en) Method for controlling the oxidation of sulfites in a flue gas desulfurization process
US4663724A (en) Method for the continuous determination of the concentration of a carbonate and a sulfite in a liquid
JPS6410254B2 (en)
CN115608125A (en) Method and system for monitoring, regulating and controlling desulfurization wastewater discharge on line through chloride ions
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JPH11197450A (en) Wet desulfurization equipment and its operation method
JPS60110321A (en) Control of exhaust gas desulfurizing plant
JPS61433A (en) Waste gas desulfurization
JPS63229126A (en) Control method for wet exhaust gas desulfurizer
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPS59199021A (en) Controlling method of wet lime-gypsum desulfurization plant
JPS59160519A (en) Wet type waste gas desulfurizer
JPH08173756A (en) Wet type flue gas desulfurization facility
JPS6351054B2 (en)
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPS6058229A (en) Control of flow amount of compressed air in oxidizing tower
JPH07116456A (en) Method for controlling flue gas wet desulfurization apparatus
JPH0573452B2 (en)
JPS61249527A (en) Wet type stack-gas desulfurization device
SU1637847A1 (en) Method for controlling process of absorption of sulphurous anhydride
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JPS6244733Y2 (en)