JPS61249527A - Wet type stack-gas desulfurization device - Google Patents

Wet type stack-gas desulfurization device

Info

Publication number
JPS61249527A
JPS61249527A JP60093433A JP9343385A JPS61249527A JP S61249527 A JPS61249527 A JP S61249527A JP 60093433 A JP60093433 A JP 60093433A JP 9343385 A JP9343385 A JP 9343385A JP S61249527 A JPS61249527 A JP S61249527A
Authority
JP
Japan
Prior art keywords
slurry
gas
partition
absorption tower
liquid reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60093433A
Other languages
Japanese (ja)
Inventor
Yasuki Hashimoto
泰樹 橋本
Osamu Kanda
修 神田
Michio Egashira
道夫 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60093433A priority Critical patent/JPS61249527A/en
Publication of JPS61249527A publication Critical patent/JPS61249527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To simultaneously perform the oxidation of an absorption product and the concentration of an oxidized product together with the absorption and to simplify an apparatus by providing the feed means of an O2-contg. gas to an absorption tower and providing a partition chamber having a similar constitution with the exception of it. CONSTITUTION:An exhaust gas is introduced through an introduction port 32 and brought into contact with a circulating slurry fed through the nozzles 29 in a gas-liquid contact part 8 and SO2 is absorbed and removed. The slurry is reserved in a liquid reservoir part 9 and an absorbent slurry is fed through a feed pipe 13 and the replenishing water is sent through a water pipe 24 and one part of the slurry is sent with a circulation pump 10 and the other part thereof is reserved in the liquid reservoir part 21 of the partition chamber via an overflow inlet 31 provided to a partition wall 30 and circulated through a circulation line 36 and brought into contact with the exhaust gas in gas-liquid state. Air is fed to the concentrated slurry through the blow-in means 35 to oxidize and treat it and one part thereof is drawn out to a centrifugal separator 5 via a branched drawing-out pipe 25 and the by-product gypsum 18 is recovered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿式排煙脱硫装置に係り、特に排ガス中の亜硫
酸ガスの吸収に加え、該吸収生成物の酸化と酸化生成物
の濃縮を合わせ行うに好適な湿式排煙脱硫用の吸収塔に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a wet flue gas desulfurization device, and in particular to a wet flue gas desulfurization device that not only absorbs sulfur dioxide gas in flue gas, but also oxidizes the absorbed product and concentrates the oxidized product. The present invention relates to an absorption tower suitable for wet flue gas desulfurization.

従来のこの種湿式排煙脱硫装置は第9図に示す通り、排
ガス中の亜硫酸ガス(以下、SO□と称す)をカルシウ
ム系吸収剤(例えば石灰石であるC a CO3、Ca
 Os Ca (OH) 2など)を熔解させたスラリ
と接触させて吸収・除去するための冷却塔1および吸収
塔2と、かくして生成する亜硫酸カルシウム(CaSO
3・%H20)を酸化して石膏(CaSO4・2H20
)に転化させるための酸化塔3と、石膏回収用のシラフ
ナ4および遠心分離機5とから主に構成されている。こ
のような構成の装置において、排煙源から煙道6を経て
送られる排ガスは、先ず冷却塔1に導入され、ここで冷
却塔循環タンク7および冷却塔循環ポンプ8を経たのち
散布される循環スラリと気液接触され、冷却および一部
含有SO□の吸収・除去が行なわれる。該接触後の排ガ
スは次いで吸収塔2に送られ、ここでその下部液溜め部
9および吸収塔循環ポンプ10を経て気液接触部8へ散
布される循環スラリと気液接触され、残部のS02が吸
収・除去された後、煙道11、煙突12を経て大気へ排
出される。
As shown in Fig. 9, this type of conventional wet flue gas desulfurization equipment absorbs sulfur dioxide gas (hereinafter referred to as SO□) in the flue gas by using a calcium-based absorbent (for example, limestone Ca CO3, Ca
A cooling tower 1 and an absorption tower 2 are used to absorb and remove calcium sulfite (OsCa(OH)2, etc.) by contacting with the melted slurry, and calcium sulfite (CaSO
3.%H20) is oxidized to form gypsum (CaSO4.2H20).
), a Silafuna 4 for recovering gypsum, and a centrifugal separator 5. In an apparatus having such a configuration, exhaust gas sent from an exhaust gas source through a flue 6 is first introduced into a cooling tower 1, where it passes through a cooling tower circulation tank 7 and a cooling tower circulation pump 8, and then is circulated to be dispersed. It is brought into gas-liquid contact with the slurry to perform cooling and absorption and removal of some SO□ contained therein. The exhaust gas after the contact is then sent to the absorption tower 2, where it is brought into gas-liquid contact with the circulating slurry that is spread to the gas-liquid contacting section 8 via the lower liquid reservoir section 9 and the absorption tower circulation pump 10, and the remaining S02 After being absorbed and removed, it is discharged into the atmosphere through the flue 11 and chimney 12.

吸収剤(以下、石灰石CaCO3で代表する)はスラリ
供給管13を通って吸収塔2の下部液溜め部9へ補給さ
れるが、その一部は吸収塔2で消費され、残部は連絡管
14を通って冷却塔循環タンク7へ送られるスラリ中に
存在し、冷却塔1でSO□の吸収に役立てられる。
The absorbent (hereinafter represented by limestone CaCO3) is supplied to the lower liquid reservoir 9 of the absorption tower 2 through the slurry supply pipe 13, but a part of it is consumed in the absorption tower 2, and the rest is supplied to the communication pipe 14. It is present in the slurry sent through the cooling tower circulation tank 7 and is used in the cooling tower 1 to absorb SO□.

ところで、脱硫性能は吸収液のpHに大きく影響され、
pHを高める程、すなわちcaco3の過剰率を高める
程良好になることが知られている。
By the way, desulfurization performance is greatly influenced by the pH of the absorption liquid.
It is known that the higher the pH, that is, the higher the excess rate of caco3, the better the results.

このことは、脱硫性能の向上とCaCO3の有効利用と
が二律背反の関係にあることを示唆するものである。こ
のため一般に、吸収塔のpHは5.8〜6.0、冷却塔
のpHは5.0〜5.5程度とされ、これによりCaC
O3の供給量は、吸収工程で吸収・除去される総SO□
量と当量よりも5〜10%程度過剰となるように調整さ
れている。
This suggests that the improvement of desulfurization performance and the effective use of CaCO3 are in a trade-off relationship. For this reason, the pH of the absorption tower is generally set to about 5.8 to 6.0, and the pH of the cooling tower is set to about 5.0 to 5.5.
The amount of O3 supplied is the total SO□ absorbed and removed in the absorption process.
The amount is adjusted to be approximately 5 to 10% in excess of the equivalent amount.

吸収工程では排ガス中のSO□とCaCO3等が反応し
て亜硫酸カルシウムを生成するが、その一部は排ガス中
の0□により酸化されて石膏となる。従って、冷却塔お
よび吸収塔の各循環スラリ中には、これ等の反応生成物
と未反応CaCO3が、pH値、ガス中の02濃度およ
び吸収工程におけるスラリの滞留時間等に応じである割
合で存在することとなる。
In the absorption process, SO□ in the exhaust gas reacts with CaCO3, etc. to produce calcium sulfite, but a part of it is oxidized by 0□ in the exhaust gas and becomes gypsum. Therefore, in each circulating slurry of the cooling tower and absorption tower, these reaction products and unreacted CaCO3 are present in a certain proportion depending on the pH value, the 02 concentration in the gas, the residence time of the slurry in the absorption process, etc. It will exist.

上記冷却塔循環スラリの一部は、次いで吸収工程で吸収
・除去される総SO2量に見合って石膏回収工程に抜き
出される。しかるに、この抜き出しスラリ中には未反応
Ca CO3が含まれているため、先ず酸化塔供給タン
ク15において硫酸16を添加することにより未反応C
aCO3を石膏へ転化させるとともに、亜硫酸カルシウ
ムの酸化に通したpH値(4,5〜4.8)への調整が
行われ、しかる後に酸化塔3へ送られる。酸化塔3には
微細な気泡を発生可能とする装置が設けられており、こ
れを経て高圧空気17を吹き込むことにより亜硫酸カル
シウムの酸化が促進される。かくして生成する石膏を含
むスラリは、シラフナ4に送られて約2Qwt%まで濃
縮され、次いで遠心分離機5で脱水され、然して粉末状
の副生石膏18が回収される。
A portion of the cooling tower circulation slurry is then extracted to a gypsum recovery step in proportion to the total amount of SO2 absorbed and removed in the absorption step. However, since this extracted slurry contains unreacted Ca CO3, firstly, sulfuric acid 16 is added in the oxidation tower supply tank 15 to remove unreacted Ca CO3.
The aCO3 is converted into gypsum and adjusted to a pH value (4.5-4.8) through the oxidation of calcium sulfite and then sent to the oxidation tower 3. The oxidation tower 3 is equipped with a device capable of generating fine bubbles, and by blowing high-pressure air 17 through this device, the oxidation of calcium sulfite is promoted. The thus produced slurry containing gypsum is sent to Shirafuna 4 and concentrated to about 2 Qwt%, and then dehydrated in centrifugal separator 5, thereby recovering powdered by-product gypsum 18.

しかしながら、このような従来技術においては、高い脱
硫性能の維持とCaCO3の過剰率の低減という二律背
反する条件を満たす必要があるため、冷却塔と吸収塔の
2塔が不可欠となる上、未反応CaCO3を中和するた
めの硫酸添加設備、亜硫酸カルシウムを酸化するための
特別な酸化塔および石膏スラリを濃縮すためのシラフナ
等をそれぞれの機能に応じて個別に設置することが必要
であり、構成機器が多くシステムが複雑化するという欠
点がある。
However, in such conventional technology, it is necessary to satisfy the contradictory conditions of maintaining high desulfurization performance and reducing the excess rate of CaCO3, so two towers, a cooling tower and an absorption tower, are essential, and unreacted CaCO3 It is necessary to install sulfuric acid addition equipment to neutralize calcium sulfite, a special oxidation tower to oxidize calcium sulfite, Shirafuna to concentrate gypsum slurry, etc., depending on each function, and the component equipment The disadvantage is that there are many problems, which makes the system complicated.

(発明が解決しようとする問題点) 本発明の目的は、上記した従来技術の欠点をなくし、排
ガス中のS02の吸収に加え、該吸収生成物の酸化と酸
化生成物の濃縮を合わせ行い、もって装置の簡略化がで
きる湿式排煙税硫用の吸収塔を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to eliminate the drawbacks of the prior art described above, and to absorb S02 in the exhaust gas, as well as oxidize the absorbed product and concentrate the oxidized product. An object of the present invention is to provide an absorption tower for wet flue gas tax sulfur, which can simplify the equipment.

(問題点を解決するための手段) 上記の目的を達成するため、本発明は、循環散布される
カルシウム系の吸収剤スラリに排ガスを接触させて含有
亜硫酸ガスの吸収・除去を行う気液接触部と、該接触後
流下するスラリをカルシウム系吸収剤の補給下に貯溜す
る液溜め部とからなる吸収塔を備えた湿式排煙説破装置
において、上記吸収塔にその側壁面以内にあって気液接
触部から液溜め部の底部方向へ延びる仕切壁と、該仕切
壁によって形成された仕切室と、該仕切室に設けられた
液溜め部スラリの溢流入口と、排ガスの一部取り入れを
行う導入口と、仕切室気液接触部および同液溜め部と、
仕切室気液接触部を通過した排ガスを上記の(吸収塔)
気液接触部へ向は排出する排出口と、仕切室液溜め部へ
の酸素含有ガスの吹き込み手段と、仕切室循環スラリラ
インから分岐したのち遠心分離機へ達する仕切室液溜め
部スラリの抜き出しラインとを設けたことを特徴とする
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a gas-liquid contact method that absorbs and removes sulfur dioxide gas by bringing exhaust gas into contact with a circulating calcium-based absorbent slurry. In a wet smoke flue gas blasting apparatus, the absorber is equipped with an absorption tower comprising a part and a liquid reservoir part for storing the slurry flowing down after the contact while being replenished with a calcium-based absorbent. A partition wall extending from the liquid contact part toward the bottom of the liquid reservoir, a partition chamber formed by the partition wall, an overflow inlet for the liquid reservoir slurry provided in the partition chamber, and a part of the exhaust gas intake. a gas-liquid contact part of the partition and a liquid reservoir part,
The exhaust gas that has passed through the gas-liquid contact part of the partition is transferred to the above (absorption tower).
A discharge port for discharging toward the gas-liquid contact area, a means for blowing oxygen-containing gas into the liquid reservoir in the partition, and an extraction of slurry from the liquid reservoir in the partition that branches off from the partition circulation slurry line and reaches the centrifugal separator. It is characterized by having a line.

上記液溜め部(以下、吸収塔液溜め部と称する)スラリ
のpHは、SO2の吸収に好適な5.8〜6.3に、ま
た仕切室液溜め部スラリのpHは、吸収生成物(亜硫酸
カルシウム)の酸化に好適な4゜5以下に保つことが好
ましい。
The pH of the slurry in the above liquid reservoir (hereinafter referred to as absorption tower liquid reservoir) is 5.8 to 6.3, which is suitable for absorption of SO2, and the pH of the slurry in the partition chamber liquid reservoir is set to 5.8 to 6.3, which is suitable for absorbing SO2. It is preferable to maintain the temperature at 4°5 or less, which is suitable for oxidizing calcium sulfite).

また、上記仕切室へ一部排ガスを取り入れる際の調整は
、吸収塔の入口部に排ガス配分ダンパを設け、このダン
パを操作することにより行うことが望ましい。
Further, it is desirable to adjust the intake of a portion of the exhaust gas into the partition by providing an exhaust gas distribution damper at the entrance of the absorption tower and operating this damper.

このような本発明の構成によれば、気液接部(以下、吸
収塔気液接触部と称する)と吸収塔液溜め部からなる吸
収塔本体部で排ガス中S02の吸収・除去が、また、仕
切室で、上記SO2吸収スラリ中に残存するカルシウム
系吸収剤によるS02のさらなる吸収・除去(該CaC
O3は完全に中和される)、上記の吸収で生成した亜硫
酸カルシウムの酸化による石膏化およびスラリの濃縮が
同時に達成され、これにより従来必要とされていた酸化
塔供給タンク、酸化塔およびシソフナ等の装置を省略す
ることができる。
According to the configuration of the present invention, S02 in the exhaust gas can be absorbed and removed in the absorption tower main body, which is composed of the gas-liquid contact section (hereinafter referred to as absorption tower gas-liquid contact section) and the absorption tower liquid reservoir section. , further absorption and removal of S02 (the CaC
(O3 is completely neutralized), gypsumization by oxidation of the calcium sulfite produced in the above absorption, and concentration of the slurry are simultaneously achieved, which eliminates the conventionally required oxidation tower supply tank, oxidation tower, shisofuna, etc. equipment can be omitted.

(実施例) 以下、実施例により本発明を更に詳しくは説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

第1図(A)は、本発明の実施例に係る湿式排煙脱硫装
置の主要部縦断面系統図、第1図(B)は図面(A)の
A−A方向に沿った断面視図を示し、このものは、第9
図に示す符号とその説明が同様に参照される部分と、同
図の冷却塔1並びに連絡管14以降遠心分離機5の直前
間に配された冷却塔循環タンク7、酸化塔供給タンク1
5、酸化塔3およびシラフナ4等に替えて設けられた仕
切室34とから主に構成される。
FIG. 1(A) is a vertical cross-sectional system diagram of main parts of a wet flue gas desulfurization apparatus according to an embodiment of the present invention, and FIG. 1(B) is a cross-sectional view taken along the direction A-A in drawing (A). and this one is the 9th
The reference numerals shown in the figure and the parts to which their explanations are similarly referred to, the cooling tower circulation tank 7, and the oxidation tower supply tank 1, which are arranged from the cooling tower 1 in the same figure to the connecting pipe 14 and immediately before the centrifugal separator 5.
5, the oxidation tower 3 and the partition chamber 34 provided in place of the Shirafuna 4 and the like.

上記の仕切室は、吸収塔2の側壁面内にあって吸収塔気
液接触部8から同液溜め部9の底部方向へ延びる仕切壁
30、この仕切壁30に設けられた吸収塔液溜め部スラ
リの溢流入口31、煙道6の端部に開口し、該煙道中を
送られる排ガスの一部取り入れを排ガス配分ダンパ20
の調整下に行う導入口32)吸収塔気液接触部8と同様
な構成のスプレヘッダおよびノズル22を備えた仕切室
気液接触部27並びに石灰石の補給を除く以外は吸収塔
液溜め部9と同様な構成の仕切室液溜め部21、仕切室
気液接触部27を通過した排ガスを吸収塔気液接触部8
へ排出するための、一般にミストエリミネータ26を配
した排出口33、仕切室液溜め部21に対し、供給ライ
ン23を経て送られる酸素含有ガス例の空気を分散下に
吹き込むための手段35および仕切室循環スラリライン
36から分岐したのち遠心分離機5へ達する仕切室液溜
め部スラリの抜き出しライン25を備えている。
The above-mentioned partition chamber includes a partition wall 30 that is located within the side wall surface of the absorption tower 2 and extends from the absorption tower gas-liquid contact section 8 toward the bottom of the liquid reservoir section 9, and an absorption tower liquid reservoir provided in this partition wall 30. A slurry overflow inlet 31 opens at the end of the flue 6, and the exhaust gas distribution damper 20 takes in a portion of the exhaust gas sent through the flue.
32) A partition chamber equipped with a spray header and nozzle 22 having the same configuration as the absorption tower gas-liquid contact section 8 and the absorption tower liquid reservoir section 9 except for the gas-liquid contact section 27 and limestone replenishment. The exhaust gas that has passed through the similarly configured partition chamber liquid reservoir 21 and partition chamber gas-liquid contact section 27 is transferred to the absorption tower gas-liquid contact section 8.
a means 35 for dispersing air, for example an oxygen-containing gas, sent via the supply line 23 into the compartment sump 21 and a partition; A slurry extraction line 25 is provided for the slurry in the partition chamber liquid reservoir, which branches off from the chamber circulation slurry line 36 and then reaches the centrifugal separator 5.

このような構成の装置において、煙道6中を送られる排
ガスの大部分は排ガス配分ダンパ20の調整下に吸収塔
2の気液接触部8へ供給され、複数段に設けられたスプ
レヘッダおよびノズル29を経て散布される吸収塔液溜
め部9からの循環スラリと接触処理される。
In an apparatus with such a configuration, most of the exhaust gas sent through the flue 6 is supplied to the gas-liquid contact section 8 of the absorption tower 2 under the adjustment of the exhaust gas distribution damper 20, and is supplied to the gas-liquid contact section 8 of the absorption tower 2 through the spray header and nozzle provided in multiple stages. The slurry is brought into contact with the circulating slurry from the absorption tower liquid reservoir section 9 which is sprayed through the slurry 29.

この接触処理により、排ガス中のSo、は吸収剤スラリ
に吸収・除去され、かくしてSO□の除去された排ガス
は、従来と同様にしてデミスタ19、煙道11を通った
のち煙突12から大気へ排出される。
Through this contact treatment, So in the exhaust gas is absorbed and removed by the absorbent slurry, and the exhaust gas from which SO□ has been removed passes through the demister 19 and the flue 11 in the same manner as before, and then enters the atmosphere from the chimney 12. It is discharged.

一方、スラリは上記接触後流下し、吸収塔液溜め部9に
溜められる。
On the other hand, the slurry flows down after the above contact and is stored in the absorption tower liquid storage section 9.

上記により溜められたスラリには、供給管13を経て吸
収剤スラリか、また、スケーリング防止等のため水管2
4を経て吸収塔入口部に供給される補給水およびデミス
タ19等の洗浄水の内の未蒸発分が補給される。このよ
うな補給にともない吸収塔液溜め部のスラリは水位が上
昇するが、その一部は吸収塔循環ポンプ10を経て前記
と同様にして気液接触用に送られ、他の一部は溢流入口
31を経て仕切室液溜め部21に溜められ、次いで仕切
室循環ライン36に沿う同ポンプ28、スプレヘッダお
よびノズル22を経て仕切室気液接触部27へ散布され
、導入口32から供給される排ガスの一部と気液接触さ
れる。
The slurry accumulated as described above is supplied with absorbent slurry via a supply pipe 13, and is also supplied with a water pipe 2 to prevent scaling.
The unevaporated portion of the make-up water and the wash water supplied to the demister 19 and the like, which are supplied to the inlet of the absorption tower through the demister 19, is replenished. With such replenishment, the water level of the slurry in the absorption tower liquid reservoir rises, but part of it is sent to the absorption tower circulation pump 10 for gas-liquid contact in the same manner as described above, and the other part is overflowed. It is stored in the partition liquid reservoir 21 through the inlet 31, then sprayed into the partition gas-liquid contact part 27 via the pump 28, spray header and nozzle 22 along the partition circulation line 36, and then supplied from the inlet 32. gas-liquid contact with part of the exhaust gas.

この気液接触により含有SO□の一部が吸収・除去され
た排ガスはミストエリミネータ26を経たのち吸収塔の
気液接触部8に送られ、ここで前述のように直接供給排
ガスとともに気液接触に供される。
The exhaust gas from which a part of the SO served.

一方、仕切室気液接触部で高温の排ガスと接触し、過剰
なカルシウム系吸収剤の消費下に生成したS02の新た
な吸収生成物である亜硫酸カルシウムを含み、かつ濃縮
されたスラリは、流下後仕切室液溜め部21に溜められ
、ここで空気吹き込み手段35から供給される空気の存
在下に、含有亜硫酸カルシウムの酸化処理が行われる。
On the other hand, the concentrated slurry containing calcium sulfite, which is a new absorption product of S02, which came into contact with high-temperature exhaust gas at the gas-liquid contact part of the partition and was generated due to the consumption of excess calcium-based absorbent, flows down. The calcium sulfite contained therein is oxidized in the presence of air stored in the rear partition liquid storage section 21 and supplied here from the air blowing means 35.

かくして生成する石膏含有濃縮スラリは、仕切室循環ラ
イン36を経たのち前記と同様にして気液接触に供され
、以下この繰り返しとなるが、その一部は分岐抜き出し
ライン25を経て遠心分離機5へ抜き出され、脱水後カ
ルシウム系吸収剤を実質的に含むことのない副生石膏1
8として回収される。
The gypsum-containing concentrated slurry thus produced passes through the partition circulation line 36 and is subjected to gas-liquid contact in the same manner as described above, and this process is repeated thereafter, with a portion of it passing through the branch extraction line 25 and being sent to the centrifuge 5. By-product gypsum 1, which is extracted from and substantially free of calcium-based absorbent after dehydration
It is collected as 8.

以下、本発明実施例の作用効果について更に詳しく説明
する。
Hereinafter, the effects of the embodiments of the present invention will be explained in more detail.

本発明の実施例の効果を好適に達成するためには、下記
の3点を満足することが必要である。
In order to suitably achieve the effects of the embodiments of the present invention, it is necessary to satisfy the following three points.

(1)カルシウム系吸収剤の使用効率を高めるため、仕
切室循環スラリ中の残存吸収剤量、すなわち吸収剤の過
剰率を零とすること (2)仕切室液溜め部での亜硫酸カルシウムの酸化を好
適に行うこと (3)仕切室内でのスラリ濃縮を好適に行うことまず、
第1点について述べると、一般にカルシウム系吸収剤(
代表的にCaC03)の過剰率とスラリpHとの関係は
第2図に示す通りであり、pHを4.5以下とするとC
aCO3の過剰率は零、すなわち未反応CaCO3量は
零になることが知られている。このため、吸収塔に供給
するCaC0=量は、仕切室を含めた吸収塔全体での吸
収・除去SO□量と当量でよいことが知られる。従って
仕切室で吸収すべきSO□量は、吸収塔液溜め部9から
仕切室液溜め部21に流入する未反応CaCO3の絶対
量に対し、下記0式から求まる当量かそれ以上とする必
要がある。
(1) In order to increase the usage efficiency of calcium-based absorbent, the amount of absorbent remaining in the circulating slurry in the partition, that is, the excess rate of absorbent, should be reduced to zero. (2) Oxidation of calcium sulfite in the liquid reservoir in the partition (3) Concentrating the slurry in a partitioned room in a suitable manner First,
Regarding the first point, calcium-based absorbents (
The relationship between the excess rate of CaC03) and the slurry pH is shown in Figure 2. When the pH is set to 4.5 or less, C
It is known that the excess rate of aCO3 is zero, that is, the amount of unreacted CaCO3 is zero. Therefore, it is known that the amount of CaC0=supplied to the absorption tower may be equivalent to the amount of SO□ absorbed and removed in the entire absorption tower including the partition chamber. Therefore, the amount of SO□ to be absorbed in the partition needs to be equivalent to or more than the absolute amount of unreacted CaCO3 flowing from the absorption tower liquid reservoir 9 to the partition liquid reservoir 21, as determined from the following equation 0. be.

CaCO3+SO2+!4H20→CaCO3・%H2
0+C02↑      ・・・・・・・・・■上記し
た未反応CaCO3の絶対量は、吸収塔循環スラリのp
H,CaCO3過剰率および吸収塔全体での吸収SO,
量に関係する。ところで、吸収塔におけるスラリのpH
と脱硫率の関係および同液ガス比と脱硫率の関係を求め
るとそれぞれ第3図および第4図が得られ、これらから
脱硫性能の向上のためには、液ガス比の増加よりもpH
を高めるほうが有利であることが知られる。しかし、ス
ラリのpHを高めると第2図からも明らかな通りCaC
O3の過剰率が増加し、例えば、スラリpHを6.0と
した場合のCaCO3過剰率は約10%となる。従って
、この場合の仕切室で吸収すべきSO□量R1は、既述
の関係を総合すると下記0式で与えられることになる。
CaCO3+SO2+! 4H20→CaCO3・%H2
0+C02↑・・・・・・・・・■The absolute amount of unreacted CaCO3 mentioned above is the p of the absorption tower circulation slurry.
H, CaCO3 excess rate and SO absorbed in the entire absorption tower,
related to quantity. By the way, the pH of the slurry in the absorption tower
Figures 3 and 4 are obtained by determining the relationship between the liquid-gas ratio and the desulfurization rate, and the relationship between the liquid-gas ratio and the desulfurization rate.
It is known that it is advantageous to increase the However, as is clear from Figure 2, when the pH of the slurry is increased, CaC
The excess ratio of O3 increases, and for example, when the slurry pH is set to 6.0, the excess ratio of CaCO3 becomes about 10%. Therefore, the amount R1 of SO□ to be absorbed in the partition in this case is given by the following equation 0 by combining the above-mentioned relationships.

R−R1+R,・・・・・・・・・■ L=R・・・・・・・・・■ L−1,IXR,・・・・・・・・・■−’−Rt#0
.09xR・・・・・・・・・■〔各式中、Rは吸収塔
全体の吸収S02量(m。
R-R1+R,......■ L=R......■ L-1, IXR,......■-'-Rt#0
.. 09xR・・・・・・・・・■ [In each formula, R is the absorbed S02 amount of the entire absorption tower (m.

It/h) 、R1は仕切室で吸収すべきSO,量(m
oJ/h)、R2は吸収塔の吸収S02量(mot!/
h)、LはCaC0:zの供給量(non/h)を示す
〕 すなわち、仕切室で吸収すべきSO□量は、吸収塔全体
で吸収されるSO□量の約9%以上であればよいことに
なる。このことは、仕切室に導入すべき排ガス量も、後
記のスラリ濃縮面を考慮しなければ同一割合でよいこと
を示すものである。
It/h), R1 is the amount of SO to be absorbed in the partition (m
oJ/h), R2 is the amount of SO2 absorbed by the absorption tower (mot!/
h), L indicates the supply amount (non/h) of CaC0:z] In other words, the amount of SO□ to be absorbed in the partition is approximately 9% or more of the amount of SO□ absorbed in the entire absorption tower. It will be a good thing. This indicates that the amount of exhaust gas to be introduced into the partition can be kept at the same rate unless the slurry concentration aspect described later is taken into account.

次に、第2点の仕切室液溜め部における亜硫酸カルシウ
ムの酸化について述べるに、一般に亜硫酸カルシウムの
酸化速度とスラリpHの関係は第5図に示す通り、低p
H下、特に未反応CaCO3量を零にすることが可能な
前記4.5以下では酸化用空気を一定以上、好ましくは
理論量の2倍以上供給すれば、酸化が良好に達成される
Next, regarding the second point, the oxidation of calcium sulfite in the liquid reservoir of the partition, the relationship between the oxidation rate of calcium sulfite and the slurry pH is generally as shown in Figure 5.
Under H, particularly at a temperature of 4.5 or less where the amount of unreacted CaCO3 can be reduced to zero, oxidation can be achieved satisfactorily by supplying oxidizing air at a certain level or more, preferably at least twice the theoretical amount.

この場合、下記の0式が成立する。In this case, the following formula 0 holds true.

V−M/Z            ・・・・・・・・
・■〔式中、■は仕切室液溜め部の必要容量rpt>、
Mは仕切室液溜め部の亜硫酸カルシウム量(n。
V-M/Z・・・・・・・・・
・■ [In the formula, ■ is the required capacity rpt of the liquid reservoir in the partition>,
M is the amount of calcium sulfite in the liquid reservoir of the partition (n.

17h”) 、Zは酸化速度(mo 1/II ・h)
 ”?’ある〕 仕切室液溜め部への空気吹き込み方法としては、公知の
ものが広く通用可能であり、例えば多数のパイプから吹
き出す方式のものでもよい。なお、この空気吹き込みに
よって、液溜め部内へのスラリ沈積を防ぐことができる
ことは言うまでもない。
17h”), Z is the oxidation rate (mo 1/II ・h)
``?'' As a method for blowing air into the liquid reservoir in the partition, known methods are widely applicable, and for example, a method of blowing air from multiple pipes may be used. Needless to say, it is possible to prevent slurry from being deposited on the surface.

吹き込み空気の圧力は、吹き出し手段の挿入液深相当以
上の圧力、一般に約0.5kg/−・G程度であればよ
く、従って従来の酸化塔のごとき4〜7眩/−・Gのご
とき高圧を必要としない。
The pressure of the blown air should be equal to or higher than the depth of the liquid inserted into the blowing means, generally about 0.5 kg/-.G, and therefore higher pressure such as 4 to 7 kg/-.G as in conventional oxidation towers. does not require.

次に、第3点の仕切室内でのスラリ濃縮について述べる
に、これは仕切室内で蒸発すべき水量と仕切室に導入さ
れる排ガスの熱量との熱収支によって達成される。一般
に、吸収塔循環スラリの濃度はlQwt%程度であり、
これを遠心分離機5側で要求される15〜2Qwt%ま
で仕切室で濃縮するには、流入スラリ中の水量の約40
%から60h程度を蒸発させればよいことになる。仕切
室に導入する排ガス量は、入口部排ガス温度および吸収
塔からの流入水量に関係するが、後記運転上の実施例か
らも明らかな通り、入口部排ガス温度が約90℃、流入
スラリ濃度が19wt%の場合には、吸収塔入口全排ガ
ス量の約40〜60%でよいことになる。
Next, referring to the third point, slurry concentration in the partition, this is achieved by the heat balance between the amount of water to be evaporated in the partition and the amount of heat of the exhaust gas introduced into the partition. Generally, the concentration of absorption tower circulating slurry is about 1Qwt%,
To concentrate this in the partition chamber to the required 15 to 2 Qwt% on the centrifuge 5 side, approximately 40% of the water volume in the inflow slurry must be concentrated.
% to about 60 hours. The amount of exhaust gas introduced into the partition chamber is related to the temperature of the exhaust gas at the inlet and the amount of water flowing in from the absorption tower. In the case of 19 wt%, it is sufficient to use about 40 to 60% of the total amount of exhaust gas at the absorption tower inlet.

なお、上記の導入排ガス量は、前記した仕切室内でSO
□を吸収させるに必要な量より多くなっているが、この
ように増量してもスラリのpHが4゜5以下ではSO□
をほとんど吸収しないので、特に支障を来すことはない
Note that the amount of introduced exhaust gas mentioned above is based on SO
The amount is higher than the amount required to absorb SO□, but even if the amount is increased in this way, if the pH of the slurry is below 4°5, SO□
It does not cause any particular problems as it absorbs very little.

次に、第6図(A)は、本発明の他の実施例に係る湿式
排煙脱硫装置の主要部縦断面系統図、同図(B)は同図
(A)のB−B方向に沿った断面視図を示し、このもの
は、第1図に示す吸収塔内に設けられた仕切壁30に替
え、吸収塔の側壁面に沿った仕切壁3OAを設ける以外
は同様な構成である。
Next, FIG. 6(A) is a longitudinal cross-sectional system diagram of the main parts of a wet flue gas desulfurization apparatus according to another embodiment of the present invention, and FIG. This shows a cross-sectional view along the absorption tower, and this one has the same configuration except that a partition wall 3OA along the side wall surface of the absorption tower is provided instead of the partition wall 30 provided in the absorption tower shown in FIG. .

このような構成とすれば、更に吸収塔液溜め部9のスラ
リ保有有効容積の拡大とスラリの攪拌特性を改善できる
With such a configuration, it is possible to further expand the effective slurry holding volume of the absorption tower liquid storage section 9 and improve the slurry stirring characteristics.

次に、第7図は、第8図に示す各計測点37〜42から
それぞれ、SO2濃度37A1排ガス温度3°8A、排
ガス流量39A1遠心分離機へのスラリ抜き出し流量4
0A、仕切室液溜め部スラリ比重41Aおよび吸収塔液
溜め部スラリ比重42Aを求め、これらの信号を基に、
負荷変動下であっても仕切室液溜め部のスラリ濃度を所
望の値に維持可能とする、仕切室への排ガス導入制御の
実施例を示すものである。
Next, FIG. 7 shows the SO2 concentration 37A1, the exhaust gas temperature 3°8A, the exhaust gas flow rate 39A1, and the slurry extraction flow rate 4 to the centrifugal separator from each measurement point 37 to 42 shown in FIG.
0A, the specific gravity of the slurry in the partition chamber liquid reservoir 41A and the slurry specific gravity in the absorption tower liquid reservoir 42A are determined, and based on these signals,
This figure shows an example of exhaust gas introduction control into a partition, which makes it possible to maintain the slurry concentration in the partition liquid reservoir at a desired value even under load fluctuations.

すなわち、装置入口の全排ガス流量39A1同SO□濃
度37Aおよび同排ガス温度38Aを計測し、排ガス流
量×802濃度の演算で仕切室に流入するスラリ流量を
予測するとともに、これと排ガス流量×排ガス温度の演
算値とから排ガス配分ダンパの開度調節を可能とする先
行制御を行う。
That is, the total exhaust gas flow rate 39A1 SO□ concentration 37A and exhaust gas temperature 38A at the equipment entrance are measured, and the slurry flow rate flowing into the partition is predicted by calculating the exhaust gas flow rate x 802 concentration, and this and the exhaust gas flow rate x exhaust gas temperature are calculated. Based on the calculated value of , advance control is performed that allows the opening degree of the exhaust gas distribution damper to be adjusted.

一方、吸収塔液溜め部および仕切室液溜め部の各スラリ
比重42A、41Aと仕切室からの抜き出しスラリ流量
40Aを計測し、これらの信号から演算されるスラリ濃
縮のための実ガス量を基にフィードバック制御を行う、
これによって、負荷変化に追従することができる。
On the other hand, the slurry specific gravity 42A, 41A in the absorption tower liquid storage section and the partition chamber liquid storage section and the slurry flow rate 40A extracted from the partition chamber are measured, and the actual gas amount for slurry concentration calculated from these signals is calculated. perform feedback control on
This makes it possible to follow load changes.

以下、運転上の実施例により更に説明する。This will be further explained below with reference to operational examples.

(実施例) 第6図に示す装置を用い、下記(1)および(2)の条
件で脱硫運転を行ったところ、仕切室スラリを15wt
%まで濃縮するに必要な仕切室への排ガス量は全体排ガ
ス量の41%、また、20wt%まで濃縮する場合には
63%となった。
(Example) Using the apparatus shown in Figure 6, desulfurization operation was performed under the conditions (1) and (2) below.
%, the amount of exhaust gas required to be fed into the partition chamber was 41% of the total amount of exhaust gas, and when concentrating to 20 wt%, it was 63%.

(1)m硫装置運転基礎条件 イ)処理排ガス量(湿ガス) 600、 000   No?/h (786,000kg/h) 口)処理排ガス量(乾ガス) 549.600  Nn?/h (745,500kg/h) ハ)排ガス中の水分    8.4Vo1%二)装置入
口SO□濃度  500  ppmホ)脱硫率    
    90 % へ)仕切室入口ガス温度  90 ℃ (2)吸収塔液溜め部から仕切室に流入するスラリ量 イ)固形物量 未反応CaCO3−100kg/h CaS03−!4820−780   #CaSO42
H20−900〃 −90# 1.870kg/h 口) H2O−16,830kg/h ハ)スラリ量    −18,700kg/h(10w
t%スラリ) (3)10wt%を15〜2Qwt%まで濃縮するに必
要なガス量 イ)15wt%まで濃縮の場合 所要乾ガス量 −18,700X16.5 −308.550  kg/h (処理ガス量の約41%) 口)20wt%まで濃縮の場合 所要乾ガス量 −18,700x25.0 −467.500  kg/h (処理ガス量の約63%) (発明の効果) 本発明によれば、吸収塔に酸素含有ガスの供給手段を設
ける以外は同様な構成の仕切室を設けることにより、該
仕切室内で吸収塔の液溜め部から送られるスラリ中の過
剰カルシウム系吸収剤を一部排ガスとの気液接触を通し
て実質的に零とすることができる上、仕切室液溜め部の
スラリを吸収生成物である亜硫酸カルシウムの酸化に好
適なpH4,5以下に保ち、かつ上記気液接触を通じ遠
心分離機で脱水するに好適な濃度まで濃縮することがで
きる。
(1) Basic operating conditions for the m-sulfur unit a) Amount of treated exhaust gas (wet gas) 600, 000 No? /h (786,000kg/h) Processed exhaust gas amount (dry gas) 549.600 Nn? /h (745,500kg/h) c) Moisture in exhaust gas 8.4Vo1% b) Equipment inlet SO□ concentration 500 ppm e) Desulfurization rate
(2) Amount of slurry flowing into the partition from the absorption tower liquid reservoir a) Amount of solids unreacted CaCO3-100 kg/h CaS03-! 4820-780 #CaSO42
H20-900 -90# 1.870kg/h mouth) H2O-16,830kg/h c) Slurry amount -18,700kg/h (10w
t% slurry) (3) Amount of gas required to concentrate 10wt% to 15-2Qwt% a) Amount of dry gas required for concentrating to 15wt% -18,700X16.5 -308.550 kg/h (processed gas (approximately 41% of the amount) (mouth) Required dry gas amount when concentrating to 20 wt% -18,700x25.0 -467.500 kg/h (approximately 63% of the processed gas amount) (Effects of the invention) According to the present invention By providing a partition with the same configuration as the absorption tower except for providing means for supplying oxygen-containing gas, a portion of the excess calcium-based absorbent in the slurry sent from the liquid reservoir of the absorption tower is removed from the exhaust gas in the partition In addition, the slurry in the liquid reservoir of the partition can be kept at a pH of 4.5 or below, which is suitable for oxidizing calcium sulfite, which is an absorption product, and through the gas-liquid contact, It can be concentrated to a concentration suitable for dehydration using a centrifuge.

これにより、従来必要とされていた硫酸添加設備、亜硫
酸カルシウムの酸化塔および石膏スラリの濃縮用シラフ
ナ等の設備を省略できる上、硫酸添加が不要となること
およびCaCO3の利用効率が向上することにより運転
費用を低減することができる。
As a result, the conventionally required equipment such as sulfuric acid addition equipment, calcium sulfite oxidation tower, and gypsum slurry concentration silafuna can be omitted, as well as eliminating the need for sulfuric acid addition and improving the utilization efficiency of CaCO3. Operating costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、本発明の実施例に係る湿式排煙脱硫装
置の主要部縦断面系統図、第1図(B)は、第1図(A
)のA−A方向に沿った断面視図、第2図は、スラリの
pHとCaCO3過剰率との関係図、第3図は、吸収塔
スラリのpHと脱硫率の関係図、第4図は、吸収塔液ガ
ス比と脱硫率の関係図、第5図は、スラリpHと亜硫酸
カルシウムの酸化速度との関係図、第6図(A)は、本
発明の他の実施例に係る湿式排煙脱硫装置の主要部縦断
面系統図、第6図(B)は同(A)のB−B方向に沿っ
た断面視図、第7図は、本発明の実施例に係る仕切室排
ガス導入制御の系統図、第8図は、第6図の装置に第7
図に示す制御系に原始信号を送るための計測点を指定し
て示す系統図、第9図は、従来の湿式排煙脱硫装置の系
統図である。 2・・・吸収塔、4・・・シラフナ、5・・・遠心分離
機、8・・・吸収塔気液接触部、9・・・吸収塔液溜め
部、13・・・石灰石スラリ供給管、18・・・副生石
膏、20・・・排ガス配分ダンパ、21・・・仕切室液
溜め部、22・・・スプレヘッダおよびノズル、23・
・・空気供給ライン、24・・・水管、25・・・分岐
抜き出しライン、26・・・ミストエリミネータ、27
・・・仕切室気液接触部、30.30A・・・仕切壁、
31・・・溢流入口、32・・・仕切室排ガス導入口、
33・・・仕切室排ガス排出口、34・・・仕切室、3
5−・・空気吹き込み手段、36・・・仕切室循環ライ
ン、37・・・SO,濃度計測点、38−・・排ガス温
度計測点、39・・・排ガス流量計測点、40−・・遠
心分離機へのスラリ抜き出し流量計測点、41・・・仕
切室液溜め部スラリ比重針測点、42・・・吸収塔液溜
め部スラリ比重計測点。 lj:空気伝粕ライン     Jb: (ま切111
賃ライン第1図(B) スラリPH(−) 第3図 第4図 一瓦刃ス、塔浪ブス罠()/m3N) 第5図 スラリpH(−) 第7図
FIG. 1(A) is a longitudinal cross-sectional system diagram of the main parts of a wet flue gas desulfurization device according to an embodiment of the present invention, and FIG. 1(B) is a diagram of FIG.
), FIG. 2 is a relationship between the pH of the slurry and CaCO3 excess rate, FIG. 3 is a relationship between the pH of the absorption tower slurry and the desulfurization rate, and FIG. is a diagram showing the relationship between the absorption tower liquid-gas ratio and the desulfurization rate, FIG. 5 is a diagram showing the relationship between the slurry pH and the oxidation rate of calcium sulfite, and FIG. A vertical cross-sectional system diagram of the main parts of the flue gas desulfurization equipment, FIG. 6 (B) is a cross-sectional view taken along the direction B-B of FIG. 6 (A), and FIG. The introduction control system diagram, Figure 8, shows the system diagram of the system shown in Figure 6.
FIG. 9 is a system diagram showing measurement points designated for sending primitive signals to the control system shown in the figure. FIG. 9 is a system diagram of a conventional wet flue gas desulfurization apparatus. 2... Absorption tower, 4... Shirafuna, 5... Centrifugal separator, 8... Absorption tower gas-liquid contact section, 9... Absorption tower liquid reservoir section, 13... Limestone slurry supply pipe , 18... By-product gypsum, 20... Exhaust gas distribution damper, 21... Partition chamber liquid reservoir, 22... Spray header and nozzle, 23...
... Air supply line, 24 ... Water pipe, 25 ... Branch extraction line, 26 ... Mist eliminator, 27
...Partition room gas-liquid contact part, 30.30A...Partition wall,
31... Overflow inlet, 32... Partition room exhaust gas inlet,
33... Partition room exhaust gas outlet, 34... Partition room, 3
5--Air blowing means, 36--Divided chamber circulation line, 37--SO, concentration measurement point, 38--Exhaust gas temperature measurement point, 39--Exhaust gas flow rate measurement point, 40--Centrifugal Slurry extraction flow rate measurement point to the separator, 41... Partition room liquid reservoir slurry specific gravity needle measurement point, 42... Absorption tower liquid reservoir slurry specific gravity measurement point. lj: Air transfer line Jb: (Makiri 111
Rental line Figure 1 (B) Slurry PH (-) Figure 3 Figure 4 One tile blade su, tower wave bus trap ()/m3N) Figure 5 Slurry pH (-) Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)循環散布されるカルシウム系の吸収剤スラリに排
ガスを接触させて含有亜硫酸ガスの吸収・除去を行う気
液接触部と、該接触後流下するスラリをカルシウム系吸
収剤の補給下に貯溜する液溜め部とからなる吸収塔を備
えた湿式排煙脱硫装置において、上記吸収塔にその側壁
面以内にあって気液接触部から液溜め部の底部方向へ延
びる仕切壁と、該仕切壁によって形成された仕切室と、
該仕切室に設けられた液溜め部スラリの溢流入口と、排
ガスの一部取り入れを行う導入口と、仕切室気液接触部
および液溜め部と、仕切室気液接触部を通過した排ガス
を上記の(吸収塔)気液接触部へ向けて排出する排出口
と、仕切室液溜め部への酸素含有ガスの吹き込み手段と
、仕切室循環スラリラインから分岐したのち遠心分離機
へ達する仕切室液溜め部スラリの抜き出しラインとを設
けたことを特徴とする湿式排煙脱硫装置。
(1) A gas-liquid contact section that absorbs and removes the sulfur dioxide gas by bringing the exhaust gas into contact with the calcium-based absorbent slurry that is circulated, and the slurry that flows down after the contact is stored while being replenished with the calcium-based absorbent. In a wet flue gas desulfurization apparatus equipped with an absorption tower comprising a liquid reservoir, the absorption tower has a partition wall that is located within the side wall surface of the absorption tower and extends from the gas-liquid contact part toward the bottom of the liquid reservoir, and the partition wall A partition formed by
A liquid reservoir provided in the partition has an overflow inlet for slurry, an inlet for taking in part of the exhaust gas, a gas-liquid contact part and a liquid reservoir in the partition, and exhaust gas that has passed through the gas-liquid contact part of the partition. an outlet for discharging the gas toward the gas-liquid contact section of the above-mentioned (absorption tower), a means for blowing oxygen-containing gas into the liquid reservoir in the partition, and a partition that branches off from the circulation slurry line in the partition and reaches the centrifuge. A wet flue gas desulfurization device characterized by having a chamber liquid reservoir and a slurry extraction line.
(2)特許請求の範囲第1項において、上記吸収塔液溜
め部スラリと仕切室液溜め部スラリのpHをそれぞれ約
5.8〜約6.3および約4.5以下に保つことを特徴
とする湿式排煙脱硫装置。
(2) Claim 1 is characterized in that the pH of the absorption tower liquid reservoir slurry and the partition chamber liquid reservoir slurry is maintained at about 5.8 to about 6.3 and about 4.5 or less, respectively. Wet flue gas desulfurization equipment.
(3)特許請求の範囲第1項において、仕切室への一部
排ガスの取り入れの調整を、吸収塔の入口部に設けた排
ガス配分ダンパの操作により可能としたことを特徴とす
る湿式排煙脱硫装置。
(3) The wet smoke flue gas according to claim 1, characterized in that the intake of a portion of the exhaust gas into the partition chamber can be adjusted by operating an exhaust gas distribution damper provided at the entrance of the absorption tower. Desulfurization equipment.
JP60093433A 1985-04-30 1985-04-30 Wet type stack-gas desulfurization device Pending JPS61249527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093433A JPS61249527A (en) 1985-04-30 1985-04-30 Wet type stack-gas desulfurization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093433A JPS61249527A (en) 1985-04-30 1985-04-30 Wet type stack-gas desulfurization device

Publications (1)

Publication Number Publication Date
JPS61249527A true JPS61249527A (en) 1986-11-06

Family

ID=14082172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093433A Pending JPS61249527A (en) 1985-04-30 1985-04-30 Wet type stack-gas desulfurization device

Country Status (1)

Country Link
JP (1) JPS61249527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049843C (en) * 1995-02-28 2000-03-01 于永德 Lateral spray type centrifugal desulfurizing and dedusting device
CN102974210A (en) * 2012-11-16 2013-03-20 浙江浙大海元环境科技有限公司 Built-in double-chamber double-value wet type desulfurizing tower device
CN109939554A (en) * 2019-03-19 2019-06-28 华北电力大学(保定) A kind of white clay desulphurization system and its sulfur method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049843C (en) * 1995-02-28 2000-03-01 于永德 Lateral spray type centrifugal desulfurizing and dedusting device
CN102974210A (en) * 2012-11-16 2013-03-20 浙江浙大海元环境科技有限公司 Built-in double-chamber double-value wet type desulfurizing tower device
CN109939554A (en) * 2019-03-19 2019-06-28 华北电力大学(保定) A kind of white clay desulphurization system and its sulfur method

Similar Documents

Publication Publication Date Title
DK172817B1 (en) Process for desulphurizing flue gas by the wet method
EP0620187B1 (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
US4690807A (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
US3808321A (en) Process for desulfurizing waste flue gases while producing gypsum as byproduct
JPS6058230A (en) Waste gas desulfurization and apparatus thereof
JP5972983B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JPS61178022A (en) Simultaneous treatment of so2, so3 and dust
GB2171400A (en) Desulfurizing exhaust gas
WO1996014137A1 (en) Forced oxidation system for a flue gas scrubbing apparatus
JPS61249527A (en) Wet type stack-gas desulfurization device
JPS62193630A (en) Method and equipment for wet stack-gas desulfurization
JPH1066826A (en) Flue gas desulfurization method and apparatus therefor
JP3068452B2 (en) Wet flue gas desulfurization equipment
JPH01159027A (en) Method and apparatus for treating exhaust gas
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPH10128053A (en) Stack gas treating device and treatment of stack gas
JPH0557141A (en) Flue gas desulfurization apparatus
JPS597493B2 (en) Exhaust gas desulfurization equipment
JP3645675B2 (en) Exhaust gas desulfurization method
JPS59132921A (en) Apparatus for treating exhaust gas
JPH0244840Y2 (en)
JPH0410899Y2 (en)
JPS6246421Y2 (en)
JPS6111124A (en) Desulfurization of waste gas
JPH0125627Y2 (en)