JPS59169523A - Control of wet waste gas desulfurization apparatus - Google Patents

Control of wet waste gas desulfurization apparatus

Info

Publication number
JPS59169523A
JPS59169523A JP58041416A JP4141683A JPS59169523A JP S59169523 A JPS59169523 A JP S59169523A JP 58041416 A JP58041416 A JP 58041416A JP 4141683 A JP4141683 A JP 4141683A JP S59169523 A JPS59169523 A JP S59169523A
Authority
JP
Japan
Prior art keywords
air
amount
tower
supplied
calcium sulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58041416A
Other languages
Japanese (ja)
Other versions
JPH0355171B2 (en
Inventor
Tsuneo Narita
成田 恒雄
Tsuchi Nishimura
西村 土
Toshio Katsube
利夫 勝部
Hiromitsu Asano
浅野 広満
Kozo Obata
晃三 小幡
Mitsusachi Soga
曽我 光幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58041416A priority Critical patent/JPS59169523A/en
Publication of JPS59169523A publication Critical patent/JPS59169523A/en
Publication of JPH0355171B2 publication Critical patent/JPH0355171B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain to reduce the power cost of an air compressor, by controlling the amount and pressure of air supplied to an oxidizing tower corresponding to the amount of calcium sulfite generated in an exhaust gas absorbing tower supplied to the oxidizing tower. CONSTITUTION:In a wet waste gas desulfurization by absorbing SOx in exhaust gas with a limestone slurry is supplied to an oxidizing tower 15 through an oxidizing tower supply tank 13 to be oxidized to calcium sulfate with air sent into said tower 15 from an oxidizing air compressor 21 while the reaction mixture is withdrawn to a gypsum thickener 16 to recover gypsum, the air amount sent to the oxidizing tower 15 is controlled corresponding to the amount of calcium sulfite supplied to said oxidizing tower 15 by a flow meter 105 and a control valve 111 or air pressure is controlled by a pressure controller 107 and a control valve 110. In parallel to this operation, a suction valve 113 and an air release valve 112 are opened and closed by the pressure switch 106 provided to an air tank 22 for storing oxidizing air to subject the air compressor 21 to repeated load and unload operations and the power reduction during low load is performed.

Description

【発明の詳細な説明】 本発明晶脱硫装置の酔金等曇制御方法に係り、特に酸化
用空気圧縮機の動力費を低減するに好適な酸化塔の制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling intoxicant fog in a crystal desulfurization apparatus, and particularly to a method for controlling an oxidation tower suitable for reducing the power cost of an oxidation air compressor.

現在、ボイラ等の排ガスの処理に使用されている排煙脱
硫装置の中では、石灰石、石灰等−を吸収剤(以後、石
灰石、石灰等を吸収剤、また\吸収塔に供給する吸収剤
を含むスラリを吸収液スラリと称する)として用い、ボ
イラ等の排ガス中の硫黄酸化物(SO,)を吸収して生
成した亜硫酸カルシウムを酸化して、硫酸カルシウム、
すなわち石膏として回収する湿式排煙脱硫装置が一般的
に用いられている。
Currently, flue gas desulfurization equipment used to treat flue gas from boilers, etc. uses limestone, lime, etc. as an absorbent (hereinafter referred to as limestone, lime, etc. as an absorbent, or as an absorbent supplied to an absorption tower). Calcium sulfite produced by absorbing sulfur oxides (SO,) in exhaust gas from boilers is oxidized to produce calcium sulfate,
That is, wet flue gas desulfurization equipment that recovers gypsum as gypsum is generally used.

従来の湿式排煙脱硫装置の系統図を第1図に示す。ボイ
ラ等の排ガスは煙道1を通って除しん塔2に導入され、
ここで除しん塔循環タンク5から循環ポンプ4によシ供
給される循環液との気液接触により、飽和温度まで冷却
されると同時に、排ガス中に含有しているダストが除去
された後、吸収塔7に送られる。吸収塔7で循環ポンプ
10によシ配管40を通って供給される吸収液スラリと
の気液接触によシ排ガス中のSO工が吸収、除去された
後、デミスタ8で同伴ミストが除去され、煙道9から排
出される。
Figure 1 shows a system diagram of a conventional wet flue gas desulfurization system. Exhaust gas from boilers, etc. is introduced into a dust removal tower 2 through a flue 1,
Here, through gas-liquid contact with the circulating fluid supplied from the scrubbing tower circulation tank 5 to the circulation pump 4, it is cooled to a saturation temperature and at the same time, the dust contained in the exhaust gas is removed. It is sent to absorption tower 7. After SO in the exhaust gas is absorbed and removed by gas-liquid contact with the absorption liquid slurry supplied through the circulation pump 10 through the pipe 40 in the absorption tower 7, the entrained mist is removed in the demister 8. , is discharged from the flue 9.

吸収塔71Gはボイラ等の排ガス中から吸収、除去すべ
きSOo量に応じて、吸収剤スラリか吸収剤スラリタン
ク25からポンプ26によシ、供給される。一方、SO
□を吸収し、生成した亜硫酸カルシウムを含有するスラ
リか吸収塔抜き出しポンプ11により、SOxの吸収量
に見合って抜き出され、酸化塔供給タンク13に供給さ
れる。酸化塔供給タンク13に入ったスラリは硫酸28
との反応によシ、未反応の吸収剤が石膏になると共に、
PH調整された後、ポンプ14により、酸化塔15に送
られ、スラリ中の亜硫酸カルシウムは酸化用空気圧縮機
21から供給される空気によシ酸化され、石膏となシ石
膏シツクナ16を経て、石膏スラリタンク17に貯蔵さ
れ、さらにポンプ18によシ脱水機19に送られ、脱水
された後、石膏20として回収される。また、酸化塔に
供給された空気は塔頂から抜き出され吸収塔7に送られ
る。なお、図中、3は排水ポンプ、6はミストエリミネ
ータ、12は補給水、23は濾過水タンク、24は濾過
水ポンプ、27は吸収剤を示す。
The absorption tower 71G is supplied with absorbent slurry from the absorbent slurry tank 25 to the pump 26 depending on the amount of SOo to be absorbed and removed from exhaust gas from a boiler or the like. On the other hand, S.O.
The slurry containing the produced calcium sulfite is extracted by the absorption tower extraction pump 11 in proportion to the amount of SOx absorbed, and is supplied to the oxidation tower supply tank 13. The slurry that entered the oxidation tower supply tank 13 is sulfuric acid 28
Due to the reaction with , the unreacted absorbent becomes gypsum and
After the pH is adjusted, the slurry is sent to the oxidation tower 15 by the pump 14, and the calcium sulfite in the slurry is oxidized by air supplied from the oxidation air compressor 21, and converted into gypsum. The gypsum slurry is stored in a gypsum slurry tank 17, and further sent to a dehydrator 19 by a pump 18, where it is dehydrated and recovered as gypsum 20. Further, the air supplied to the oxidation tower is extracted from the top of the tower and sent to the absorption tower 7. In addition, in the figure, 3 is a drainage pump, 6 is a mist eliminator, 12 is make-up water, 23 is a filtered water tank, 24 is a filtered water pump, and 27 is an absorbent.

次に脱硫装置内での主な反応を述べる。Next, we will discuss the main reactions inside the desulfurization equipment.

吸収塔7内においては、吸収された8(hは(1)式に
示すように吸収剤と反応し、亜硫酸カルシウムとなシ、
更にその一部は排ガス中に含有する02により、(z)
式に示すように酸化されて石膏となる。
In the absorption tower 7, the absorbed 8(h) reacts with the absorbent as shown in equation (1) and becomes calcium sulfite.
Furthermore, some of it is due to 02 contained in the exhaust gas, (z)
It is oxidized and becomes gypsum as shown in the formula.

CaCO5+ Sow +  H20→Ca5Os ・
HzO+ COr・・(1)2 CaSOt  HzO十02+  HzO−+CgSC
)4・2Hgcl・・(2)2     2   2 従って吸収塔7から抜き出されるスラリの組成は、上記
の亜硫酸カルシウム、石膏および未反応の吸収剤からな
る。このスラリは酸化塔供給タンク13に−送られ、タ
ンク内で硫酸と反応し石膏となる。次に酸化塔15で上
記(2)式の反応によシ酸化され、亜硫酸カルシウムは
ほとんどすべて石膏となる。
CaCO5+ Sow + H20→Ca5Os ・
HzO+ COr...(1)2 CaSOt HzO102+ HzO-+CgSC
)4.2Hgcl...(2)2 2 2 Therefore, the composition of the slurry extracted from the absorption tower 7 consists of the above-mentioned calcium sulfite, gypsum, and unreacted absorbent. This slurry is sent to the oxidation tower supply tank 13, where it reacts with sulfuric acid to form gypsum. Next, in the oxidation tower 15, calcium sulfite is oxidized by the reaction of formula (2) above, and almost all of the calcium sulfite becomes gypsum.

上記のような装置系統において、従来の酸化塔15への
空気の供給は、酸化塔15に流入するスラリ量および組
成にかかわらず、圧力、供給量共一定で行っていた。
In the device system as described above, conventional air was supplied to the oxidation tower 15 at a constant pressure and supply amount regardless of the amount and composition of the slurry flowing into the oxidation tower 15.

しかし、ボイラの負荷変動や燃料中の8分の変動に伴な
い、脱硫装置に流入するS08量は変動するため、吸収
塔から抜き出される亜硫酸カルシウムの量も変動する。
However, the amount of S08 flowing into the desulfurization device changes as the load on the boiler changes and the amount of 8 minutes in the fuel changes, so the amount of calcium sulfite extracted from the absorption tower also changes.

例えば低負荷時または燃料中の8分が減少すれば、生成
する亜硫酸カルシウムの量も減少する。また入口ガス中
のO1濃度によシ、上記(2)式の酸化速度が変化し、
0.濃度が高い程、吸収系の酸化速度が大きくなシ、抜
き出される亜硫酸カルシウムの量は減少する。
For example, if the 8 min at low load or in fuel is reduced, the amount of calcium sulfite produced will also be reduced. Also, depending on the O1 concentration in the inlet gas, the oxidation rate in equation (2) above changes,
0. The higher the concentration, the greater the oxidation rate of the absorption system, and the less calcium sulfite is extracted.

このように、ボイラの運転状態の変動により、酸化塔1
5に流入する亜硫酸カルシウム量が変動するKもかかわ
らず、常に一定の酸化用空気を空気圧縮機21から供給
することは、低負荷時において、空気圧縮機の動力を不
必要に消費するととKなシ、極めて不経済である。
In this way, due to fluctuations in the operating conditions of the boiler, the oxidation tower 1
Even though the amount of calcium sulfite flowing into the air compressor 21 fluctuates, constantly supplying a constant amount of oxidizing air from the air compressor 21 will unnecessarily consume the power of the air compressor at low loads. Yes, it is extremely uneconomical.

本発明の目的線、上記従来技術の欠点をなくし、酸化塔
に供給される亜硫酸カルシウムの酸化用の空気量を低減
し、これによシ空気圧縮機等の動力費を低減することが
できる排煙脱硫装置の制御方法を提供することにある。
The object of the present invention is to eliminate the drawbacks of the prior art described above, reduce the amount of air for oxidizing calcium sulfite supplied to an oxidation tower, and thereby reduce the power cost of an air compressor, etc. An object of the present invention is to provide a method for controlling a smoke desulfurization device.

本発明は、排ガス中のSOxを石灰石または石灰等を含
むス2りよシなる吸収液スラリを用いて吸収し、生・成
した亜硫酸カルシウムを酸化塔で空気圧よシ酸化させ石
膏として回収する湿式排煙脱硫装置において、酸化塔に
供給される亜硫酸カルシウムの量に見合って、酸化塔に
供給する空気量または/および空気圧力を制御すること
を特徴とするものである。
The present invention is a wet exhaust system in which SOx in exhaust gas is absorbed using limestone or an absorption liquid slurry containing lime, etc., and the produced calcium sulfite is oxidized by air pressure in an oxidation tower and recovered as gypsum. The smoke desulfurization apparatus is characterized in that the amount of air and/or air pressure supplied to the oxidation tower is controlled in accordance with the amount of calcium sulfite supplied to the oxidation tower.

本発明において、酸化塔供給空気の流量または圧力を調
節する方法としては、供給空気源の空気圧縮機出口に空
気槽を設け、該空気槽の圧力設定値によシ、空気圧縮機
をロード、アンロードの繰返し運転させたシ、空気圧縮
機を複数台設置し、運転台数を選択して運転する方法が
好ましい。
In the present invention, the method of adjusting the flow rate or pressure of the oxidation tower supply air includes: providing an air tank at the outlet of the air compressor of the supply air source, loading the air compressor according to the pressure setting value of the air tank; It is preferable to install a plurality of air compressors and select the number of air compressors to operate, in which unloading is repeated.

また酸化塔に供給される亜硫酸カルシウムの量を求める
には、吸収塔に流入する排ガス量、SOf濃度、02濃
度および吸収塔からの抜出しスラリ量から算出するか、
また酸化塔出口空気の02濃度によシ算出する方法があ
げられる。
In addition, to determine the amount of calcium sulfite supplied to the oxidation tower, it can be calculated from the amount of exhaust gas flowing into the absorption tower, the SOf concentration, the 02 concentration, and the amount of slurry extracted from the absorption tower.
Another method is to calculate it based on the 02 concentration of the oxidation tower outlet air.

上記酸化塔に供給される亜硫酸カルシウムの量は、酸化
塔出口スラリのpHにより補正されることが望ましい。
It is desirable that the amount of calcium sulfite supplied to the oxidation tower is corrected based on the pH of the slurry at the outlet of the oxidation tower.

以下、本発明を回置により、さらに詳細に説明する。第
2図は本発明の制御方法を示す酸化塔回シの装置系統図
、第3図および第3A図は、本発明における酸化用空気
の供給量の制御系統図である。
Hereinafter, the present invention will be explained in more detail by rotation. FIG. 2 is a system diagram of an oxidizing tower circulation system showing the control method of the present invention, and FIGS. 3 and 3A are system diagrams of controlling the supply amount of oxidizing air in the present invention.

この実施例は、入口排ガス量100とSoz濃度101
の積算により求めた吸収S(h量から生成する亜硫酸カ
ルシウム量を算出し、これに対し、入口排ガス中の02
濃度から決まる吸収系で酸化される亜硫酸カルシウムの
量を補正し、更に吸収塔内での保有液量と吸収塔からの
抜出し量から決まる時間遅れ要素を加味することにより
、吸収塔から抜き出される亜硫酸カルシウムの量を求め
、この亜硫酸カルシウム量を先行信号とし、必要に応じ
て酸化浴出ロス2りのp H108を補正信号として、
酸化塔への空気量を調節弁111で制御するものである
In this example, the inlet exhaust gas amount is 100 and the Soz concentration is 101.
Calculate the amount of calcium sulfite produced from the amount of absorption S (h) obtained by integrating the
By correcting the amount of calcium sulfite oxidized in the absorption system, which is determined by the concentration, and by taking into account the time delay factor, which is determined by the amount of liquid held in the absorption tower and the amount extracted from the absorption tower, the amount of calcium sulfite is extracted from the absorption tower. Calculate the amount of calcium sulfite, use this amount of calcium sulfite as a leading signal, and use pH 108 of oxidation bath loss 2 as a correction signal if necessary.
The amount of air flowing into the oxidation tower is controlled by a control valve 111.

先ず第2図において、酸化塔15に供給される空気は、
吸込弁113がら空気圧縮機21に吸入され、空気槽2
2で一旦貯留された後、酸化塔入口空気圧力調節計10
7および空気圧力調節弁110によシ一定圧力に制御さ
れ、酸化塔15に供給される、なお、105は空気流量
計、106は圧力スイッチ、108はpH計、111は
空気流量調節弁、112は放風弁、114は放風サイレ
ンサである。この場合の空気量の制御方法は、第3図に
示すように、入口排ガス流量計100とSoz濃度計1
01の信号を掛算器121で処理して吸収80w量を求
め、これを定数を掛けて生成する亜硫酸カルシウム量を
算出し、一方、02濃度計102で検出した排ガス中の
酸素濃度から関数発生器125および掛算器121で吸
収塔内で酸化される亜硫酸カルシウムの量を求め、加算
器122で前記排ガス中のBox濃度から求めた亜硫酸
カルシウム量から差引いて補正し、さらに加算器122
で、積分器123および掛算器121で求められる吸収
塔内の保有液量と吸収塔抜出流量計103の抜出量から
決定される時間遅れ要素を加えることによシ、吸収塔か
ら抜き出される亜硫酸カルシウムの量を求め、この亜硫
酸カルシウム量を先行信号とし、関数発生器126で酸
化塔15に入る必要空気量信号を設定する。このとき、
酸化浴出ロスラリQpH値をpH計108で検出し、反
応完結の目安として予め設定された調節計120の設定
値と比較し、その偏差を関数発生器124で空気量信号
に変換し、前記先行堅気量信号を補正する。
First, in FIG. 2, the air supplied to the oxidation tower 15 is
The air is sucked into the air compressor 21 through the suction valve 113, and the air tank 2
After the air is stored in step 2, the oxidation tower inlet air pressure controller 10
7 and an air pressure control valve 110, the pressure is controlled to a constant value and supplied to the oxidation tower 15. Reference numeral 105 is an air flow meter, 106 is a pressure switch, 108 is a pH meter, 111 is an air flow control valve, and 112 114 is a blowoff valve, and 114 is a blowoff silencer. The air amount control method in this case is as shown in FIG.
The signal of 01 is processed by a multiplier 121 to obtain the amount of absorbed 80w, and this is multiplied by a constant to calculate the amount of calcium sulfite produced. 125 and a multiplier 121 to determine the amount of calcium sulfite oxidized in the absorption tower, an adder 122 to subtract it from the amount of calcium sulfite determined from the Box concentration in the exhaust gas, and further adder 122
By adding a time delay element determined from the amount of liquid retained in the absorption tower determined by the integrator 123 and multiplier 121 and the amount of liquid extracted from the absorption tower extraction flowmeter 103, the amount of liquid extracted from the absorption tower is calculated. The amount of calcium sulfite is determined, and this amount of calcium sulfite is used as a leading signal, and the function generator 126 sets a signal for the amount of air required to enter the oxidation tower 15. At this time,
The oxidation bath loss slurry Q pH value is detected by a pH meter 108 and compared with the preset value of the controller 120 as a guide for completion of the reaction, and the deviation is converted into an air amount signal by the function generator 124. Correct the rigid volume signal.

この空気量信号を加算器122で加算したものを設定値
とし、酸化塔空気流量計105で検出された空気量が設
定値に近ずくようKpi節計127を介して空気流量調
節弁111を制御する。
The value obtained by adding this air amount signal by an adder 122 is set as a set value, and the air flow rate control valve 111 is controlled via a Kpi moderator 127 so that the air amount detected by the oxidation tower air flow meter 105 approaches the set value. do.

ここで酸化塔入口空気圧力は、第2図および第3A図に
示すように調節計107および128を介して調節弁1
10によシ一定に制御されるが、更に酸化用空気圧縮機
出口には空気槽22が設けられ、空気槽22の圧力スイ
ッチ106によシ、空気圧縮機21がロードまたはアン
ロード運転され、アンロード運転のときは空気圧縮機2
1の吸込弁113および放風弁112が全閉される。
Here, the oxidation tower inlet air pressure is controlled by the control valve 1 through the controllers 107 and 128 as shown in FIGS. 2 and 3A.
Furthermore, an air tank 22 is provided at the outlet of the oxidizing air compressor, and the air compressor 21 is loaded or unloaded by the pressure switch 106 of the air tank 22. Air compressor 2 during unload operation
The suction valve 113 and the discharge valve 112 of No. 1 are fully closed.

以上のような制御方式を行なうことによシ、低負荷時に
おいて、酸化用空気の必要量が減少した場合、アンロー
ド時間を長くすることにより、空気圧縮機の電力量を低
減することができる。例えば、下記の条件において本発
明を実施した場合、空気圧縮機の動力を1日3240K
WH,年間で972.000 KWH低減することがで
きる。
By implementing the control method described above, when the required amount of oxidizing air decreases during low load, it is possible to reduce the power consumption of the air compressor by increasing the unload time. . For example, when the present invention is implemented under the following conditions, the power of the air compressor is 3240K per day.
WH, can be reduced by 972,000 KWH per year.

実施例 (1)脱硫装置の条件 入口ガス量   1,628,0OONぜ/ル入ロSO
2濃度  550購 脱硫率     90チ 02濃度     2.7チ (2)運転条件 1日の運転負荷パターン 100饅負荷 12時間 20チ負荷 12時間 次に第4図は、本発明の他の実施例を示す酸化塔の制御
系統図である。これは、負荷変動に応じて酸化塔の圧力
を調整するもので、上記実施例と同様な方法で算出した
吸収塔から抜出される亜硫酸カルシウムの量を先行信号
とし、酸化塔15出ロスラリのpHを補正信号とし、さ
らに”圧力調節計104.107の空気圧力の設定値を
変えることによシ、酸化塔圧力調整弁109および/ま
たは酸化塔入口空気圧力調整弁110を制御し、この圧
力設定値に応じて空気圧縮機出口の空気槽22の圧力設
定値を複数個設けた圧力スイッチ106の切換えによシ
、空気圧縮機21をロード、アンロード運転させるもの
である。この実施例によっても低負荷時には圧縮機のア
ンロード時間を長くすることができるため、電力消費量
を低減することができる。
Example (1) Desulfurization equipment conditions Inlet gas amount 1,628,000 OON/L SO
2 Concentration 550 Desulfurization Rate 90 Chi 02 Concentration 2.7 Chi (2) Operating Conditions Daily Operating Load Pattern 100 Chi Load 12 Hours 20 Chi Load 12 Hours Next, Fig. 4 shows another embodiment of the present invention. It is a control system diagram of the oxidation tower shown. This is to adjust the pressure of the oxidation tower according to load fluctuations, and uses the amount of calcium sulfite extracted from the absorption tower calculated in the same manner as in the above example as a leading signal to adjust the pH of the loss slurry from the oxidation tower 15. is used as a correction signal, and the oxidation tower pressure adjustment valve 109 and/or oxidation tower inlet air pressure adjustment valve 110 is controlled by changing the air pressure setting value of the pressure controller 104, 107, and this pressure setting is The air compressor 21 is loaded and unloaded by switching a pressure switch 106 which is provided with a plurality of pressure setting values for the air tank 22 at the outlet of the air compressor according to the pressure setting values. Since the unloading time of the compressor can be increased during low load, power consumption can be reduced.

上記実施例においては、空気量を制御する信号として、
酸化塔15人口の亜硫酸カルシウムの量を、脱硫装置入
口ガス量およびガス中の80 を濃度、02濃度および
吸収塔保有液量と抜出量(滞留時間)から求めたが、こ
れに代シ、酸化塔出口空気配管に02濃度計を設置し、
該酸化塔出口空気中の02濃度を上記制御信号として使
用することができる。
In the above embodiment, as a signal for controlling the air amount,
The amount of calcium sulfite in the oxidation tower 15 was determined from the amount of gas at the inlet of the desulfurizer, the concentration of 80% in the gas, the 02 concentration, and the amount of liquid held in the absorption tower and the amount extracted (residence time). Install a 02 concentration meter on the oxidation tower outlet air piping,
The O2 concentration in the oxidizer outlet air can be used as the control signal.

これは1酸化塔で酸化される亜硫酸カルシウムの量は消
費される02量と比例するため、酸化塔出口の02濃度
を設定値属保つ方法によっても上記実施例と同様の効果
を得ることができるからである。
This is because the amount of calcium sulfite oxidized in the monoxide tower is proportional to the amount of O2 consumed, so the same effect as in the above example can be obtained by maintaining the O2 concentration at the outlet of the oxidation tower at a set value. It is from.

また、酸化用空気圧縮機を複数台設置し、酸化塔に供給
される亜硫酸カルシウムの量によシ、運転台数を制御す
ることによっても酸化用空気圧縮機の動力の大幅な低減
が可能になる。
Additionally, by installing multiple oxidizing air compressors and controlling the number of units in operation depending on the amount of calcium sulfite supplied to the oxidizing tower, it is possible to significantly reduce the power required for the oxidizing air compressors. .

以上、本発明によれば、酸化塔に流入する生成亜硫酸カ
ルシウムの量に応じて、酸化用空気の圧力および/また
は流量を変化させることによシ、低負荷時の空気圧縮機
の動力を低減することができる。
As described above, according to the present invention, the power of the air compressor at low load is reduced by changing the pressure and/or flow rate of the oxidizing air according to the amount of produced calcium sulfite flowing into the oxidizing tower. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明が適用される排煙脱硫装置の系統図、
第2図は、本発明の実施例を示す酸化塔口シの系統図、
第3図、第3A図は、酸化塔の空気供給量の制御系統図
、第4図は、本発明の他の実施例を示す酸化塔の空気供
給量の制御系統図である。 7・・・吸収塔、13・・・酸化塔供給タンク、15・
・・酸化塔、21・・・酸化用空気圧縮機、25・・・
吸収剤スラリタンク、100・・・排ガス流量計、10
1・・・SO工濃度計、102・・・02濃度計、1o
3・・・吸収塔抜出流量計、104・・・酸化塔圧力調
節計、105・・・酸化塔空気流量計、108・・・p
H計、111・・・酸化塔空気。 代理人 弁理士  川 北 武 長 第1図 12 ◇ △20 第2図 手続補正書 昭和58年 6月 8日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年 特 許 願第41416号2、発明の名称
 湿式排煙脱硫装置の制御方法3、補正をする者 事件との関係 特許出願人 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号(
紅萌ビルディング)電話03 (639)5592番氏
 名(7658)弁理士 川  北  武  長5、補
正命令の日付 自発 6、補正の対象 明細書の発明の詳細な説明の欄および
図面。 7、補正の内容 (1)明細書第9頁下から第4行〜第10頁第4行の「
から差引いて補正し一−−空気量信号を設定する。」を
下記のように改める。 「から差し引いて補正する。この補正した生成亜硫酸カ
ルシウム量q o (mol /h )に対し、吸収塔
から抜き出される亜硫酸カルシウム量q  (mol/
h )はタンクの保有液量v <e> 、吸収塔からの
抜出しスラリ量Q (A/h)から決まるタンク01時
遅れの時定数−を用いて ■ として求められる。これは本図に示す通り加算器130
、積分器131、掛算器132を用いて算出することが
できる。上述の通り求めた亜硫酸カルシウム量を先行信
号とし、関数発生器126で酸化塔15に入る必要空気
量信号を設定する。」(2)図面の第3図を別紙のよう
に改める。 以上
FIG. 1 is a system diagram of a flue gas desulfurization equipment to which the present invention is applied;
FIG. 2 is a system diagram of an oxidation tower inlet showing an embodiment of the present invention;
3 and 3A are control system diagrams for the air supply amount to the oxidation tower, and FIG. 4 is a control system diagram for the air supply amount to the oxidation tower showing another embodiment of the present invention. 7... Absorption tower, 13... Oxidation tower supply tank, 15.
...Oxidation tower, 21...Oxidation air compressor, 25...
Absorbent slurry tank, 100...Exhaust gas flow meter, 10
1...SO concentration meter, 102...02 concentration meter, 1o
3... Absorption tower discharge flow meter, 104... Oxidation tower pressure regulator, 105... Oxidation tower air flow meter, 108...p
H meter, 111... Oxidation tower air. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 12 ◇ △20 Figure 2 Procedural Amendment June 8, 1981 Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of Case 1981 Patent Application No. 41416 2. Title of the invention Control method for wet flue gas desulfurization equipment 3. Relationship with the case of the person making the amendment Patent applicant 4. Agent 103 Address 11-8 Nihonbashi Kayaba-cho, Chuo-ku, Tokyo (
Benimoe Building) Phone 03 (639) 5592 Name (7658) Patent attorney Kawakita Take Cho 5, Date of amendment order Voluntary 6, Subject of amendment Detailed description of the invention in the specification and drawings. 7. Contents of the amendment (1) “From the 4th line from the bottom of page 9 to the 4th line of page 10 of the specification”
The air amount signal is set by subtracting it from and correcting it. ” should be amended as follows. The amount of calcium sulfite extracted from the absorption tower q (mol/h) is corrected by subtracting from
h) is determined as (■) using the tank 01 time delay time constant - determined from the tank's liquid volume v <e> and the slurry volume Q (A/h) extracted from the absorption tower. This is an adder 130 as shown in this figure.
, an integrator 131, and a multiplier 132. Using the amount of calcium sulfite determined as described above as a preceding signal, the function generator 126 sets a signal for the amount of air required to enter the oxidation tower 15. (2) Figure 3 of the drawings has been revised as shown in the attached sheet. that's all

Claims (1)

【特許請求の範囲】 (1)排ガス中の硫黄酸化物(以下、SO,と記す)を
石灰石または石灰等を含むスラリよシなる吸収液スラリ
を用いて吸収し、生成した亜硫酸カルシウムを酸化塔で
空気によシ酸化させ石膏として回収する湿式排煙脱硫装
置の制御方法において、酸化塔に供給される亜硫酸カル
シウムの量に見合って、酸化塔に供給する空気量または
/および空気圧力を制御することを特徴とする湿式排煙
脱硫装置の制御方法。 (2、特許請求の範囲第1項において、前記の酸化塔供
給空気の流量または圧力を調節する手段として、供給空
気源の空気圧縮機出口に空気槽を設け、該空気槽の圧力
設定値によシ、空気圧縮機をロード、アンロードの繰返
し運転させることを特徴とする湿式排煙脱硫装置の制御
方法。 (3)特許請求の範囲第1項において、酸化塔供給空気
の流量を調節する手段として、空気圧縮機を複数台設置
し、運転台数によって流量を制御することを特徴とする
湿式排煙脱硫装置の制御方法。 (4)特許請求の範囲第1項ないし第3項のいずれかに
おいて、酸化塔に供給される亜硫酸カルシウムの量は、
吸収塔に洸入する排ガス量、SO工濃度、O2濃度およ
び吸収塔からの抜出しスラリ量から算出されること番特
徴とする湿式排煙脱硫装置の制御方法。 (5)特許請求の範囲第1項ないし第3項のいずれかに
おいて、酸化塔に供給される亜硫酸カルシウムの量は、
酸化塔出口空気のO!濃度によ)算出されることを特徴
とする湿式排煙脱硫装置の制御方法。 (6) #許請求の範囲第4項または第5項において、
酸化塔に供給される亜硫酸カルシウムの量は、酸化塔出
口スラリのpHKよシ補正されることを特徴とする湿式
排煙脱硫装置の制御方法。
[Scope of Claims] (1) Sulfur oxides (hereinafter referred to as SO) in exhaust gas are absorbed using an absorption liquid slurry such as limestone or slurry containing lime, etc., and the generated calcium sulfite is absorbed into an oxidation tower. In a method for controlling a wet flue gas desulfurization equipment that oxidizes calcium sulfite with air and recovers it as gypsum, the amount and/or air pressure of air supplied to the oxidation tower is controlled in accordance with the amount of calcium sulfite supplied to the oxidation tower. A method for controlling a wet flue gas desulfurization device, characterized in that: (2. In claim 1, as means for adjusting the flow rate or pressure of the air supplied to the oxidation tower, an air tank is provided at the outlet of the air compressor of the supply air source, and the pressure setting value of the air tank is adjusted to A method for controlling a wet flue gas desulfurization equipment, which comprises repeatedly loading and unloading an air compressor. A method for controlling a wet flue gas desulfurization equipment, which comprises installing a plurality of air compressors and controlling the flow rate depending on the number of air compressors in operation. (4) Any one of claims 1 to 3. In , the amount of calcium sulfite fed to the oxidation tower is
A method for controlling a wet flue gas desulfurization equipment characterized in that the method is calculated from the amount of exhaust gas entering the absorption tower, the SO concentration, the O2 concentration, and the amount of slurry extracted from the absorption tower. (5) In any one of claims 1 to 3, the amount of calcium sulfite supplied to the oxidation tower is
Oxidation tower outlet air O! 1. A control method for a wet flue gas desulfurization device, characterized in that the concentration is calculated based on the concentration. (6) #In claim 4 or 5,
A method for controlling a wet flue gas desulfurization apparatus, characterized in that the amount of calcium sulfite supplied to the oxidation tower is corrected according to the pH of slurry at the outlet of the oxidation tower.
JP58041416A 1983-03-15 1983-03-15 Control of wet waste gas desulfurization apparatus Granted JPS59169523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041416A JPS59169523A (en) 1983-03-15 1983-03-15 Control of wet waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041416A JPS59169523A (en) 1983-03-15 1983-03-15 Control of wet waste gas desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPS59169523A true JPS59169523A (en) 1984-09-25
JPH0355171B2 JPH0355171B2 (en) 1991-08-22

Family

ID=12607747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041416A Granted JPS59169523A (en) 1983-03-15 1983-03-15 Control of wet waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS59169523A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150032U (en) * 1985-03-11 1986-09-17
JPS6233531A (en) * 1985-08-05 1987-02-13 Mitsubishi Metal Corp Stack gas desulfurization device
JPS63175623A (en) * 1987-01-14 1988-07-20 Babcock Hitachi Kk Method for controlling flow rate of air of oxidation tower in wet desulfurization equipment
JP2009095699A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Method for treating unreacted slurry in flue gas desulfurizer
CN102020305A (en) * 2010-12-27 2011-04-20 马鞍山钢铁股份有限公司 Device and method for preparing gypsum by using semi-dry method to sinter flue gas desulfurization byproduct
CN102512917A (en) * 2011-12-14 2012-06-27 攀钢集团有限公司 Control system for renewable flue gas desulfurization system and control method
CN106039947A (en) * 2016-07-29 2016-10-26 无锡研奥电子科技有限公司 Limestone flue gas desulfurization control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150032U (en) * 1985-03-11 1986-09-17
JPS6233531A (en) * 1985-08-05 1987-02-13 Mitsubishi Metal Corp Stack gas desulfurization device
JPH0212609B2 (en) * 1985-08-05 1990-03-22 Mitsubishi Metal Corp
JPS63175623A (en) * 1987-01-14 1988-07-20 Babcock Hitachi Kk Method for controlling flow rate of air of oxidation tower in wet desulfurization equipment
JP2009095699A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Method for treating unreacted slurry in flue gas desulfurizer
CN102020305A (en) * 2010-12-27 2011-04-20 马鞍山钢铁股份有限公司 Device and method for preparing gypsum by using semi-dry method to sinter flue gas desulfurization byproduct
CN102512917A (en) * 2011-12-14 2012-06-27 攀钢集团有限公司 Control system for renewable flue gas desulfurization system and control method
CN106039947A (en) * 2016-07-29 2016-10-26 无锡研奥电子科技有限公司 Limestone flue gas desulfurization control system

Also Published As

Publication number Publication date
JPH0355171B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
CN209968041U (en) Novel limestone gypsum method desulfurization oxidation fan governing system
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPS63229126A (en) Control method for wet exhaust gas desulfurizer
JP2933664B2 (en) Absorbent PH control unit for wet flue gas desulfurization unit
JPS59199021A (en) Controlling method of wet lime-gypsum desulfurization plant
JPS63294928A (en) Device for controlling wet exhaust gas desulfurizer
JPS6339613A (en) Absorbing liquid circulation flow rate controller for wet-type exhaust gas desulfurizer
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPS6087833A (en) Wet type stack gas desulfurization apparatus
JPH0573452B2 (en)
JP2798973B2 (en) Exhaust gas desulfurization equipment
JP2510583B2 (en) Exhaust gas treatment device
JP3575502B2 (en) Absorbent flow control device for flue gas desulfurization unit
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JPH11244648A (en) Control of absorbent slurry flow rate of wet stack gas desulfurizer and device therefor
JPS58112025A (en) Controlling method of waste gas desulfurizing apparatus
JPS6244733Y2 (en)
JPH1199316A (en) Method of controlling sludge in waste water for wet flue gas desulfurizer
JPS59102425A (en) Supply method of adsorbent for wet type stack gas desulfurizer
JPH0417691B2 (en)
JP3991132B2 (en) Sludge acceptance control method and apparatus for flue gas desulfurization equipment absorption tower
JPH08257348A (en) Discharge amount-control method for circulating liquid in exhaust gas desulfurizer
JPH0729023B2 (en) Wet exhaust gas desulfurization method