JP2510583B2 - Exhaust gas treatment device - Google Patents

Exhaust gas treatment device

Info

Publication number
JP2510583B2
JP2510583B2 JP12701787A JP12701787A JP2510583B2 JP 2510583 B2 JP2510583 B2 JP 2510583B2 JP 12701787 A JP12701787 A JP 12701787A JP 12701787 A JP12701787 A JP 12701787A JP 2510583 B2 JP2510583 B2 JP 2510583B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gypsum
amount
dust
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12701787A
Other languages
Japanese (ja)
Other versions
JPS63294927A (en
Inventor
興和 石黒
篤 庫本
正勝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12701787A priority Critical patent/JP2510583B2/en
Publication of JPS63294927A publication Critical patent/JPS63294927A/en
Application granted granted Critical
Publication of JP2510583B2 publication Critical patent/JP2510583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 (1) 産業上の利用分野 本発明は、ボイラ装置等における排ガス処理装置に係
り、特に気集塵器と、その電気集塵器の排ガス流れ方向
下流側に設置されて排ガスの脱硫処理と石膏の生成を行
う湿式脱硫装置とを備えた排ガス処理装置に関するもの
である。
TECHNICAL FIELD The present invention relates to an exhaust gas treatment device in a boiler device or the like, and particularly to a gas precipitator and a dust collector installed on the downstream side in the exhaust gas flow direction of the electric precipitator. The present invention relates to an exhaust gas treatment device including a wet desulfurization device for desulfurizing exhaust gas and producing gypsum.

(2) 従来の技術 石炭焚きボイラの排ガス処理システムの従来技術は、
第4図に示すようにボイラ27、脱硝装置28、空気予熱器
29、電気集塵器30、ガス−ガスヒータ31、湿式排煙脱硫
装置32、煙突33によつて構成され、ボイラ27の排ガス中
に含まれる煤塵は、電気集塵器30で一部除去された後、
湿式排煙脱硫装置32において、排ガス中のSO2が吸収除
去される(特公昭61-54462号公報参照)。この目的は装
置、特にガスダクトの構成材料の腐食防止を主眼として
おり、出口ガス中のSO3低減を図る運転法を開示してい
る。
(2) Conventional technology The conventional technology of the exhaust gas treatment system of the coal-fired boiler is
As shown in FIG. 4, boiler 27, denitration device 28, air preheater
29, an electric precipitator 30, a gas-gas heater 31, a wet flue gas desulfurization device 32, a chimney 33, soot contained in the exhaust gas of the boiler 27 was partially removed by the electric precipitator 30. rear,
In the wet flue gas desulfurization device 32, SO 2 in the exhaust gas is absorbed and removed (see Japanese Patent Publication No. 61-54462). The purpose is to prevent corrosion of the constituent materials of the apparatus, especially the gas duct, and discloses an operation method for reducing SO 3 in the outlet gas.

湿式排煙脱硫装置32は、従来のプロセスとは異なり、
酸化塔を省略し、第3図のような吸収−除塵塔−塔式が
汎用されている。第3図において、除塵部42及び吸収部
43を一塔に集約し、循環タンク37へ、SO2を吸収して生
じた亜硫酸カルシウムを強制的に酸化するための酸化用
空気38を供給して、別置の酸化塔を省略したシステム構
成が採用されている(特開昭61-093592号公報参照)。
The wet flue gas desulfurization device 32 differs from the conventional process in that
The oxidation tower is omitted, and the absorption-dust removal tower-tower type shown in FIG. 3 is generally used. In FIG. 3, the dust removing section 42 and the absorbing section
43 is integrated into one tower, the circulation tank 37 is supplied with oxidizing air 38 for forcibly oxidizing the calcium sulfite generated by absorbing SO 2 , and a system configuration without a separate oxidation tower is provided. Has been adopted (see Japanese Patent Application Laid-Open No. 61-093592).

吸収液の一部は、吸収液抜き出しライン44を通つてシ
ツクナ45で、石膏を濃縮し、石膏タンク47を経由して、
石膏脱水機48で水分が除去され、副生石膏49として回収
される(火力原子力発電Vol37,N12,96頁)。
Part of the absorption liquid passes through the absorption liquid withdrawal line 44, is concentrated in the gypsum with the shukuuna 45, and is passed through the gypsum tank 47.
Water is removed by the gypsum dehydrator 48 and is recovered as by-product gypsum 49 (Thermal Nuclear Power Generation Vol 37, N 12, page 96).

このようなシステム構成においては、必然的に副生石
膏49中には、未反応吸収剤、未酸化の亜硫酸カルシウ
ム、電気集塵器30で除去されなかつた煤塵、吸収剤中の
不純物及び排ガス中のHFガスが吸収液中で、吸収剤のカ
ルシウムイオンと結合して晶析するCaF2等が混入してく
る。
In such a system configuration, the by-product gypsum 49 necessarily contains unreacted absorbent, unoxidized calcium sulfite, dust not removed by the electrostatic precipitator 30, impurities in the absorbent, and exhaust gas. In the absorbing liquid, HF gas is mixed with CaF 2 or the like that is crystallized by binding with calcium ions of the absorbing agent.

しかるに、副生石膏として要求される純度は、石膏ボ
ード用として95%以上、セメント用としては90%以上が
要求されている。
However, the purity required as a by-product gypsum is required to be 95% or more for gypsum board and 90% or more for cement.

これらの不純物のうち、制御し易いものは、未反応吸
収剤と煤塵量であるが、前者に対しては、硫酸等の添加
により未反応吸収剤を処理できるが、煤塵量に関して
は、従来、具体的な制御方式が提案されていなかつた。
Among these impurities, the ones that are easy to control are the unreacted absorbent and the amount of soot, but for the former, the unreacted absorbent can be treated by addition of sulfuric acid or the like. No concrete control method has been proposed.

因みに、1000MWクラスの石炭焚きボイラにおける、湿
式排煙脱硫装置32の副生石膏中の不純物の試算例を示す
と以下のようになる。
Incidentally, a trial calculation example of impurities in the byproduct gypsum of the wet flue gas desulfurization apparatus 32 in a 1000 MW class coal-fired boiler is shown below.

〔計算条件〕〔Calculation condition〕

入口SO2濃度:500ppm、石炭中F分:200mg/kg以下、吸
収剤純度:97%、吸収剤過剰率:2%、酸化率:99.7%、入
口煤塵量:100mg/m3N、脱硫率:95%。
Inlet SO 2 concentration: 500 ppm, in coal F content: 200 mg / kg or less, absorbent purity: 97%, absorbent excess 2%, oxidation rate: 99.7%, inlet dust amount: 100 mg / m 3 N, desulfurization rate : 95%.

〔不純物の寄与率〕[Contribution rate of impurities]

過去の納入実績より、大約、煤塵:38%、吸収剤中不
純物:25%、Ca2:17%、未反応吸収剤:16%、未酸化
亜硫酸カルシウム:4%と推定されている。
From past delivery record, Taiyaku, dust: 38%, the absorbent in impurities: 25%, C a F 2 : 17%, unreacted absorbent: 16% unoxidized calcium sulfite: It is estimated 4% and.

従つて、煤塵の石膏中に示める割合が最も大きいこ
と、また、入口SO2濃度が低下した場合(炭種の変化)
を考えると、煤塵量及びCa2晶析量は、ほぼ同一の値
であるのに対して、SO2の吸収量の低下に伴つて、未酸
化亜硫酸カルシウム、未反応吸収剤、吸収剤中の不純物
量の絶対量は低下する。このため、さらに石膏中の不純
物に占める煤塵量の割合は増加することになる。
Therefore, when the proportion of soot and dust in gypsum is the largest, and when the concentration of SO 2 at the inlet decreases (change in coal type)
Given, dust amount and C a F 2 crystallization amount is that the are substantially the same value, drops accompanied connexion of absorption of SO 2, unoxidized calcium sulfite, unreacted absorbent, absorbent The absolute amount of impurities in it decreases. For this reason, the proportion of the amount of dust in the impurities in the gypsum is further increased.

このように、煤塵量は石膏の品質に大きな影響を及ぼ
すにも係わらず、従来は制御されておらず、EP(電気集
塵器30)荷電流は一定運転というのが通常である。
As described above, although the amount of dust has a great influence on the quality of gypsum, it has not been conventionally controlled, and the EP (electrostatic precipitator 30) load current is usually constant.

従つて、石膏品質の所期純度に対して、EPの荷電流を
増減する制御方式、あるいは、石炭種の変動に伴う煤塵
量の変動に対して石膏着色への寄与率を設定変更できる
回路も設けている。
Therefore, for the desired purity of gypsum quality, there is also a control method that increases or decreases the EP load current, or a circuit that can change the setting rate of the contribution rate to gypsum coloring for fluctuations in the amount of dust due to fluctuations in coal type. It is provided.

尚、第3図,第4図において33は煙突、39は吸収剤ス
ラリ、40は入口排ガス、41は出口排ガス、46は濾過水タ
ンクである。
In FIGS. 3 and 4, 33 is a chimney, 39 is an absorbent slurry, 40 is an inlet exhaust gas, 41 is an outlet exhaust gas, and 46 is a filtered water tank.

(3) 発明が解決しようとする問題点 上記従来技術は、石膏の純度を所定値に維持するとい
う点については配慮がされていなかつた。
(3) Problems to be Solved by the Invention In the above-mentioned conventional techniques, no consideration was given to maintaining the purity of gypsum at a predetermined value.

これに反して、本発明は排ガス中のSO2濃度が低いよ
うな場合には、石膏純度の低下が見込まれるため、電気
集塵器の集塵性能をコントロールすることにより、石膏
の純度を制御し、セメント用材料としての工業用製品と
して石膏を回収する。
On the contrary, in the present invention, when the SO 2 concentration in the exhaust gas is low, a decrease in the gypsum purity is expected, so by controlling the dust collection performance of the electric dust collector, the gypsum purity is controlled. Then, gypsum is recovered as an industrial product as a cement material.

SO2濃度が高い場合には、逆に石膏の純度が高すぎ
て、電気集塵器の動力コストが必要以上にかかるという
こと等の問題がある。この場合は、EPAを適当に制御し
ながら、所定の高純度石膏を回収するよう、省エネの運
転を図りながら制御できる。
On the contrary, when the SO 2 concentration is high, there is a problem that the purity of gypsum is too high and the power cost of the electrostatic precipitator is unnecessarily high. In this case, the EPA can be controlled appropriately while the energy-saving operation is performed so as to recover the predetermined high-purity gypsum.

従来、特開昭58-216718号公報に記載されているよう
な排煙処理設備の運転方法が提案されている。この運転
方法は、排煙処理設備の1つとして設置されている電気
集塵器の出口側のダスト濃度とSO2濃度を測定し、そのS
O2濃度測定値に基づいて湿式脱硫装置において生成され
る石膏の純度を所定値にするための許容ダスト濃度を算
出し、前記測定ダスト濃度をその算出値に一致させるよ
うに電気集塵器の運転条件を制御する方法である。
Conventionally, there has been proposed a method of operating a flue gas treatment facility as described in JP-A-58-216718. This operation method measures the dust concentration and SO 2 concentration at the outlet side of the electrostatic precipitator installed as one of the smoke exhaust treatment equipment, and
Based on the measured O 2 concentration value, the allowable dust concentration for calculating the purity of the gypsum produced in the wet desulfurization apparatus to a predetermined value is calculated, and the measured dust concentration of the electrostatic precipitator is made to match the calculated value. This is a method of controlling operating conditions.

しかし、この提案では、結局、石膏の純度を維持する
のにダストしか考慮していない。前述のように石膏の不
純物中におけるダスト(煤塵)の割合は高々40%程度で
あるから、ダスト(煤塵)だけを制御しても純度の高い
石膏は得られないという欠点を有している。
However, this proposal, after all, only considers dust to maintain the purity of the gypsum. As described above, the proportion of dust (soot dust) in the impurities of gypsum is at most about 40%, so that there is a drawback that high-purity gypsum cannot be obtained by controlling only dust (soot dust).

本発明の目的は、このような従来技術の欠点を解消
し、高純度の石膏が得られる排ガス処理装置を提供する
ことにある。
An object of the present invention is to eliminate such drawbacks of the conventional technique and to provide an exhaust gas treatment apparatus capable of obtaining high-purity gypsum.

(4) 問題点を解決するための手段 前記目的を達成するため、本発明は、 電気集塵器と、その電気集塵器の排ガス流れ方向下流
側に設置されて排ガスの脱硫処理と石膏の生成を行う湿
式脱硫装置とを備えた排ガス処理装置を対象とするもの
である。
(4) Means for Solving Problems In order to achieve the above object, the present invention provides an electrostatic precipitator and a desulfurization treatment of the exhaust gas and gypsum which are installed on the downstream side of the electrostatic precipitator in the exhaust gas flow direction. The present invention is intended for an exhaust gas treatment device provided with a wet desulfurization device for producing.

そして前記電気集塵器の出口側排ガス中の煤塵濃度を
検出する、例えば後述の煤塵濃度計7からなる煤塵濃度
検出手段と、 処理すべき排ガス流量を検出する、例えば後述の排ガ
ス流量計2からなる排ガス流量検出手段と、 前記脱硫装置の入口SO2濃度を検出する、例えば後述
の入口SO2濃度計1からなる脱硫装置入口SO2濃度検出手
段と、 前記脱硫装置の出口SO2濃度を検出する、例えば後述
の出口SO2濃度計6からなる脱硫装置出口SO2濃度検出手
段と、 前記脱硫装置の吸収部への吸収剤スラリ供給流量を検
出する、例えば後述の吸収剤スラリ供給流量計9からな
る吸収剤スラリ流量検出手段と、 前記煤塵濃度検出手段と排ガス流量検出手段からの検
出信号に基づいて煤塵量を算出する、例えば後述の掛算
器3bからなる煤塵量算出手段と、 前記吸収剤スラリ流量検出手段からの検出信号に基づ
いて吸収剤中不純物量を算出する、例えば後述の係数器
5fからなる吸収剤中不純物量算出手段と、 前記煤塵量算出手段によって算出された煤塵量と、前
記吸収剤中不純物量算出手段によって算出された吸収剤
中不純物量に基づいて生成されるべき石膏の純度を予測
する、例えば後述の割算器13b、加算器15などからなる
石膏純度予測演算手段と、 その石膏純度予測演算手段からの予測値に基づいて電
気集塵器の例えば荷電電流などの運転条件を調節する、
例えば後述の電気集塵器制御装置26からなる電気集塵器
制御手段とを備えたことを特徴とするものである。
Then, the dust concentration in the exhaust gas on the outlet side of the electrostatic precipitator is detected, for example, the dust concentration detecting means including a dust concentration meter 7 described later, and the exhaust gas flow rate to be treated, for example, from the exhaust gas flow meter 2 described later. Exhaust gas flow rate detecting means, which detects the SO 2 concentration at the inlet of the desulfurization apparatus, for example, SO 2 concentration detecting means at the inlet of the desulfurization apparatus, which comprises an inlet SO 2 concentration meter 1 described later, and detects the SO 2 concentration at the outlet of the desulfurization apparatus. For example, a desulfurization apparatus outlet SO 2 concentration detecting means including an outlet SO 2 concentration meter 6 described below and an absorbent slurry supply flow rate meter 9 to be described later that detects an absorbent slurry supply flow rate to the absorption section of the desulfurization apparatus. An absorbent slurry flow rate detecting means consisting of, calculating the amount of dust based on the detection signals from the dust concentration detecting means and the exhaust gas flow rate detecting means, for example, a dust amount calculating means consisting of a multiplier 3b described later, and Calculating the amount of impurities in the absorbent on the basis of a detection signal from the adsorbents slurry flow rate detecting means, for example below the coefficient multiplier
Absorbent impurity amount calculation means consisting of 5f, soot dust amount calculated by the soot dust amount calculation means, gypsum to be generated based on the absorbent impurity amount calculated by the absorbent impurity amount calculation means For example, a gypsum purity predicting calculation means including a divider 13b and an adder 15 to be described later, and the electric current of the electrostatic precipitator such as a charging current based on the predicted value from the gypsum purity predicting calculation means. Adjust operating conditions,
For example, it is characterized by including an electrostatic precipitator control means including an electrostatic precipitator control device 26 described later.

さらに好ましくは、前記排ガス処理装置において、 前記電気集塵の出口側排ガス中の煤塵濃度を検出す
る、例えば後述の煤塵濃度計7からなる煤塵量算出手段
と、 処理すべき排ガス流量を検出する、例えば後述の排ガ
ス流量計2からなる排ガス流量検出手段と、 前記脱硫装置の入口SO2濃度を検出する、例えば後述
の入口SO2濃度計1からなる脱硫装置入口SO2濃度検出手
段と、 前記脱硫装置の出口SO2濃度を検出する、例えば後述
の出口SO2濃度計6からなる脱硫装置出口SO2濃度検出手
段と、 前記脱硫装置の吸収部への吸収剤スラリ供給流量を検
出する、例えば後述の吸収剤スラリ供給流量計9からな
る吸収剤スラリ流量検出手段と、 燃料として使用する炭種によってフッ化水素濃度を設
定する、例えば後述のHF濃度設定器8からなるフッ化水
素濃度設定手段と、 前記排ガス流量検出手段と脱硫装置入口SO2濃度検出
手段と脱硫装置出口SO2濃度検出手段からの検出信号に
基づいて未酸化亜硫酸カルシウム量を算出する、例えば
後述の掛算器3a、除算器12a、割算器13a、係数器5a、5c
などからなる未酸化亜硫酸カルシウム量算出手段と、 前記煤塵濃度検出手段と排ガス流量検出手段からの検
出信号に基づいて煤塵量を算出する、例えば後述の掛算
器3bからなる煤塵量算出手段と、 前記排ガス流量検出手段とフッ化水素濃度設定手段か
らの信号に基づいてフッ化カルシウム量を算出する例え
ば後述の掛算器3c、係数器5dなどからなるフッ化カルシ
ウム量算出手段と、 前記吸収剤スラリ流量検出手段からの検出信号に基づ
いて未反応吸収剤と吸収剤中不純物量を算出する、例え
ば後述の係数器5e、5fなどからなる未反応吸収剤量・吸
収剤中不純物量算出手段と、 前記未酸化亜硫酸カルシウム量算出手段によって算出
された未酸化亜硫酸カルシウム量と、煤塵量算出手段に
よって算出された煤塵量と、フッ化カルシウム量算出手
段によって算出されたフッ化カルシウム量と、未反応吸
収剤量・吸収剤中不純物量算出手段とによって算出され
た未反応吸収剤量ならびに吸収剤中不純物量の各信号に
基づいて生成されるべき石膏の純度を予測する、例えば
後述の割算器13b、加算器15などから石膏純度予測演算
手段と、 その石膏純度予測演算手段からの予測値に基づいて電
気集塵器の例えば荷電電流などの運転条件を調節する、
例えば後述の電気集塵器制御装置26からなる電気集塵器
制御手段とを備えたことを特徴とするものである。
More preferably, in the exhaust gas treatment device, the soot dust concentration in the exhaust gas on the outlet side of the electrostatic precipitator is detected, for example, a soot dust amount calculating means including a soot concentration meter 7 described later, and an exhaust gas flow rate to be treated, for example the exhaust gas flow rate detection means comprising a gas flowmeter 2 will be described later, detects the inlet SO 2 concentration in the desulfurization apparatus, for example, a desulfurization apparatus inlet SO 2 concentration detection means comprising the inlet SO 2 concentration meter 1 will be described later, the desulfurization For detecting the outlet SO 2 concentration of the device, for example, a desulfurization device outlet SO 2 concentration detecting means including an outlet SO 2 concentration meter 6 described later, and for detecting the absorbent slurry supply flow rate to the absorption part of the desulfurization device, for example Absorbent slurry flow rate detecting means consisting of the absorbent slurry supply flow meter 9 and the hydrogen fluoride concentration depending on the kind of coal used as fuel, for example, a fluorinated concentration consisting of an HF concentration setter 8 described later. And oxygen concentration setting means to calculate the unoxidized calcium sulfite amount based on a detection signal from the exhaust gas flow rate detecting means and the desulfurization apparatus inlet SO 2 concentration detector and desulfurizer outlet SO 2 concentration detector, for example, below the multiplier 3a, divider 12a, divider 13a, coefficient units 5a, 5c
An unoxidized calcium sulfite amount calculating means consisting of, for example, calculating the amount of dust based on the detection signal from the dust concentration detecting means and the exhaust gas flow rate detecting means, for example, a dust amount calculating means consisting of a multiplier 3b described later, and Calculating the amount of calcium fluoride based on the signals from the exhaust gas flow rate detecting means and the hydrogen fluoride concentration setting means, for example, a calcium fluoride amount calculating means including a multiplier 3c and a coefficient unit 5d described later, and the absorbent slurry flow rate. Calculate the unreacted absorbent and the amount of impurities in the absorbent based on the detection signal from the detection means, for example, the unreacted absorbent amount and absorbent in-adsorbent impurity amount calculation means consisting of the coefficient unit 5e, 5f described later, and Unoxidized calcium sulfite amount calculated by unoxidized calcium sulfite amount calculation means, soot dust amount calculated by soot dust amount calculation means, and calcium fluoride amount calculation means Therefore, the gypsum to be generated based on the respective signals of the amount of calcium fluoride calculated, the amount of unreacted absorbent and the amount of impurities in absorbent calculated by the amount of unreacted absorbent / impurities in absorbent For example, a plaster purity prediction calculation means from a divider 13b, an adder 15 and the like, which will be described later, and the operation of the electrostatic precipitator, such as charging current, based on the prediction value from the gypsum purity prediction calculation means. Adjust the conditions,
For example, it is characterized by including an electrostatic precipitator control means including an electrostatic precipitator control device 26 described later.

(5) 作用 本発明は前述のような構成になっており、石膏の純度
を維持するのに煤塵量と吸収剤中不純物量の両方を考慮
して、煤塵量と吸収剤中不純物量に基づいて予測された
石膏純度予測値になるように電気集塵器の運転条件を調
節するため、純度の高い石膏が生成される。
(5) Action The present invention is configured as described above and is based on the amount of dust and the amount of impurities in the absorbent in consideration of both the amount of dust and the amount of impurities in the absorbent for maintaining the purity of gypsum. Since the operating conditions of the electrostatic precipitator are adjusted so as to reach the predicted gypsum purity value obtained by the above method, gypsum with high purity is produced.

さらに本発明は前述のように、煤塵量、吸収剤中不純
物量、未酸化亜硫酸カルシウム量、煤塵量、フッ化カル
シウム量、未反応吸収剤量ならびに吸収剤中不純物量の
各信号に基づいて石膏純度予測値を算出すればさらに高
純度の石膏が生成される。
Further, the present invention, as described above, the amount of soot dust, the amount of impurities in the absorbent, the amount of unoxidized calcium sulfite, the amount of dust, the amount of calcium fluoride, the amount of unreacted absorbent and the amount of impurities in the absorbent based on the respective signals of gypsum If the predicted purity value is calculated, gypsum of higher purity will be produced.

(6) 発明の実施例 本発明の湿式排煙脱硫装置の石膏純度制御方法の具体
的実施例を第1図に示す。第1図において、10は石膏純
度予測信号であり、引算器12bにおいて、石膏純度設定
器11の出力信号との偏差信号を調節計25に入力する。調
節計25で信号処理された集塵器荷電電流補正信号14を電
気集塵器制御装置26に入力し、電子集塵器30の荷電電流
を調節し、電気集塵器30の出口側排ガス中の煤塵量を制
御することにより、脱硫装置32から副生する石膏49の純
度を所定値以上に管理することができる。
(6) Example of the Invention A specific example of the method for controlling the gypsum purity of the wet flue gas desulfurization apparatus of the present invention is shown in FIG. In FIG. 1, reference numeral 10 is a gypsum purity prediction signal, and a subtracter 12b inputs a deviation signal from the output signal of the gypsum purity setting device 11 to the controller 25. The dust collector charging current correction signal 14 signal-processed by the controller 25 is input to the electric dust collector control device 26, the charging current of the electronic dust collector 30 is adjusted, and the exhaust side exhaust gas of the electric dust collector 30 is discharged. By controlling the amount of soot and dust, the purity of the gypsum 49 by-produced from the desulfurization device 32 can be controlled to a predetermined value or higher.

第3図に示した湿式排煙脱硫装置32のシステム構成に
おいては、吸収部43及び除塵部42を吸収剤スラリが通過
する際に、排ガス中のO2により、SO2を吸収して生じた
亜硫酸カルシウムが一部酸化され、循環タンク37への酸
化用空気38によつて、残りの大半の亜硫酸カルシウムが
酸化されて石膏となり、吸収液の一部は吸収液抜き出し
ライン44、シツクナ45、石膏タンク47、石膏脱水機48を
経て、石膏49として回収される。
In the system configuration of the wet flue gas desulfurization apparatus 32 shown in FIG. 3, when the absorbent slurry passed through the absorption section 43 and the dust removal section 42, SO 2 was absorbed by O 2 in the exhaust gas The calcium sulfite is partially oxidized, and most of the remaining calcium sulfite is oxidized by the oxidizing air 38 to the circulation tank 37 to become gypsum, and a part of the absorbing liquid is the absorbing liquid extracting line 44, the shikuna 45, and the gypsum. It is recovered as gypsum 49 through the tank 47 and the gypsum dehydrator 48.

このため、石膏中に不純物として混入してくるもの
は、排ガス中から吸収液へ移行する煤塵、吸収剤スラリ
39中の不純物、排ガス中のHFが下記の反応で生成するC
a2、 HFH++F-,Ca +++2F-→Ca2 供給された吸収剤スラリ39は、脱硫装置に流入するSO
2に対して等モル以上に供給されるので、過剰となつた
吸収剤すなわち未反応吸収剤、吸収液中で酸化されなか
つた亜硫酸カルシウムである。また、生成する純粋石膏
はSO2の吸収量に酸化率をかけて得られる。
Therefore, the impurities that enter the gypsum as impurities are the dust and absorbent slurry that moves from the exhaust gas to the absorbent.
Impurities in 39 and HF in exhaust gas are generated by the following reaction C
a f 2 , HFH + + F , C a ++ + 2F → C a F 2 The absorbent slurry 39 supplied is SO that flows into the desulfurization device.
Since it is supplied in an equimolar amount or more with respect to 2 , it is an excess absorbent, that is, an unreacted absorbent, and calcium sulfite that has not been oxidized in the absorbent. Further, the produced pure gypsum is obtained by multiplying the absorption amount of SO 2 by the oxidation rate.

従つて、第1図において、入口SO2濃度計1の出力信
号と排ガス流量計2の出力信号を掛算器3aで掛算し、得
られたSO2量信号4に、掛算器3dで、入口SO2濃度計1の
出力信号と出口SO2濃度計6の出力信号から得られる脱
硫率信号18を掛けて、除去SO2量信号16とする。この除
去SO2量信号16に係数器5aで定数K1を掛けて、石膏と亜
硫酸カルシウムの合計量信号17とし、この合計量信号17
に係数器5bで酸化率K2を掛けて、石膏生成量信号23と
し、係数器5cで未酸化率K3を掛けて未酸化亜硫酸カル
シウム量信号24を求める。
Therefore, in FIG. 1, the output signal of the inlet SO 2 concentration meter 1 and the output signal of the exhaust gas flow meter 2 are multiplied by the multiplier 3a, and the obtained SO 2 amount signal 4 is multiplied by the multiplier 3d. 2 A desulfurization rate signal 18 obtained from the output signal of the densitometer 1 and the output signal of the outlet SO 2 densitometer 6 is multiplied to obtain a removed SO 2 amount signal 16. This removed SO 2 amount signal 16 is multiplied by a constant K 1 by a coefficient unit 5a to obtain a total amount signal 17 of gypsum and calcium sulfite, and this total amount signal 17
Is multiplied by an oxidation rate K 2 in a coefficient unit 5b to obtain a gypsum production amount signal 23, and an unoxidized rate K 3 is multiplied in a coefficient unit 5c to obtain an unoxidized calcium sulfite amount signal 24.

排ガス流量計2の出力信号と煤塵濃度計7の出力信号
を掛算器3bで掛け合わせて、煤塵量信号19を求める。
The output signal of the exhaust gas flow meter 2 and the output signal of the dust concentration meter 7 are multiplied by the multiplier 3b to obtain a dust amount signal 19.

排ガス流量計2の出力信号と炭種によつて定まるHF濃
度設定器8の出力信号を掛算器3cで掛け合わせて、これ
に定数K4を係数器5dで掛けて、Ca2量信号20とす
る。
The output signal of the HF concentration setter 8 determined connexion by the exhaust gas flowmeter 2 and the output signal from the coal type is multiplied by the multiplier 3c, this by multiplying the constant K 4 in coefficient unit 5d, C a F 2 amount signal 20.

吸収剤スラリ流量計9の出力信号に定数K5,K6を係数
器5e,5fで掛けて、未反応吸収剤量信号21、吸収剤不純
物量信号22を求める。
The output signals of the absorbent slurry flowmeter 9 are multiplied by the constants K 5 and K 6 by the coefficient units 5e and 5f to obtain the unreacted absorbent amount signal 21 and the absorbent impurity amount signal 22.

以上のようにして求めた、石膏生成量信号23、未酸化
亜硫算カルシウム量信号24、煤塵量信号19、Ca2量信
号20、未反応吸収剤量信号21、吸収剤不純物量信号22を
加算器15で加算し、石膏生成量信号23を割算器13bにお
いて、加算器15の出力信号で割ることにより、石膏純度
予測信号10が求められる。
Obtained as described above, the gypsum produced amount signal 23, unoxidized nitrite硫算calcium amount signal 24, dust amount signal 19, C a F 2 amount signal 20, the unreacted absorbent amount signal 21, absorbent impurity amount signal 22 is added by the adder 15 and the gypsum production amount signal 23 is divided by the output signal of the adder 15 in the divider 13b to obtain the gypsum purity prediction signal 10.

尚、上記不純物は吸収液中に残つて、石膏中に混入し
ないものもあるが、ここでは、100%石膏側に混入する
とした計算であり、石膏純度予測信号10は実際の値より
も低めの値を与えることになる。第2図は電気集塵器30
の制御構成図を示すものであり、前述したように電気集
塵器制御装置26が集塵器荷電電流補正信号14により作動
し、電源装置50を制御するようになつている。
Incidentally, the above impurities remain in the absorbing liquid, and some may not be mixed in the gypsum, but here, it is a calculation that it is mixed in the 100% gypsum side, and the gypsum purity prediction signal 10 is lower than the actual value. Will give a value. Fig. 2 shows the electrostatic precipitator 30
FIG. 4 is a control configuration diagram of the electric dust collector control device 26, which operates the dust collector charging current correction signal 14 to control the power supply device 50 as described above.

本発明はこのような構成なので、湿式排煙脱硫装置の
あらゆる運転状態において、副生石膏の純度を所定値以
上に維持できるとともに、電気集塵器の動力コストの低
減を図ることができる。
Since the present invention has such a configuration, the purity of the by-product gypsum can be maintained at a predetermined value or higher in all operating states of the wet flue gas desulfurization apparatus, and the power cost of the electrostatic precipitator can be reduced.

(8) 発明の効果 本発明によれば、オンライン計測信号に基づいて、副
生石膏の純度を予測できるので、以下に示すような効果
がある。
(8) Effects of the Invention According to the present invention, the purity of the byproduct gypsum can be predicted based on the online measurement signal, so that the following effects are obtained.

(1) 石膏の純度を所定値以上に維持できるので、安
定した品質の石膏が回収できる。
(1) Since the purity of gypsum can be maintained above a predetermined value, gypsum of stable quality can be recovered.

(2) 炭種が変動する場合にも、石膏純度を所定値以
上に維持できる。
(2) The gypsum purity can be maintained at a predetermined value or higher even when the coal type changes.

(3) 電気集塵器の荷電電流を調節することにより、
動力コストが節減できる。
(3) By adjusting the charging current of the electrostatic precipitator,
Power cost can be saved.

(4) 石膏の純度予測が正確にできるので、この予測
値を監視することにより、脱硫プラントの早期異常検出
にも利用できる。
(4) Since the purity of gypsum can be accurately predicted, monitoring this predicted value can also be used for early detection of abnormalities in desulfurization plants.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明になる湿式排煙脱硫装置の制御方法の一
実施例を示す制御系統図、第2図は電気集塵器の制御構
成図、第3図は従来の脱硫システムを示す系統図、第4
図は石炭焚きボイラの排ガス処理システムの従来例を示
す系統図である。
FIG. 1 is a control system diagram showing an embodiment of a method for controlling a wet flue gas desulfurization apparatus according to the present invention, FIG. 2 is a control configuration diagram of an electrostatic precipitator, and FIG. 3 is a system showing a conventional desulfurization system. Figure, 4th
FIG. 1 is a system diagram showing a conventional example of an exhaust gas treatment system for a coal-fired boiler.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気集塵器と、その電気集塵器の排ガス流
れ方向下流側に設置されて排ガスの脱硫処理と石膏の生
成を行う湿式脱硫装置とを備えた排ガス処理装置におい
て、 前記電気集塵器の出口側排ガス中の煤塵濃度を検出する
煤塵濃度検出手段と、 処理すべき排ガス流量を検出する排ガス流量検出手段
と、 前記脱硫装置の入口SO2濃度を検出する脱硫装置入口SO2
濃度検出手段と、 前記脱硫装置の出口SO2濃度を検出する脱硫装置出口SO2
濃度検出手段と、 前記脱硫装置の吸収部への吸収剤スラリ供給流量を検出
する吸収剤スラリ流量検出手段と、 前記煤塵濃度検出手段と排ガス流量検出手段からの検出
信号に基づいて煤塵量を算出する煤塵量算出手段と、 前記吸収剤スラリ流量検出手段からの検出信号に基づい
て吸収剤中不純物量を算出する吸収剤中不純物量算出手
段と、 前記煤塵量算出手段によって算出された煤塵量と、前記
吸収剤中不純物量算出手段によって算出された吸収剤中
不純物量に基づいて生成されるべき石膏の純度を予測す
る石膏純度予測演算手段と、 その石膏純度予測演算手段からの予測値に基づいて電気
集塵器の運転条件を調節する電気集塵器制御手段とを備
えたことを特徴とする排ガス処理装置。
1. An exhaust gas treatment apparatus comprising an electric precipitator and a wet desulfurization apparatus installed downstream of the electric precipitator in the exhaust gas flow direction for performing desulfurization treatment of exhaust gas and generation of gypsum, a dust concentration detection means for detecting the dust concentration in the outlet side in the exhaust gas dust collector, and the exhaust gas flow rate detection means for detecting the exhaust gas flow to be treated, the desulfurizer inlet SO 2 for detecting the inlet SO 2 concentration in the desulfurization apparatus
A density detecting unit, desulfurizer outlet SO 2 for detecting the outlet SO 2 concentration in the desulfurization apparatus
Concentration detecting means, absorbent slurry flow rate detecting means for detecting the absorbent slurry supply flow rate to the absorbing part of the desulfurization device, and calculating the amount of dust based on the detection signals from the soot concentration detecting means and the exhaust gas flow rate detecting means Soot amount calculation means to do, the absorbent impurity amount calculation means to calculate the amount of impurities in the absorbent based on the detection signal from the absorbent slurry flow rate detection means, and the amount of dust calculated by the soot amount calculation means , A gypsum purity prediction calculation means for predicting the purity of gypsum to be produced based on the impurity content in the absorbent calculated by the absorption material calculation means, and a predicted value from the gypsum purity prediction calculation means And an electric precipitator control means for adjusting the operating conditions of the electric precipitator.
JP12701787A 1987-05-26 1987-05-26 Exhaust gas treatment device Expired - Fee Related JP2510583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12701787A JP2510583B2 (en) 1987-05-26 1987-05-26 Exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12701787A JP2510583B2 (en) 1987-05-26 1987-05-26 Exhaust gas treatment device

Publications (2)

Publication Number Publication Date
JPS63294927A JPS63294927A (en) 1988-12-01
JP2510583B2 true JP2510583B2 (en) 1996-06-26

Family

ID=14949628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12701787A Expired - Fee Related JP2510583B2 (en) 1987-05-26 1987-05-26 Exhaust gas treatment device

Country Status (1)

Country Link
JP (1) JP2510583B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9910413B2 (en) 2013-09-10 2018-03-06 General Electric Technology Gmbh Automatic tuning control system for air pollution control systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216718A (en) * 1982-06-11 1983-12-16 Electric Power Dev Co Ltd Operating method of stack gas treating plant

Also Published As

Publication number Publication date
JPS63294927A (en) 1988-12-01

Similar Documents

Publication Publication Date Title
CN109092045B (en) Limestone-gypsum method flue gas desulfurization slurry oxidation control method
US6913737B2 (en) Method for the treating in exhaust gas and exhaust gas treating system
CN209968041U (en) Novel limestone gypsum method desulfurization oxidation fan governing system
JP3150615B2 (en) Oxidation control method in flue gas desulfurization treatment
EP0738537B1 (en) Flue gas treating system
JP5976820B2 (en) Smoke exhaust processing method and smoke exhaust processing apparatus
JP2009208078A (en) Method for treating mercury in tail gas, and treatment system for tail gas
JP2510583B2 (en) Exhaust gas treatment device
JP3675986B2 (en) Wet exhaust gas desulfurization apparatus and method
JP2845975B2 (en) Air supply control unit for oxidation of wet flue gas desulfurization unit
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
WO2003008072A1 (en) Method for treating mercury in exhaust gas and exhaust gas treating system
JP2529244B2 (en) Absorption liquid circulation controller for wet flue gas desulfurization equipment
JPH09290133A (en) Method for preventing corrosion of flue gas treatment facility
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JP2765868B2 (en) Alkali agent supply control device for wet flue gas desulfurization unit
JPH0729023B2 (en) Wet exhaust gas desulfurization method
JP2971512B2 (en) Control method for wet flue gas desulfurization unit
JPH10296047A (en) Method and apparatus for flue gas desulfurization
JP2016059890A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JPH08257348A (en) Discharge amount-control method for circulating liquid in exhaust gas desulfurizer
JPH05208815A (en) Production of gypsum
JPH0221852B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees