JP2009208078A - Method for treating mercury in tail gas, and treatment system for tail gas - Google Patents

Method for treating mercury in tail gas, and treatment system for tail gas Download PDF

Info

Publication number
JP2009208078A
JP2009208078A JP2009143177A JP2009143177A JP2009208078A JP 2009208078 A JP2009208078 A JP 2009208078A JP 2009143177 A JP2009143177 A JP 2009143177A JP 2009143177 A JP2009143177 A JP 2009143177A JP 2009208078 A JP2009208078 A JP 2009208078A
Authority
JP
Japan
Prior art keywords
mercury
exhaust gas
desulfurization
mercury concentration
chlorinating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143177A
Other languages
Japanese (ja)
Inventor
Shintaro Honjo
新太郎 本城
Toru Takashina
徹 高品
Eiji Ochi
英次 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009143177A priority Critical patent/JP2009208078A/en
Publication of JP2009208078A publication Critical patent/JP2009208078A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating a tail gas that can remove mercury and enables efficient operation and continuous performance without having a bad effect on an apparatus in a system. <P>SOLUTION: The method for treating mercury in a tail gas includes subjecting the tail gas containing a nitrogen oxide, a sulfur oxide and mercury to reduction denitration in the presence of a solid catalyst after the addition of a chlorination agent and then performing wet desulfurization with an alkaline lean liquid. A predicted value of an inlet mercury concentration before the reduction denitration is calculated based on the mercury concentration in the tail gas measured after the wet desulfurization. The feed rate of the chlorination agent to be added before the reduction denitration is controlled based on the amounts of change of the above predicted value and a standard inlet mercury concentration by the method for treating mercury in a tail gas and a treatment system for the tail gas is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排煙処理方法、即ち排煙処理システム内の水銀除去方法に関し、さらに詳しくは、多量な排ガスを脱硫するシステムにおいて、排ガス中から金属水銀を有効に除去する方法に関する。   The present invention relates to a flue gas treatment method, that is, a mercury removal method in a flue gas treatment system, and more particularly to a method for effectively removing metallic mercury from exhaust gas in a system for desulfurizing a large amount of exhaust gas.

石炭や重質油焚き排ガス中には水銀等の有害微量物質が存在しており、現状の排煙処理システムにおいては一般に除去が困難である。水銀は、主に排ガス中に金属水銀(Hg)あるいは塩化水銀(HgCl)で存在すると考えられている。HgClは、水に容易に吸収されるため、脱硫吸収塔などで除去することができるが、金属水銀(Hg)は水への溶解度が極めて低いために、脱硫吸収塔で吸収されず、金属水銀蒸気として、煙突より排出されるおそれがある。そのため、従来はHg除去技術として、活性炭吸着法や、次亜塩素酸ソーダ吸収法などが用いられている。 There are harmful trace substances such as mercury in coal and heavy oil-fired exhaust gas, and it is generally difficult to remove them in current smoke treatment systems. Mercury is considered to exist mainly in the exhaust gas as metallic mercury (Hg) or mercury chloride (HgCl 2 ). HgCl 2 is easily absorbed by water and can be removed by a desulfurization absorption tower or the like. However, since mercury mercury (Hg) has extremely low solubility in water, it is not absorbed by the desulfurization absorption tower. Mercury vapor may be discharged from the chimney. Therefore, conventionally, an activated carbon adsorption method, a sodium hypochlorite absorption method, or the like is used as the Hg removal technique.

活性炭吸着法としては、排ガス中に活性炭粉末を吹き込んでバグフィルターで回収する方法等が既に実用化されている。しかし、主にゴミ焼却排ガスを対象として、発電所排ガス等の大容量ガスに適用した例はない。また、次亜塩素酸ソーダ吸収法として、例えば、冷却塔の冷却水あるいは脱硫吸収塔の吸収液、または、湿式電気集じん機の供給水あるいは循環水に、次亜塩素酸ソーダなどの添加剤を直接添加する方法が知られている。しかし、いずれも、排ガス処理プラントの主要機器に添加剤を加えるものであり、添加剤によって、その本質的な機能が阻害される懸念がある。例えば、冷却塔は低pHであることから酸化剤が大量に必要になる、吸収塔では過酸化物質が生成する、湿式電気集じん機では亜硫酸が酸化され酸性が強くなるなどが考えられる。また、主にゴミ焼却排ガスを対象としており、発電所排ガス等の大容量ガスに適していない。   As the activated carbon adsorption method, a method of blowing activated carbon powder into exhaust gas and collecting it with a bag filter has already been put into practical use. However, there is no example of applying mainly to waste incineration exhaust gas to large-capacity gas such as power plant exhaust gas. Further, as a sodium hypochlorite absorption method, for example, an additive such as sodium hypochlorite in cooling water of a cooling tower or absorption liquid of a desulfurization absorption tower, or supply water or circulating water of a wet electric dust collector A method of directly adding is known. However, all add additives to the main equipment of the exhaust gas treatment plant, and there is a concern that the essential functions are hindered by the additives. For example, since the cooling tower has a low pH, a large amount of oxidizing agent is required, a peroxidation material is generated in the absorption tower, and sulfur dioxide is oxidized and the acidity becomes strong in the wet electrostatic precipitator. Moreover, it mainly targets waste incineration exhaust gas and is not suitable for large-capacity gas such as power plant exhaust gas.

一方、上記したように金属水銀は水に溶けにくいので、脱硫装置を通過してしまうが、水溶性にできれば脱硫装置で除去可能である。そこで、触媒が充填されている脱硝装置において、該触媒上で金属水銀を、水に溶けやすい塩化水銀に変換することにより、後流の脱硫装置で除去可能とすることが考えられる。すなわち、脱硝装置の前段に、金属水銀を塩化水銀に変換する塩素化剤(塩化水素等)を注入する排煙処理方法が有効である。   On the other hand, as described above, metallic mercury is difficult to dissolve in water and thus passes through the desulfurization apparatus. However, if it can be made water-soluble, it can be removed by the desulfurization apparatus. In view of this, it is conceivable that in a denitration apparatus filled with a catalyst, metal mercury is converted to mercury chloride which is easily soluble in water on the catalyst, so that it can be removed by a downstream desulfurization apparatus. That is, a flue gas treatment method in which a chlorinating agent (hydrogen chloride or the like) that converts metallic mercury into mercury chloride is injected before the denitration apparatus is effective.

しかしながら、必要以上の塩素化剤を添加することは、システム中の煙道や後流装置の腐食原因物質となってしまい、最終的にはプラント設備の寿命を短くしてしまう問題があった。また、塩素化剤を単に一定量注入する場合には、ユーティリティーコストが増大してしまう。   However, adding more than necessary chlorinating agent has become a causative substance for the flue in the system and the downstream device, which ultimately shortens the life of the plant equipment. In addition, when a certain amount of chlorinating agent is simply injected, the utility cost increases.

すなわち、脱硝装置後には、通常、エアヒーター、集塵器、ガスガスヒーター(熱交換器)、脱硫吸収塔の順に配置されているが、特に、冷却が行われる熱交換器において塩素化剤による装置の腐食・破損への影響が大きい。また、脱硫吸収塔においても、塩素化剤が混入されてしまうため、吸収液の塩素濃度が上昇してしまい、塔内の金属部分の腐食・破損が問題となる。   That is, after the denitration apparatus, it is usually arranged in the order of an air heater, a dust collector, a gas gas heater (heat exchanger), and a desulfurization absorption tower. In particular, a device using a chlorinating agent in a heat exchanger where cooling is performed. The effect on corrosion and breakage is great. Also, in the desulfurization absorption tower, since the chlorinating agent is mixed, the chlorine concentration of the absorption liquid rises, and the corrosion and breakage of the metal part in the tower becomes a problem.

さらに、脱硫吸収塔の塩素濃度が上昇すると、脱硫の際の酸化性能低下、または脱硫性能自身の低下という問題が生じてしまい、システム全体の性能低下を引き起こしかねない。さらに、塩濃度の増加に伴い、吸収液の発泡性が増加し、吸収塔内圧損の上昇により、運転動力の増加をもたらす可能性もある。   Furthermore, when the chlorine concentration in the desulfurization absorption tower rises, there arises a problem that the oxidation performance at the time of desulfurization or the desulfurization performance itself is lowered, which may cause the performance of the entire system to be lowered. Further, as the salt concentration increases, the foaming property of the absorbing liquid increases, and there is a possibility that the operating power increases due to an increase in the pressure loss in the absorption tower.

特開平10−230137号公報Japanese Patent Laid-Open No. 10-230137 特開平2−191526号公報Japanese Patent Laid-Open No. 2-191526 特開平9−308817号公報JP-A-9-308817

本発明者らは、上記問題点に鑑み、発電所排ガス等の大容量ガスに含有する水銀、特に金属水銀蒸気を除去することが可能な排煙処理システム内の水銀除去方法であって、水銀除去のための塩素化剤の添加量を適正に制御・調整して、後流装置に悪影響を与えず、システムの効率的な運転および性能維持を可能にする方法を開発すべく、鋭意検討した。その結果、本発明者らは、塩素化剤を単に脱硫装置前段で導入するのではなく、例えば脱硫後である脱硫吸収塔出口、集塵器出口、あるいは、再加熱器出口等において、水銀濃度を連続的にモニタリングして、そのための必要十分量の塩素化剤を適切に添加することによって、かかる問題点が解決されることを見い出した。本発明は、かかる見地より完成されたものである。   In view of the above problems, the present inventors have provided a mercury removal method in a flue gas treatment system capable of removing mercury, particularly metal mercury vapor, contained in a large volume gas such as power plant exhaust gas. We have intensively studied to develop a method that enables efficient operation and maintenance of the system without adversely affecting the downstream equipment by appropriately controlling and adjusting the amount of chlorinating agent added for removal. . As a result, the present inventors do not simply introduce the chlorinating agent at the preceding stage of the desulfurization apparatus, but, for example, at the outlet of the desulfurization absorption tower, the dust collector outlet, or the reheater outlet after desulfurization. It has been found that such problems can be solved by continuously monitoring the amount of chlorinating agent and appropriately adding the necessary and sufficient amount of chlorinating agent. The present invention has been completed from such a viewpoint.

すなわち、本発明は、窒素酸化物、硫黄酸化物および水銀を含む排ガスを塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う排ガス中の水銀処理方法であって、該湿式脱硫後の排ガスについて水銀濃度を測定して、該水銀濃度に基づいて還元脱硝処理前における入口水銀濃度の予測値を計算し、該予測値と基準入口水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整することを特徴とする排ガス中の水銀処理方法を提供するものである。なお、本発明では、ボイラ負荷信号を上記基準入口水銀濃度の決定に帰与させるようにしている。湿式脱硫後の排ガスにおける水銀濃度測定については、脱硫吸収塔の後流に設けられる湿式集じん器、再加熱器または煙突のいずれの装置の前段においても測定可能である。また、塩化水銀は脱硫吸収塔の他、脱硫吸収塔の前段に冷却塔を設置している場合には冷却塔でも取り除かれるので、その後段に設けられる脱硫吸収塔の前段においても測定可能である。ここで、基準入口水銀濃度とは、入口水銀濃度がボイラ負荷や炭種に依存して変化するため、炭種毎にあらかじめボイラ出口で測定された水銀濃度、あるいは石炭中の水銀含有量から算出した水銀濃度とし、金属水銀と塩化水銀それぞれの濃度の合計で表される。 That is, the present invention is a mercury treatment method in exhaust gas in which exhaust gas containing nitrogen oxides, sulfur oxides and mercury is subjected to reductive denitration treatment in the presence of a solid catalyst after addition of a chlorinating agent, and then subjected to wet desulfurization with an alkali absorbent. And measuring the mercury concentration of the exhaust gas after the wet desulfurization, calculating a predicted value of the inlet mercury concentration before the reductive denitration treatment based on the mercury concentration, and an amount of change between the predicted value and the reference inlet mercury concentration Therefore, the present invention provides a method for treating mercury in exhaust gas, characterized in that the supply amount of a chlorinating agent added in the previous stage of reductive denitration treatment is adjusted. In the present invention, the boiler load signal is attributed to the determination of the reference inlet mercury concentration. The mercury concentration in the exhaust gas after the wet desulfurization can be measured at the front stage of any of the wet dust collector, the reheater or the chimney provided downstream of the desulfurization absorption tower. In addition to the desulfurization absorption tower, mercury chloride is also removed by the cooling tower when the cooling tower is installed at the front stage of the desulfurization absorption tower, so it can be measured at the front stage of the desulfurization absorption tower provided at the subsequent stage. . Here, the reference inlet mercury concentration is calculated from the mercury concentration measured at the boiler outlet in advance for each coal type or the mercury content in the coal because the inlet mercury concentration changes depending on the boiler load and coal type. Expressed as the total concentration of mercury and mercury chloride.

また、本発明の参考となる形態では、窒素酸化物、硫黄酸化物および水銀を含む排ガスを、塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う排ガス中の水銀処理方法であって、該湿式脱硫前の排ガスについて水銀濃度を測定して、該水銀濃度に基づいて湿式脱硫後における出口水銀濃度の予測値を計算し、該予測値と基準出口水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整することを特徴とする排ガス中の水銀処理方法を提供するものである。湿式脱硫前の排ガスにおける水銀濃度測定については、脱硝装置、エアヒーター(A/H)、熱交換器、電気集塵機または脱硫装置のいずれの装置の前段においても、測定可能である。ここで、基準出口水銀濃度とは、出口目標水銀濃度であるが、通常制御の応答遅れが存在するため、排出水銀濃度の上限値に対して濃度の振れ幅を差し引いた値である。 Further, in a form to be a reference of the present invention , exhaust gas containing nitrogen oxides, sulfur oxides and mercury is subjected to reductive denitration treatment under a solid catalyst after addition of a chlorinating agent, and then wet desulfurized with an alkali absorbent. A method for treating mercury in exhaust gas, comprising measuring a mercury concentration of the exhaust gas before wet desulfurization, calculating a predicted value of outlet mercury concentration after wet desulfurization based on the mercury concentration, and calculating the predicted value and a reference outlet An object of the present invention is to provide a method for treating mercury in exhaust gas, characterized in that the supply amount of a chlorinating agent added at the previous stage of reductive denitration treatment is adjusted from the amount of change from mercury concentration. The mercury concentration in the exhaust gas before wet desulfurization can be measured at any stage before any of a denitration device, an air heater (A / H), a heat exchanger, an electrostatic precipitator, or a desulfurization device. Here, the reference outlet mercury concentration is the outlet target mercury concentration, but since there is a response delay in normal control, it is a value obtained by subtracting the fluctuation width of the concentration from the upper limit value of the discharged mercury concentration.

さらに、本発明の別の参考となる形態では、窒素酸化物、硫黄酸化物および水銀を含む排ガスを、塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う排ガス中の水銀処理方法であって、該湿式脱硫前および脱硫後の排ガスについて水銀濃度を測定して、該水銀濃度と基準水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整することを特徴とする排ガス中の水銀処理方法を提供するものである。このような方法によれば、ボイラ負荷や電気集塵機、脱硫装置の運転負荷信号をも検出することにより、水銀濃度予測値の精度を向上させることができる。 Furthermore, in another form of reference of the present invention , exhaust gas containing nitrogen oxides, sulfur oxides and mercury is subjected to reductive denitration treatment under a solid catalyst after addition of a chlorinating agent, and then wet desulfurized with an alkali absorbent. A method for treating mercury in exhaust gas, measuring mercury concentration of the exhaust gas before and after wet desulfurization, and adding the mercury concentration before the reductive denitration treatment from the amount of change between the mercury concentration and the reference mercury concentration The present invention provides a method for treating mercury in exhaust gas, characterized by adjusting the supply amount of a chlorinating agent. According to such a method, the accuracy of the mercury concentration prediction value can be improved by detecting the operation load signal of the boiler load, the electrostatic precipitator, and the desulfurization apparatus.

また、本願明細書は、窒素酸化物、硫黄酸化物および水銀を含む排ガスに、塩素化剤供給装置から塩素化剤を添加し、還元脱硝装置の固体触媒下に脱硝処理を行って、湿式脱硫装置内のアルカリ吸収液にて脱硫を行う排ガスの処理システムであって、該湿式脱硫装置の後段に水銀濃度計が備えられており、該水銀濃度計に接続された演算器および調節器からの流量調整信号を該塩素化剤供給装置に送ることを特徴とする排ガスの処理システムをも提供するものである。ここで、上記演算器では、主として、湿式脱硫の後、湿式集じん器、再加熱器もしくは煙突の前で測定した排ガス中の水銀濃度に基づき、還元脱硝処理前における入口水銀濃度の予測値を計算する。また上記調節器では、上記演算器で算出した入口水銀濃度とあらかじめ設定した基準入口水銀濃度との偏差信号により塩素化剤供給流量を調節する。 Further, the present specification describes wet desulfurization by adding a chlorinating agent from a chlorinating agent supply device to exhaust gas containing nitrogen oxides, sulfur oxides and mercury, and performing a denitration treatment under a solid catalyst of a reducing denitration device. An exhaust gas treatment system for performing desulfurization with an alkali absorbing liquid in the apparatus, wherein a mercury concentration meter is provided at a subsequent stage of the wet desulfurization device, and from a calculator and a controller connected to the mercury concentration meter. The present invention also provides an exhaust gas treatment system characterized by sending a flow rate adjustment signal to the chlorinating agent supply device. Here, the above computing unit mainly calculates the estimated value of the inlet mercury concentration before the reductive denitration treatment based on the mercury concentration in the exhaust gas measured after wet desulfurization and before the wet dust collector, reheater or chimney. calculate. The regulator adjusts the chlorinating agent supply flow rate based on a deviation signal between the inlet mercury concentration calculated by the calculator and a preset reference inlet mercury concentration.

本発明によれば、発電所排ガス等の大容量ガスに含有する水銀、特に金属水銀蒸気を除去することが可能な排煙処理システム内の水銀除去において、水銀除去のための塩化水素の添加量を適正に制御・調整して、後流装置に悪影響を与えず、システムの効率的な運転および性能維持が可能となる。具体的には、脱硝装置後流に設けられるエアヒーター、集塵器、ガスガスヒーター(熱交換器)、脱硫吸収塔等の装置について、過剰量の塩素化剤添加による腐食・破損の問題を有効に防止できる。また、脱硫吸収塔の塩素濃度上昇によって、脱硫の際の酸化性能や脱硫性能が低下すること、または吸収液の発泡性増加を防止して、脱硫性能を含めたシステム全体の性能維持あるいは性能向上を図ることができる。さらに、本発明によれば、塩化水素等の塩素化剤の供給量を最適化し、過剰な添加分を削減することで、運転に際してのユーティリティーコストを低く抑制することができる。 According to the present invention, in the removal of mercury in a flue gas treatment system capable of removing mercury, particularly metal mercury vapor, contained in a large volume gas such as power plant exhaust gas, the amount of hydrogen chloride added for mercury removal By properly controlling and adjusting the system, it is possible to efficiently operate and maintain the performance of the system without adversely affecting the downstream device. More specifically, for the devices such as air heaters, dust collectors, gas gas heaters (heat exchangers), and desulfurization absorption towers that are installed downstream of the denitration equipment, the problem of corrosion and damage due to the addition of an excessive amount of chlorinating agent is effective. Can be prevented. Also, the increase in chlorine concentration in the desulfurization absorption tower prevents the oxidation performance and desulfurization performance during desulfurization from decreasing, or prevents the foaming property of the absorbent from increasing, maintaining the overall system performance including desulfurization performance or improving the performance. Can be achieved. Furthermore, according to the present invention, the utility cost during operation can be kept low by optimizing the supply amount of a chlorinating agent such as hydrogen chloride and reducing the amount of excessive addition.

本発明によれば、発電所排ガス等の大容量ガスに含有する水銀、特に金属水銀蒸気を除去することが可能な排煙処理システム内の水銀除去において、水銀除去のための塩化水素の添加量を適正に制御・調整して、後流装置に悪影響を与えず、システムの効率的な運転および性能維持が可能となる。本発明によれば、脱硝装置後流に設けられるエアヒーター、集塵器、ガスガスヒーター(熱交換器)、脱硫吸収塔等の装置について、過剰量の塩素化剤添加による腐食・破損の問題を有効に防止できる。特に、冷却が行われる熱交換器の腐食の問題や、脱硫吸収塔において、塩化水素が混入されることで吸収液の塩素濃度が上昇してしまうことによる金属部分の腐食・破損の問題を回避できる。また、脱硫吸収塔の塩素濃度上昇によって、脱硫の際の酸化性能や脱硫性能が低下すること、または吸収液の発泡性増加を防止して、脱硫性能を含めたシステム全体の性能維持・向上を図ることができる。さらに、本発明によれば、塩化水素等の塩素化剤の供給量を最適化し、過剰な添加分を削減することで、運転に際してのユーティリティーコストを低く抑制することができる。   According to the present invention, in the removal of mercury in a flue gas treatment system capable of removing mercury, particularly metal mercury vapor, contained in a large volume gas such as power plant exhaust gas, the amount of hydrogen chloride added for mercury removal By properly controlling and adjusting the system, it is possible to efficiently operate and maintain the performance of the system without adversely affecting the downstream device. According to the present invention, there is a problem of corrosion and damage due to the addition of an excessive amount of chlorinating agent in devices such as an air heater, a dust collector, a gas gas heater (heat exchanger), a desulfurization absorption tower, etc. provided downstream of the denitration device. It can be effectively prevented. In particular, it avoids the problem of corrosion of heat exchangers that are cooled, and the problem of corrosion and breakage of metal parts due to the increase of chlorine concentration in the absorption liquid due to the mixing of hydrogen chloride in the desulfurization absorption tower. it can. In addition, the increase in chlorine concentration in the desulfurization absorption tower reduces the oxidation performance and desulfurization performance at the time of desulfurization, or prevents the foaming property of the absorbent from increasing, thereby maintaining and improving the performance of the entire system, including desulfurization performance. You can plan. Furthermore, according to the present invention, the utility cost during operation can be kept low by optimizing the supply amount of a chlorinating agent such as hydrogen chloride and reducing the amount of excessive addition.

本発明の水銀処理方法の一例を示す概略工程フロー図である。It is a general | schematic process flowchart which shows an example of the mercury processing method of this invention. 本発明の実施例1において用いられた試験装置の概略を示す工程フロー図である。It is a process flow figure showing an outline of a testing device used in Example 1 of the present invention. 図4のシステムを用いた場合の実施例1における条件及び測定結果を表した図である。It is a figure showing the conditions and measurement result in Example 1 at the time of using the system of FIG. 本発明の水銀処理方法を実施する場合の制御システムの1例を示す工程フロー図である。It is a process flowchart which shows one example of the control system in the case of implementing the mercury processing method of this invention. 本発明の水銀処理方法を実施する場合の制御システムの参考となる他の1例を示す工程フロー図である。It is a process flowchart which shows another example used as the reference of the control system in the case of implementing the mercury processing method of this invention. 本発明の水銀処理方法を実施する場合の制御システムの参考となる他の1例を示す工程フロー図である。It is a process flowchart which shows another example used as the reference of the control system in the case of implementing the mercury processing method of this invention. 図5のシステムを用いた場合の実施例1における条件及び測定結果を表した図である。It is a figure showing the conditions and measurement result in Example 1 at the time of using the system of FIG. 図6のシステムを用いた場合の実施例1における条件及び測定結果を表した図である。It is a figure showing the conditions and measurement result in Example 1 at the time of using the system of FIG.

本発明の排ガス処理では、窒素酸化物(NOx)、硫黄酸化物(SOx)および水銀(Hg)を含む排ガスを塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う。そして、この湿式脱硫の前流および/または後流の排ガスについて水銀濃度を測定して、該水銀濃度に基づいて還元脱硝処理前における入口水銀濃度、若しくは、脱硫処理後の出口水銀濃度の予測値を計算し、該予測値と基準水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整する。これによって、添加する塩素化剤を金属水銀に有効に作用させることができるとともに、過剰量の塩素化剤によるシステムへの悪影響を回避できる。   In the exhaust gas treatment of the present invention, exhaust gas containing nitrogen oxides (NOx), sulfur oxides (SOx) and mercury (Hg) is subjected to reductive denitration treatment under a solid catalyst after addition of a chlorinating agent, and then wet with an alkali absorbent. Desulfurization is performed. Then, the mercury concentration is measured for the exhaust gas before and / or after the wet desulfurization, and based on the mercury concentration, the inlet mercury concentration before the reducing denitration treatment or the predicted value of the outlet mercury concentration after the desulfurization treatment And the supply amount of the chlorinating agent to be added before the reductive denitration treatment is adjusted from the amount of change between the predicted value and the reference mercury concentration. As a result, the chlorinating agent to be added can effectively act on metallic mercury, and an adverse effect on the system due to an excessive amount of the chlorinating agent can be avoided.

本発明における塩素化剤の添加量制御方法としては、主に以下の3通りが考えられる。
すなわち、 出口水銀濃度を検出し、入口水銀濃度の予測値と入口基準濃度との偏差信号で制御する方法(その1)、脱硫前水銀濃度を検出し、出口水銀濃度の予測値と出口基準濃度との偏差信号で制御する方法(参考となる形態その1)、および、脱硫前水銀濃度および出口水銀濃度を検出し、脱硫前水銀濃度と基準入口濃度の偏差信号、及び、出口水銀濃度と脱硫前水銀濃度から算出した出口水銀濃度の予測値との偏差信号の両方で制御する方法(参考となる形態その2)である。これらの方法を用いた場合のシステムの一例を、図4(その1)、図5(参考となる形態その1)、図6(参考となる形態その2)にそれぞれ示す。
以下、本発明の処理方法について、これらの添付図面を参照しながら、その具体的な実施形態を詳細に説明する。
As the method for controlling the addition amount of the chlorinating agent in the present invention, the following three methods are mainly considered.
That is, a method of detecting the outlet mercury concentration and controlling it with a deviation signal between the predicted value of the inlet mercury concentration and the inlet reference concentration (part 1), detecting the mercury concentration before desulfurization, and predicting the outlet mercury concentration and the outlet reference concentration Control method with deviation signal ( reference form 1 ), mercury concentration before desulfurization and outlet mercury concentration are detected, deviation signal between mercury concentration before desulfurization and reference inlet concentration, and outlet mercury concentration and desulfurization This is a method of controlling by both the deviation signal from the predicted value of the outlet mercury concentration calculated from the pre-mercury concentration ( form 2 for reference ). An example of a system using these methods is shown in FIG. 4 (part 1), FIG. 5 ( reference form 1 ), and FIG. 6 ( reference form 2 ).
Hereinafter, specific embodiments of the processing method of the present invention will be described in detail with reference to the accompanying drawings.

実施の形態(その1)
本発明では、NOx、SOxおよび水銀を含む排ガスを、塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う。このような処理方法を実施する際、システム内の装置である脱硫吸収塔においては、排ガスは石灰スラリー循環液などの吸収液と接触してSOxが吸収、除去される。また、排ガス中に含まれる水銀のうち塩化水銀(HgCl)も上記吸収液に溶解、除去される。しかし、水銀のうち金属水銀(Hg)は、通常のままでは水への溶解度が極めて低いため、吸収液で除去されず、金属水銀蒸気として脱硫排ガスに含有し、脱硫吸収塔6を通過してしまう。そこで、本発明においては、脱硫装置の直前で塩素化剤を添加し、金属水銀を水溶性の塩化水銀に変換してから、脱硫吸収塔に導くものである。
Embodiment (Part 1)
In the present invention, exhaust gas containing NOx, SOx and mercury is subjected to reductive denitration treatment in the presence of a solid catalyst after addition of a chlorinating agent, and then wet desulfurized with an alkali absorbent. When carrying out such a treatment method, in the desulfurization absorption tower which is an apparatus in the system, the exhaust gas comes into contact with an absorption liquid such as a lime slurry circulating liquid, and SOx is absorbed and removed. In addition, mercury chloride (HgCl 2 ) out of mercury contained in the exhaust gas is dissolved and removed in the absorbing solution. However, metallic mercury (Hg) out of mercury is extremely low in solubility in water as usual, so it is not removed by the absorbing solution, but is contained in the desulfurization exhaust gas as metallic mercury vapor and passes through the desulfurization absorption tower 6. End up. Therefore, in the present invention, a chlorinating agent is added immediately before the desulfurization apparatus to convert metallic mercury into water-soluble mercury chloride, and then led to the desulfurization absorption tower.

本発明では、通常、塩素化剤3の添加は脱硝処理の直前である。還元脱硝装置内の触媒は種々の形状が考えられるが、一般的にはハニカム形状等のチタニア系の酸化触媒である。そして、この触媒上で金属水銀を酸化できるため(約90%以上)、その前段に塩化水素等の塩素化剤を導入する。つまり、脱硝装置内の固体触媒は、本来の脱硝触媒としての作用を行うと同時に、金属水銀を塩化水銀に変換するための触媒としても作用させる。   In the present invention, the chlorinating agent 3 is usually added immediately before the denitration treatment. Although various shapes can be considered for the catalyst in the reductive denitration apparatus, it is generally a titania-based oxidation catalyst having a honeycomb shape or the like. Since metal mercury can be oxidized on this catalyst (about 90% or more), a chlorinating agent such as hydrogen chloride is introduced in the preceding stage. In other words, the solid catalyst in the denitration apparatus acts as an original denitration catalyst and at the same time acts as a catalyst for converting metallic mercury into mercury chloride.

図1に、本実施の形態に係る処理方法の用いる場合のシステムの概略を示す。図1のシステムでは、ボイラ1の後流に設けられた脱硝装置2を経た排ガスは、エアヒーター(A/H)3、熱エネルギーを回収する熱交換器5、集じん器4を経た後、脱硫吸収塔6に導入される。ここで、集じん器4は、排ガスを脱硫吸収塔6に導入する前に、粗集じんできるものであればよく、特に限定されるものではない。また、脱流吸収塔6は、一般に排煙処理で用いられている2塔式脱硫装置や吸収塔の前段に冷却塔を設置した脱硫装置などでよく、特に限定されるものではない。上記のような湿式法による脱硫システムでは、脱硫吸収塔6の後流には、湿式集じん器7および再加熱器8などが設けられていて、これらの装置を経て排ガスは煙突9から大気中に放出される。ここで、再加熱器8では、脱硫吸収塔6前段の熱交換器5で回収した熱エネルギーによって、温度低下した燃焼排ガスを加熱する。これは、温度低下した排ガスをそのまま煙突から放出すると、水蒸気による白煙が発生してしまう問題などがあるからである。そこで、燃焼排ガスを放出する際には、浄化後のガスを加熱して、高温ガスにしてから排出することが行われており、湿式法の設備の脱硫装置6後段では、熱の供給を行う熱交換器8が設けられている。   FIG. 1 shows an outline of a system when the processing method according to this embodiment is used. In the system of FIG. 1, the exhaust gas that has passed through the denitration device 2 provided downstream of the boiler 1 passes through an air heater (A / H) 3, a heat exchanger 5 that recovers thermal energy, and a dust collector 4. It is introduced into the desulfurization absorption tower 6. Here, the dust collector 4 is not particularly limited as long as it can roughly collect dust before the exhaust gas is introduced into the desulfurization absorption tower 6. The desulfurization absorption tower 6 may be a two-column desulfurization apparatus generally used in flue gas treatment or a desulfurization apparatus in which a cooling tower is installed in front of the absorption tower, and is not particularly limited. In the desulfurization system by the wet method as described above, a wet dust collector 7 and a reheater 8 are provided in the downstream of the desulfurization absorption tower 6, and the exhaust gas passes through these devices from the chimney 9 into the atmosphere. To be released. Here, in the reheater 8, the combustion exhaust gas whose temperature has been lowered is heated by the heat energy recovered by the heat exchanger 5 in the previous stage of the desulfurization absorption tower 6. This is because, if the exhaust gas whose temperature has been lowered is discharged as it is from the chimney, white smoke due to water vapor is generated. Therefore, when the combustion exhaust gas is discharged, the purified gas is heated to be a high temperature gas and then discharged, and heat is supplied in the latter stage of the desulfurization device 6 of the wet process equipment. A heat exchanger 8 is provided.

そして、本実施の形態では図1に示すように、ボイラ1から還元脱硝装置2までの流路には、塩素化剤供給装置3が設置されている。また、通常、アンモニアタンク3から供給されるNHを排ガスに注入するアンモニア注入装置(図示せず)も備えられている。ボイラ1からの排ガスは還元脱硝装置2へ導入される。NHとHCl等が注入された排ガスは還元脱硝装置においてNHとNOxとの反応が行われると同時に、HCl存在下で金属HgがHgClに酸化される。エアヒーター3、熱交換器5等を経て、電気集塵器8にてばいじんを除去した後、湿式脱硫装置9で排ガス中のSOの除去と同時にHgC1の除去が行われる。還元脱硝装置を出た排ガスには過剰のHClが含まれるが、脱硫装置で石灰乳等のアルカリ水溶液に吸収されるので、煙突から排出することはない。本発明は、排ガス中のNOxを還元脱硝装置で除去し、アリカリ吸収液を吸収剤とする湿式脱硫装置でSOを除去する排ガス処理方法において、脱硝装置の前流側に塩素化剤を添加する排ガス処理方法であるが、NHは脱硝のために必要なのであり、還元脱硝装置の前流にはNHを添加しなくとも、還元脱硝装置の触媒の存在下に塩素化剤により水銀を塩化物に転換し、湿式脱硫装置で水銀を除去することは可能である。脱硫吸収塔6においてHgが除去された排ガスは、再加熱器8に導入され、熱交換器5で回収した熱エネルギーによって加熱され、煙突9から排出される。 And in this Embodiment, as shown in FIG. 1, the chlorinating agent supply apparatus 3 is installed in the flow path from the boiler 1 to the reductive denitration apparatus 2. In addition, an ammonia injection device (not shown) for injecting NH 3 supplied from the ammonia tank 3 into the exhaust gas is also provided. The exhaust gas from the boiler 1 is introduced into the reduction denitration device 2. The exhaust gas into which NH 3 and HCl are injected undergoes a reaction between NH 3 and NOx in a reductive denitration apparatus, and at the same time, metal Hg is oxidized to HgCl 2 in the presence of HCl. Air heaters 3, via the heat exchanger 5, etc., after removing the soot in an electric precipitator 8, wet desulfurizer 9 removal of SO 2 in the exhaust gas at the same time HgC1 2 removal is performed. Excess HCl is contained in the exhaust gas exiting the reductive denitration device, but is not discharged from the chimney because it is absorbed by the alkaline aqueous solution such as lime milk in the desulfurization device. The present invention relates to an exhaust gas treatment method in which NOx in exhaust gas is removed by a reduction denitration device, and SO 2 is removed by a wet desulfurization device that uses an antkari absorbent as an absorbent, and a chlorinating agent is added to the upstream side of the denitration device. to is a exhaust gas treating method, NH 3 is so necessary for denitrification, without the addition of NH 3 in the upstream side of the reduction denitrator, mercury by chlorinating agent in the presence of a catalyst of the reduction denitrator It is possible to convert to chloride and remove mercury with wet desulfurization equipment. The exhaust gas from which Hg has been removed in the desulfurization absorption tower 6 is introduced into the reheater 8, heated by the heat energy recovered by the heat exchanger 5, and discharged from the chimney 9.

このように本発明においては、排ガスに塩素化剤を添加した後に、固体触媒下で処理を行い、水溶性に変換した排ガス中の水銀を湿式脱硫処理工程で除去する。しかし、塩素化剤を供給する量によっては、添加量が少な過ぎて金属水銀が多く残留して排出されてしまったり、あるいは、多すぎて配管や装置の腐食・脱硫性能の低下等の重大な問題が生じうる。そこで本実施の形態では、塩素化剤の供給量は、湿式脱硫後の排ガスについて水銀濃度を測定して、水銀濃度に基づいて還元脱硝処理の入口における入口水銀濃度の予測値を計算し、予測値と既に設定されている基準入口水銀濃度との変化量から、還元脱硝処理の前段で添加する量を調整する。   Thus, in this invention, after adding a chlorinating agent to exhaust gas, it processes in a solid catalyst and removes the mercury in the exhaust gas converted into water-soluble in a wet desulfurization process. However, depending on the amount of chlorinating agent supplied, the added amount is too small and a large amount of metal mercury remains and is discharged, or the added amount is too great and causes serious deterioration such as corrosion and desulfurization performance of piping and equipment. Problems can arise. Therefore, in the present embodiment, the supply amount of the chlorinating agent is calculated by measuring the mercury concentration of the exhaust gas after wet desulfurization, and calculating the predicted value of the inlet mercury concentration at the inlet of the reductive denitration process based on the mercury concentration. The amount to be added before the reductive denitration treatment is adjusted from the amount of change between the value and the already set reference inlet mercury concentration.

ここで水銀除去について、塩素化剤として塩化水素を用いる場合の添加量制御方法について説明する。塩化水素による水銀の酸化反応は、下記式により表せる。
Hg+2HCl+1/2O → HgCl + H
水銀の塩化水銀への酸化速度がrox=kpHgin ・pO2 ・pHCl で表せるとすると、O,Hg濃度はボイラ負荷や炭種等に依存するので調節できないが、HClの供給量を増減させることによって水銀を塩化水銀に酸化する速度を調節できる。例えば、石炭焚き排ガス中の水銀がHgとHgClの2形態で存在していると仮定すると、出口水銀濃度は以下の式(1)で表せる。
Here, a method for controlling the amount of mercury added when hydrogen chloride is used as a chlorinating agent will be described. The oxidation reaction of mercury by hydrogen chloride can be expressed by the following formula.
Hg + 2HCl + 1 / 2O 2 → HgCl 2 + H 2 O
If the oxidation rate of mercury to mercury chloride can be expressed as r ox = kp Hgin a · p O 2 b · p HCl c , the O 2 and Hg concentrations cannot be adjusted because they depend on boiler load, coal type, etc. The rate at which mercury is oxidized to mercury chloride can be adjusted by increasing or decreasing the supply. For example, assuming that mercury in coal-fired exhaust gas exists in two forms of Hg 0 and HgCl 2 , the outlet mercury concentration can be expressed by the following equation (1).

ToHgout = pToHgin−[pHgin(1−ηox)・ηHg
+(pHgin・ηox + pHgCl2in)・ηHgCl
・・・(1)
ToHgin: 入口全水銀分圧
ToHgout: 出口全水銀分圧
Hgin : 入口Hg分圧
HgCl2in : 入口HgCl分圧
ηox: 金属水銀の酸化率
ηHg: 金属水銀の排煙処理システムでの除去率
ηHgCl2: 塩化水銀の排煙処理システムでの除去率
ここで、入口の水銀分圧はボイラ負荷及び炭種に依存して変化する。また、排煙処理システムにおける水銀の除去率は集じん器や脱硫吸収塔等での除去率であり、これらの運転条件にも依存する。
p ToHgout = p ToHgin − [p Hgin (1−η ox ) · η Hg
+ (P Hgin · η ox + p HgCl2in) · ηHgCl 2]
... (1)
p ToHgin : inlet total mercury partial pressure
p ToHgout : outlet total mercury partial pressure
p Hgin : Inlet Hg 0 partial pressure
p HgCl2in : Inlet HgCl 2 partial pressure
η ox : Metal mercury oxidation rate
η Hg : Metal mercury removal rate in flue gas treatment system
η HgCl2 : Mercury chloride removal rate in the flue gas treatment system Here, the mercury partial pressure at the inlet varies depending on the boiler load and the coal type. Further, the mercury removal rate in the flue gas treatment system is the removal rate in a dust collector, a desulfurization absorption tower, etc., and depends on these operating conditions.

一般に金属水銀Hgの除去率ηHgは塩化水銀HgClの除去率ηHgCl2より低いため、金属水銀をより多く塩化水銀に酸化できれば排煙処理システムとしての水銀除去率が向上する。また、金属水銀の酸化率ηoxはHCl供給量、触媒充填量、触媒温度等に依存することから、HCl供給量を増加させることで金属水銀の酸化率を向上できる。そこで、本実施の形態では図4に示すシステムを用いて、塩素化剤の供給量や金属水銀の酸化率を制御する。 Generally removal rate eta Hg of metallic mercury Hg 0 is lower than the removal rate eta HgCl2 of mercury chloride HgCl 2, mercury removal rate as flue gas treatment system is improved if the oxidation to more mercuric chloride metallic mercury. Moreover, since the oxidation rate η ox of metallic mercury depends on the HCl supply amount, the catalyst filling amount, the catalyst temperature, etc., the oxidation rate of metallic mercury can be improved by increasing the HCl supply amount. Therefore, in the present embodiment, the supply amount of the chlorinating agent and the oxidation rate of metallic mercury are controlled using the system shown in FIG.

脱硫吸収塔出口11a(冷却塔が設けられている際には冷却塔出口でも良い)、湿式集じん器出口11b、あるいは再加熱器出口11cのいずれかの箇所で、出口水銀濃度Aを検出し、塩素化剤(HCl)の供給流量や排煙処理システムでの水銀除去率(各機器での除去率)から、演算器15にて入口水銀濃度の予測値を算出する。炭種やボイラ負荷信号Xによって、上記予測値Yは予め設定されている基準入口水銀濃度と比較され、その変化量から調節器16による塩素化剤の流量指令Zが塩素化剤供給弁10に信号として送られる。塩素化剤供給弁10の調整によって、塩素化剤3の供給量は適正な流量に制御される。このように、ボイラ負荷信号Xを出口Hg濃度予測演算器15に入力することにより、ボイラ負荷変動にも対応でき、出口水銀濃度の検出遅れによる負荷追従遅れを防止することができる。また、排煙処理システムでの各水銀化合物の除去率は電気集塵機や脱硫装置の運転条件に依存するため、電気集塵機や脱硫装置の運転条件、例えば電気集塵機では電界強度等、脱硫装置では循環流量等の信号を演算器15に入力することでより精度の良い予測水銀濃度を算出して塩素化剤供給流量を制御する態様もあり得る。これにより電気集塵機や脱硫装置での運転条件変動にも対応でき、より適正な流量に制御することができる。   The outlet mercury concentration A is detected at any of the desulfurization absorption tower outlet 11a (or the cooling tower outlet when a cooling tower is provided), the wet dust collector outlet 11b, or the reheater outlet 11c. From the supply flow rate of the chlorinating agent (HCl) and the mercury removal rate in the flue gas treatment system (removal rate in each device), the calculator 15 calculates the predicted value of the inlet mercury concentration. The predicted value Y is compared with a preset reference inlet mercury concentration based on the coal type and boiler load signal X, and the flow rate Z of the chlorinating agent by the regulator 16 is supplied to the chlorinating agent supply valve 10 from the amount of change. Sent as a signal. By adjusting the chlorinating agent supply valve 10, the supply amount of the chlorinating agent 3 is controlled to an appropriate flow rate. In this way, by inputting the boiler load signal X to the outlet Hg concentration prediction calculator 15, it is possible to cope with boiler load fluctuations and to prevent a load follow-up delay due to the detection delay of the outlet mercury concentration. Also, since the removal rate of each mercury compound in the flue gas treatment system depends on the operating conditions of the electrostatic precipitator and desulfurizer, the operating conditions of the electrostatic precipitator and desulfurizer, such as the electric field strength in the electrostatic precipitator, the circulation flow rate in the desulfurizer It is also possible to control the chlorinating agent supply flow rate by calculating a more accurate predicted mercury concentration by inputting such a signal to the computing unit 15. As a result, it is possible to cope with fluctuations in operating conditions in the electrostatic precipitator and the desulfurization apparatus, and it is possible to control the flow rate more appropriately.

本発明で対象とする排ガスは、例えば石炭、重質油等の硫黄や水銀を含む燃料を燃焼する火力発電所、工場等のボイラ排ガス、あるいは、金属工場、石油精製所、石油化学工場等の加熱炉排ガスであり、通常NOx濃度が低く、二酸化炭素、酸素、SOx、ばい塵又は水分を含む排出量の多いものである。本発明で使用する還元脱硝方法は、通常、還元剤にアンモニアを用い、固体触媒の存在下に排ガス中のNOxを窒素に還元する方法である。アンモニアの注入は従来の方法で行われる。本発明で還元脱硝に使用する固体触媒は、例えば、V,W,Mo,Ni,Co,Fe,Cr,Mn,Cu等の金属酸化物又は硫酸塩あるいはPt,Ru,Rh,Pd,Irなどの貴金属、又は、これらの混合物を、担体であるチタニア、シリカ、ジルコニア若しくはそれらの複合酸化物、又はゼオライト等に担持したものを用いることができる。   Exhaust gas targeted by the present invention is, for example, boiler exhaust gas from a thermal power plant or factory that burns fuel containing sulfur or mercury such as coal or heavy oil, or metal factory, oil refinery, petrochemical factory, etc. It is a heating furnace exhaust gas, and generally has a low NOx concentration and a large amount of discharge containing carbon dioxide, oxygen, SOx, dust, or moisture. The reductive denitration method used in the present invention is usually a method in which ammonia is used as a reducing agent and NOx in exhaust gas is reduced to nitrogen in the presence of a solid catalyst. Ammonia is injected in a conventional manner. The solid catalyst used for reductive denitration in the present invention is, for example, a metal oxide or sulfate such as V, W, Mo, Ni, Co, Fe, Cr, Mn, Cu, Pt, Ru, Rh, Pd, Ir, or the like. These noble metals, or a mixture thereof, can be used which are supported on titania, silica, zirconia or a composite oxide thereof, or zeolite or the like as a support.

本発明で使用する塩素化剤は、排ガス中の水銀が上記触媒の存在下に水銀塩素化剤と反応してHgCl又はHgClを生成するものをいい、例えば、塩化水素(HCl)、塩化アンモニウム、塩素、次亜塩素酸、次亜塩素酸アンモニウム、亜塩素酸、亜塩素酸アンモニウム、塩素酸、塩素酸アンモニウム、過塩素酸、過塩素酸アンモニウム、その他上記酸のアミン塩類、その他の塩類等が挙げられる。塩化水素の添加は、薬剤として塩化水素を使用してもよいし、水溶液である塩酸を使用してもよい。塩酸としては、特に濃度の制限はないが、例えば、濃塩酸から5%程度の希塩酸まで例示される。塩化水素を排ガスに添加する装置としては、従来からある薬液用の定量ポンプを使用することができる。塩化アンモニウム等の塩類の添加は、塩類の水溶液を使用することが好ましい。塩素化剤の添加は、排ガスへのアンモニア添加の前であっても、後であってもよい。湿式脱硫装置としては、従来の装置が使用できる。湿式脱硫に使用する吸収液としては、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸ソーダ、苛性ソーダ等の吸収剤の水溶液(アルカリ吸収液)が挙げられる。 The chlorinating agent used in the present invention is one in which mercury in exhaust gas reacts with the mercury chlorinating agent in the presence of the catalyst to generate HgCl 2 or HgCl, such as hydrogen chloride (HCl), ammonium chloride. , Chlorine, hypochlorous acid, ammonium hypochlorite, chlorous acid, ammonium chlorite, chloric acid, ammonium chlorate, perchloric acid, ammonium perchlorate, other amine salts of the above acids, other salts, etc. Is mentioned. For the addition of hydrogen chloride, hydrogen chloride may be used as a chemical, or hydrochloric acid which is an aqueous solution may be used. The concentration of hydrochloric acid is not particularly limited, and examples thereof include concentrated hydrochloric acid to dilute hydrochloric acid of about 5%. As a device for adding hydrogen chloride to exhaust gas, a conventional metering pump for chemicals can be used. The addition of salts such as ammonium chloride is preferably carried out using an aqueous salt solution. The chlorinating agent may be added before or after adding ammonia to the exhaust gas. As the wet desulfurization apparatus, a conventional apparatus can be used. Examples of the absorbent used for wet desulfurization include aqueous solutions (alkali absorbent) of absorbents such as calcium carbonate, calcium oxide, calcium hydroxide, sodium carbonate, and caustic soda.

一般に、排ガス中の金属水銀の量としては、ボイラの出口で約10μg/m・N程度であり、煙突では数μg/m・N程度である。そして、石炭焚き排ガス等のように対象となる排ガスによっては、既に塩化水素をある程度、例えば約10〜30ppm程度の濃度で含有しているものもある。よって、一定量の添加を行う場合には、これらの対象排ガスの相違による脱硝装置後の残留金属水銀濃度も異なってくるので、過剰量添加による弊害を除去することが困難である。本発明によれば、脱硫吸収塔による塩化水銀除去後の水銀濃度を測定して、添加すべき適正量の塩素化剤を供給するので、対象排ガスの種類や成分の変更があっても、過剰量を供給することがなく、システムへの悪影響を回避できる。また、一定量を常に加える場合に比べて、運転に際してのユーティリティーコストを可能な限り低く抑えることができる。具体的には、例えば燃料に石炭又は重油を使用した排ガスに添加される塩素化剤の濃度として、排ガスに対して10〜100ppm程度を一定量随時添加している場合、本発明の運転制御を行うことによって、その供給量を30〜50%程度の間で変化させて、確実な水銀除去が可能になる。これによって、塩素化剤添加量を50〜70%削減できるので、大幅なコストダウンに繋がる。 In general, the amount of metallic mercury in the exhaust gas is about 10 μg / m 3 · N at the outlet of the boiler, and about several μg / m 3 · N at the chimney. And depending on the target exhaust gas, such as coal-fired exhaust gas, hydrogen chloride is already contained to some extent, for example, at a concentration of about 10 to 30 ppm. Therefore, when a certain amount of addition is performed, the residual metal mercury concentration after the denitration apparatus due to the difference in these target exhaust gases also varies, so it is difficult to remove the harmful effects caused by the excessive amount addition. According to the present invention, the mercury concentration after removal of mercury chloride by the desulfurization absorption tower is measured, and an appropriate amount of chlorinating agent to be added is supplied. The quantity is not supplied and adverse effects on the system can be avoided. In addition, the utility cost during operation can be kept as low as possible compared to the case where a constant amount is always added. Specifically, for example, when a constant amount of about 10 to 100 ppm is added to the exhaust gas at any time as the concentration of the chlorinating agent added to the exhaust gas using coal or heavy oil as the fuel, the operation control of the present invention is performed. By performing, the supply amount is changed between about 30 to 50%, and the mercury removal can be surely performed. As a result, the amount of chlorinating agent added can be reduced by 50 to 70%, leading to a significant cost reduction.

参考となる形態(その1)
図5に、本参考となる形態に係る処理方法の用いるシステムの一例を示す。排ガス処理システムとしては、窒素酸化物、硫黄酸化物および水銀を含む排ガスに、塩素化剤供給装置から塩素化剤を添加し、還元脱硝装置の固体触媒下に脱硝処理を行って、湿式脱硫装置内のアルカリ吸収液にて脱硫を行うものであり、上記実施の形態(その1)の処理システムと同じであるが、塩素化剤添加の制御方法が異なる。本実施の形態では、脱硝装置入口、A/H入口、熱交換器入口、集塵器入口等いずれかの箇所(脱硫装置前段)で脱硫前水銀濃度Bを検出し、上記実施の形態(その1)と同様、塩素化剤流量及び排煙処理システムの除去率(各機器での除去率)から出口水銀濃度予測値を算出し、あらかじめ設定した基準出口水銀濃度(出口水銀濃度目標値)との偏差信号より、塩素化剤供給流量を制御する。出口水銀濃度予測値は、上記(1)式に基づいて算出する。ここで、集塵器出口濃度の測定結果に基づいて制御する場合、あらかじめ設定した排煙処理システムでの水銀除去率(ηHg,ηHgCl2)から、集塵器4での水銀除去率を差し引いて出口水銀濃度予測値を算出する。
Reference form (part 1)
FIG. 5 shows an example of a system used by the processing method according to this embodiment . As an exhaust gas treatment system, wet desulphurization equipment is used by adding a chlorinating agent from a chlorinating agent supply device to exhaust gas containing nitrogen oxides, sulfur oxides and mercury, and performing a denitration treatment under the solid catalyst of the reduction denitration device. The desulfurization is performed with the alkali absorbing liquid in the inside, which is the same as the processing system of the above-described embodiment (part 1), but the control method for adding the chlorinating agent is different. In the present embodiment, mercury concentration B before desulfurization is detected at any location (desulfurization device upstream) such as a denitration device inlet, an A / H inlet, a heat exchanger inlet, a dust collector inlet, etc. As in 1), calculate the outlet mercury concentration predicted value from the chlorinating agent flow rate and the removal rate of the flue gas treatment system (removal rate at each device), and set the preset reference outlet mercury concentration (outlet mercury concentration target value) and The chlorinating agent supply flow rate is controlled from the deviation signal. The predicted mercury concentration at the outlet is calculated based on the above equation (1). Here, when controlling based on the measurement result of the dust collector outlet concentration, the mercury removal rate in the dust collector 4 is subtracted from the mercury removal rate (η Hg , η HgCl 2 ) in the preset flue gas treatment system. Calculate the predicted mercury concentration at the outlet.

本形態のシステムでは、湿式脱硫装置の前段には上記のいずれかの検出箇所に水銀濃度計が備えられており、該水銀濃度計に接続された演算器15および調節器16からの流量調整信号Zを、塩素化剤供給装置に送る。これにより、適正量の塩素化剤を脱硝装置前流にて排ガスに添加できる。また、ボイラ負荷信号や集塵器、脱硫装置での運転信号を出口水銀濃度予測演算器15に入力することにより、ボイラ負荷変動や集塵機、脱硫装置の運転条件変動にも対応でき、出口水銀濃度の検出遅れによる負荷追従遅れを防止できる。 In the system of the present embodiment , a mercury concentration meter is provided at one of the above detection points in front of the wet desulfurization apparatus, and flow rate adjustment signals from the calculator 15 and the controller 16 connected to the mercury concentration meter. Z is sent to the chlorinating agent supply device. Thereby, an appropriate amount of chlorinating agent can be added to the exhaust gas upstream of the denitration apparatus. In addition, by inputting the boiler load signal and the operation signal from the dust collector and desulfurizer to the outlet mercury concentration prediction calculator 15, it is possible to cope with the boiler load fluctuation and the fluctuation of the operating conditions of the dust collector and desulfurizer, and the outlet mercury concentration. Load follow-up delay due to detection delay can be prevented.

参考となる形態(その2)
図6に、本参考となる形態に係る処理方法の用いるシステムの一例を示す。排ガス処理システムとしては、排ガスに塩素化剤供給装置から塩素化剤を添加し、還元脱硝装置の固体触媒下に脱硝処理を行って、湿式脱硫装置内のアルカリ吸収液にて脱硫を行うものであり、上記実施の形態(その1)の処理システムと同じである。本実施の形態では、上記実施の形態(その2)と同様に、脱硝装置入口、A/H入口、熱交換器入口、集塵機入口等いずれかの箇所(脱硫装置前段)で脱硫前水銀濃度Bを検出する。一方、脱硫装置出口(冷却塔がある場合、冷却塔出口でもよい)、湿式集塵機出口、再加熱器出口等いずれかの箇所で出口水銀濃度Aを検出する。
Reference form (part 2)
FIG. 6 shows an example of a system used by the processing method according to this embodiment. As an exhaust gas treatment system, a chlorinating agent is added to exhaust gas from a chlorinating agent supply device, denitration treatment is performed under the solid catalyst of the reduction denitration device, and desulfurization is performed with an alkaline absorbent in the wet desulfurization device. Yes, it is the same as the processing system of the above embodiment (part 1). In the present embodiment, as in the second embodiment (part 2), the mercury concentration B before desulfurization at any position (pre-desulfurization apparatus) such as the denitration apparatus inlet, A / H inlet, heat exchanger inlet, dust collector inlet, etc. Is detected. On the other hand, the outlet mercury concentration A is detected at any position such as a desulfurization apparatus outlet (or a cooling tower outlet if there is a cooling tower), a wet dust collector outlet, or a reheater outlet.

次いで演算器15において、ボイラ負荷や炭種により設定した基準入口水銀濃度と脱硫前水銀濃度との偏差信号、および、塩素化剤流量や排煙処理システムの除去率(各機器での除去率)から出口水銀濃度予測値を算出し、あらかじめ設定した基準出口水銀濃度(出口水銀濃度目標値)との偏差信号より、塩素化剤供給流量を調節器16を介して、塩素化剤供給装置にて制御する。また、ボイラ負荷信号や集塵機、脱硫装置での運転信号を水銀濃度予測演算器15に入力することにより、ボイラ負荷変動や集塵機、脱硫装置の運転条件変動にも対応でき、水銀濃度の検出遅れによる負荷追従遅れを防止できる。本発明における添加塩素化剤の調整効果を確認するため、以下の実験を行ったが、本発明はこれら実施例の記載によって何ら限定されるものではない。   Next, in the computing unit 15, the deviation signal between the reference inlet mercury concentration and the mercury concentration before desulfurization set according to the boiler load and the coal type, the chlorinating agent flow rate and the removal rate of the flue gas treatment system (removal rate at each device) From the deviation signal from the preset reference outlet mercury concentration (outlet mercury concentration target value), the chlorinating agent supply flow rate is adjusted by the chlorinating agent supply device via the regulator 16. Control. Moreover, by inputting the boiler load signal and the operation signal of the dust collector and desulfurizer to the mercury concentration prediction calculator 15, it is possible to cope with the fluctuation of the boiler load and the operating condition of the dust collector and desulfurizer, and due to the detection delay of the mercury concentration. Load follow-up delay can be prevented. In order to confirm the adjustment effect of the added chlorinating agent in the present invention, the following experiment was performed, but the present invention is not limited to the description of these examples.

実施例1
図2の試験装置を用いて、連続水銀計14のモニター結果に基づき、供給する塩化水素の量を調整する実験を行った。本実施例の試験装置では、添加する塩化水素の適量を調べるため、排ガス中に含まれる水銀濃度を可変させる必要から、脱硝触媒13の前段において水銀供給装置12を設けてある。試験条件としては、ガス量が280mN/h(w)、脱硝触媒SVが8000h−1、触媒温度が300〜360℃、水銀濃度が10〜100μg/mN、脱硫吸収塔温度が50℃であった。
Example 1
An experiment for adjusting the amount of hydrogen chloride to be supplied was performed based on the monitoring result of the continuous mercury meter 14 using the test apparatus of FIG. In the test apparatus of the present embodiment, the mercury supply apparatus 12 is provided in the preceding stage of the denitration catalyst 13 because it is necessary to vary the concentration of mercury contained in the exhaust gas in order to investigate the appropriate amount of hydrogen chloride to be added. As test conditions, the gas amount is 280 m 3 N / h (w), the denitration catalyst SV is 8000 h −1 , the catalyst temperature is 300 to 360 ° C., the mercury concentration is 10 to 100 μg / m 3 N, and the desulfurization absorption tower temperature is 50. ° C.

本実施例では、水銀供給装置12によって、排ガス中の入口水銀濃度を100μg/mNとし、一定時間経過後に30μg/mNに変化させ、次いで再び100μg/mNに戻した。塩素化剤である塩化水素3の供給量は、変化させずに、一定濃度である100ppmになるようにして運転した。出口水銀濃度の目標値は、一定の15μg/mNである。この間、連続水銀計14によって出口水銀濃度を測定した。実施の形態(その1)における図4に示すシステムを用いた場合の結果を、図3のグラフに示す。この結果から、出口水銀濃度の測定値は、入口水銀濃度の増減変化にしたがって、同様に変化していることが確認された。よって、出口水銀濃度は上記目標値を下回る場合があり、塩化水素の供給量が過剰である場合が存在した。このような塩素化剤の過剰供給を回避する添加濃度の経時変化を示せば、図3の点線のようになる。本実施例から、入口水銀濃度を把握して、添加する塩素化剤の量を調整することによって、目標とする出口水銀濃度を調整できることが明らかになった。また同様の条件にて、参考となる形態(その1)の図5に示すシステムを用いた場合の結果を図7に、参考となる形態(その2)の図6に示すシステムを用いた場合の結果を図8に示す。 In this embodiment, by mercury feeder 12, the inlet mercury concentration in the exhaust gas and 100 [mu] g / m 3 N, is changed to 30 [mu] g / m 3 N after a predetermined time has elapsed, then returned again to 100μg / m 3 N. The supply amount of hydrogen chloride 3 as a chlorinating agent was operated so as to be a constant concentration of 100 ppm without being changed. The target value for the outlet mercury concentration is a constant 15 μg / m 3 N. During this time, the outlet mercury concentration was measured by the continuous mercury meter 14. The result of using the system shown in FIG. 4 in the embodiment (part 1) is shown in the graph of FIG. From this result, it was confirmed that the measured value of the outlet mercury concentration changed in the same manner as the inlet mercury concentration increased or decreased. Therefore, the outlet mercury concentration may be lower than the target value, and there is a case where the supply amount of hydrogen chloride is excessive. If the change with time of the addition concentration that avoids such an excessive supply of the chlorinating agent is shown, it becomes as shown by a dotted line in FIG. From this example, it became clear that the target outlet mercury concentration can be adjusted by grasping the inlet mercury concentration and adjusting the amount of chlorinating agent to be added. In addition, under the same conditions, the results of using the system shown in FIG. 5 in the reference form (part 1) are shown in FIG. 7, and the system shown in FIG. 6 in the form of reference (part 2) is used. The results are shown in FIG.

1 ボイラ
2 脱硝装置
3 エアヒーター(A/H)
4 集じん器
5 熱交換器
6 脱硫吸収塔
7 湿式集じん器
8 再加熱器
9 煙突
10 塩素化剤供給弁
11 水銀濃度測定部
12 水銀供給装置
13 塩素化剤供給装置
14 連続水銀計
15 演算器
16 調節器
17 供給量調節器
1 boiler 2 denitration equipment 3 air heater (A / H)
DESCRIPTION OF SYMBOLS 4 Dust collector 5 Heat exchanger 6 Desulfurization absorption tower 7 Wet dust collector 8 Reheater 9 Chimney 10 Chlorination agent supply valve 11 Mercury concentration measuring part 12 Mercury supply device 13 Chlorination agent supply device 14 Continuous mercury meter 15 Calculation 16 adjuster 17 supply adjuster

Claims (4)

窒素酸化物、硫黄酸化物および水銀を含む排ガスを、塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う排ガス中の水銀処理方法であって、該湿式脱硫後の排ガスについて水銀濃度を測定して、該水銀濃度に基づいて還元脱硝処理前における入口水銀濃度の予測値を計算し、該予測値と基準入口水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整することを特徴とする排ガス中の水銀処理方法。   An exhaust gas containing nitrogen oxides, sulfur oxides and mercury is subjected to reductive denitration treatment in the presence of a solid catalyst after addition of a chlorinating agent, and then subjected to wet desulfurization with an alkali absorbing liquid. Measure the mercury concentration of the exhaust gas after desulfurization, calculate the predicted value of the inlet mercury concentration before the reductive denitration treatment based on the mercury concentration, and reduce the denitration treatment from the amount of change between the predicted value and the reference inlet mercury concentration A method for treating mercury in exhaust gas, characterized in that the supply amount of a chlorinating agent added in the preceding stage is adjusted. 窒素酸化物、硫黄酸化物および水銀を含む排ガスを、塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う排ガス中の水銀処理方法であって、該湿式脱硫前の排ガスについて水銀濃度を測定して、該水銀濃度に基づいて湿式脱硫後における出口水銀濃度の予測値を計算し、該予測値と基準出口水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整することを特徴とする排ガス中の水銀処理方法。   An exhaust gas containing nitrogen oxides, sulfur oxides and mercury is subjected to reductive denitration treatment in the presence of a solid catalyst after addition of a chlorinating agent, and then subjected to wet desulfurization with an alkali absorbing liquid. The mercury concentration is measured for the exhaust gas before desulfurization, and the predicted value of the outlet mercury concentration after wet desulfurization is calculated based on the mercury concentration. From the amount of change between the predicted value and the reference outlet mercury concentration, the reduction denitration treatment A method for treating mercury in exhaust gas, characterized in that the supply amount of a chlorinating agent added in the preceding stage is adjusted. 窒素酸化物、硫黄酸化物および水銀を含む排ガスを、塩素化剤添加後に固体触媒下、還元脱硝処理を行い、次いでアルカリ吸収液によって湿式脱硫を行う排ガス中の水銀処理方法であって、該湿式脱硫前および脱硫後の排ガスについて水銀濃度を測定して、該水銀濃度と基準水銀濃度との変化量から、還元脱硝処理の前段で添加する塩素化剤の供給量を調整することを特徴とする排ガス中の水銀処理方法。   An exhaust gas containing nitrogen oxides, sulfur oxides and mercury is subjected to reductive denitration treatment in the presence of a solid catalyst after addition of a chlorinating agent, and then subjected to wet desulfurization with an alkali absorbing liquid. The mercury concentration is measured for the exhaust gas before and after desulfurization, and the supply amount of the chlorinating agent to be added in the first stage of the reductive denitration treatment is adjusted from the amount of change between the mercury concentration and the reference mercury concentration. Mercury treatment method in exhaust gas. 窒素酸化物、硫黄酸化物および水銀を含む排ガスに、塩素化剤供給装置から塩素化剤を添加し、還元脱硝装置の固体触媒下に脱硝処理を行って、湿式脱硫装置内のアルカリ吸収液にて脱硫を行う排ガスの処理システムであって、該湿式脱硫装置の後段に水銀濃度計が備えられており、該水銀濃度計に接続された演算器および調節器からの流量調整信号を該塩素化剤供給装置に送ることを特徴とする排ガスの処理システム。   Add the chlorinating agent from the chlorinating agent supply device to the exhaust gas containing nitrogen oxides, sulfur oxides and mercury, perform denitration treatment under the solid catalyst of the reducing denitration device, and convert it into the alkaline absorbent in the wet desulfurization device An exhaust gas treatment system for performing desulfurization, wherein a mercury concentration meter is provided at a subsequent stage of the wet desulfurization device, and a flow rate adjustment signal from an arithmetic unit and a controller connected to the mercury concentration meter is chlorinated. An exhaust gas treatment system characterized by being sent to an agent supply device.
JP2009143177A 2009-06-16 2009-06-16 Method for treating mercury in tail gas, and treatment system for tail gas Pending JP2009208078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143177A JP2009208078A (en) 2009-06-16 2009-06-16 Method for treating mercury in tail gas, and treatment system for tail gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143177A JP2009208078A (en) 2009-06-16 2009-06-16 Method for treating mercury in tail gas, and treatment system for tail gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000008703A Division JP2001198434A (en) 2000-01-18 2000-01-18 Method for treating mercury in exhaust gas and treatment system of exhaust gas

Publications (1)

Publication Number Publication Date
JP2009208078A true JP2009208078A (en) 2009-09-17

Family

ID=41181746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143177A Pending JP2009208078A (en) 2009-06-16 2009-06-16 Method for treating mercury in tail gas, and treatment system for tail gas

Country Status (1)

Country Link
JP (1) JP2009208078A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973675B1 (en) 2010-02-19 2010-08-03 경일대학교산학협력단 Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
WO2011058906A1 (en) * 2009-11-16 2011-05-19 株式会社Ihi Device for removing mercury and method for removing mercury
WO2011142376A1 (en) * 2010-05-12 2011-11-17 バブコック日立株式会社 Emission gas processing system with carbon dioxide chemical absorption device
JP2012045521A (en) * 2010-08-30 2012-03-08 Babcock Hitachi Kk Exhaust gas treatment apparatus
CN103170236A (en) * 2013-03-01 2013-06-26 广东电网公司电力科学研究院 Intelligent demercuration addition agent adding system for coal-fired power plant
JP2018043169A (en) * 2016-09-12 2018-03-22 Jfeエンジニアリング株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
CN110513701A (en) * 2019-08-19 2019-11-29 上海南一环保科技有限公司 A kind of novel spraying device and SNCR denitration system for waste incinerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191526A (en) * 1988-10-11 1990-07-27 Nkk Corp Method for controlling mercury concentration in exhaust gas
JPH09308817A (en) * 1996-05-22 1997-12-02 Babcock Hitachi Kk Method for treating exhaust gas and apparatus therefor
JPH10230137A (en) * 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd Method and apparatus for treatment of exhaust gas
JPH11179147A (en) * 1997-12-22 1999-07-06 Mitsubishi Heavy Ind Ltd Flue gas treating method
JPH11347352A (en) * 1998-06-08 1999-12-21 Babcock Hitachi Kk Wet exhaust desulfurizing method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191526A (en) * 1988-10-11 1990-07-27 Nkk Corp Method for controlling mercury concentration in exhaust gas
JPH09308817A (en) * 1996-05-22 1997-12-02 Babcock Hitachi Kk Method for treating exhaust gas and apparatus therefor
JPH10230137A (en) * 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd Method and apparatus for treatment of exhaust gas
JPH11179147A (en) * 1997-12-22 1999-07-06 Mitsubishi Heavy Ind Ltd Flue gas treating method
JPH11347352A (en) * 1998-06-08 1999-12-21 Babcock Hitachi Kk Wet exhaust desulfurizing method and apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626220B2 (en) * 2009-11-16 2014-11-19 株式会社Ihi Mercury removal apparatus and mercury removal method
WO2011058906A1 (en) * 2009-11-16 2011-05-19 株式会社Ihi Device for removing mercury and method for removing mercury
US8449851B2 (en) 2009-11-16 2013-05-28 Ihi Corporation Mercury removing system and mercury removing method
KR100973675B1 (en) 2010-02-19 2010-08-03 경일대학교산학협력단 Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
WO2011142376A1 (en) * 2010-05-12 2011-11-17 バブコック日立株式会社 Emission gas processing system with carbon dioxide chemical absorption device
JP2011235247A (en) * 2010-05-12 2011-11-24 Babcock Hitachi Kk Exhaust gas treatment system including carbon dioxide chemical absorption facility and method
GB2498272A (en) * 2010-08-30 2013-07-10 Babcock Hitachi Kk Exhaust gas treatment device
WO2012029279A1 (en) * 2010-08-30 2012-03-08 バブコック日立株式会社 Exhaust gas treatment device
JP2012045521A (en) * 2010-08-30 2012-03-08 Babcock Hitachi Kk Exhaust gas treatment apparatus
GB2498272B (en) * 2010-08-30 2018-05-30 Mitsubishi Hitachi Power Sys Method for treating acidic exhaust gas containing mercury
CN103170236A (en) * 2013-03-01 2013-06-26 广东电网公司电力科学研究院 Intelligent demercuration addition agent adding system for coal-fired power plant
CN103170236B (en) * 2013-03-01 2015-04-22 广东电网公司电力科学研究院 Intelligent demercuration addition agent adding system for coal-fired power plant
JP2018043169A (en) * 2016-09-12 2018-03-22 Jfeエンジニアリング株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
CN110513701A (en) * 2019-08-19 2019-11-29 上海南一环保科技有限公司 A kind of novel spraying device and SNCR denitration system for waste incinerator
CN110513701B (en) * 2019-08-19 2021-04-16 上海南一环保科技有限公司 A novel spray set and SNCR deNOx systems for waste incinerator

Similar Documents

Publication Publication Date Title
US6913737B2 (en) Method for the treating in exhaust gas and exhaust gas treating system
US8703080B2 (en) Method for removing mercury in exhaust gas and system therefor
JP5198786B2 (en) Exhaust gas purification method and apparatus
JP4388542B2 (en) Mercury removal method and mercury removal system
JP4838579B2 (en) Mercury removal system and mercury removal method
JP5319934B2 (en) Exhaust gas treatment method and apparatus
EP0860197B1 (en) Process for treating exhaust gas and exhaust gas treating equipment
JP2009208078A (en) Method for treating mercury in tail gas, and treatment system for tail gas
US10247414B2 (en) Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method
JP5529701B2 (en) Gas analyzer, mercury removal system, and mercury removal method
US7501104B2 (en) Apparatus and method for treating discharge gas
JP5953342B2 (en) Sulphite control to reduce mercury re-emissions
JP2012073106A5 (en)
US20160158701A1 (en) Controlling aqcs parameters in a combustion process
WO2015013636A1 (en) Controlling aqcs parameters in a combustion process
JP2014057913A5 (en)
KR101699641B1 (en) Method and apparatus for treating exhaust gas
JP2016120438A (en) Wet-type desulfurization apparatus and wet-type desulfurization method
TW201339100A (en) Oxidation tank, seawater flue-gas desulfurization system and power generation system
EP1316352A1 (en) Method for treating mercury in exhaust gas and exhaust gas treating system
CA2729664A1 (en) Air pollution control apparatus and air pollution control system
JP4959650B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment system
JP5398193B2 (en) Exhaust gas treatment device, exhaust gas treatment system, and mercury oxidation performance management system in exhaust gas
JP5517460B2 (en) Denitration equipment
JP5419400B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121207