JPH0729023B2 - Wet exhaust gas desulfurization method - Google Patents

Wet exhaust gas desulfurization method

Info

Publication number
JPH0729023B2
JPH0729023B2 JP61047027A JP4702786A JPH0729023B2 JP H0729023 B2 JPH0729023 B2 JP H0729023B2 JP 61047027 A JP61047027 A JP 61047027A JP 4702786 A JP4702786 A JP 4702786A JP H0729023 B2 JPH0729023 B2 JP H0729023B2
Authority
JP
Japan
Prior art keywords
exhaust gas
absorbent
absorption tower
slurry
sox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61047027A
Other languages
Japanese (ja)
Other versions
JPS62204829A (en
Inventor
興和 石黒
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP61047027A priority Critical patent/JPH0729023B2/en
Publication of JPS62204829A publication Critical patent/JPS62204829A/en
Publication of JPH0729023B2 publication Critical patent/JPH0729023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿式排ガス脱硫方法に係り、特に負荷変化時の
ように、脱硫装置への入口排ガスの条件が変わった場合
にも、適切な対応が可能な湿式排ガス脱硫方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a wet exhaust gas desulfurization method and, in particular, when the conditions of the exhaust gas to the desulfurization device are changed, such as when the load changes, appropriate measures are taken. The present invention relates to a wet exhaust gas desulfurization method capable of

(従来の技術) 湿式排ガス脱硫方法としては、石灰石、石灰等を吸収剤
として用い、ボイラ等の排ガス中のSOxを吸収し、得ら
れた亜硫酸カルシウムを酸化して石膏を回収する方式が
現在広く採用されている。
(Prior Art) As a wet exhaust gas desulfurization method, a method of using limestone, lime, etc. as an absorbent, absorbing SOx in the exhaust gas of a boiler, etc., and oxidizing the obtained calcium sulfite to recover gypsum is currently widely used. Has been adopted.

湿式排ガス脱硫装置の系統を第4図に示す。The system of the wet exhaust gas desulfurization equipment is shown in FIG.

ボイラ等の排ガスは煙道1により除塵塔2に導入され除
塵塔循環ポンプ4により供給され、塔2の中に噴霧され
る循環液との気液接触により、飽和温度まで冷却される
とともに、排ガス中に含有されるダストが除去された
後、吸収塔7に送られる。なお、吸収塔7に送られるガ
ス中のミストを除去するために、ミストエリミネータ6
が設置される場合もある。
Exhaust gas from a boiler or the like is introduced into the dust removing tower 2 by the flue 1 and supplied by the dust removing tower circulation pump 4, and is cooled to the saturation temperature by gas-liquid contact with the circulating liquid sprayed into the tower 2 and the exhaust gas is discharged. After the dust contained therein is removed, it is sent to the absorption tower 7. In order to remove the mist in the gas sent to the absorption tower 7, the mist eliminator 6
May be installed.

吸収塔7で吸収塔循環ポンプ10から供給された循環吸収
液スラリがノズルにより吸収塔内に噴霧され、排ガスと
の気液接触により排ガス中のSOxが吸収、除去された
後、デミスタ8で同伴ミストが除去され、煙道9より排
出される。
In the absorption tower 7, the circulating absorption liquid slurry supplied from the absorption tower circulation pump 10 is sprayed into the absorption tower by the nozzle, and SOx in the exhaust gas is absorbed and removed by gas-liquid contact with the exhaust gas, and then entrained in the demister 8. The mist is removed and discharged from the flue 9.

吸収塔7には排ガス中のSOxを連続して吸収するに必要
なスラリがポンプ13により新たに補給される一方、吸収
塔ブリード(排出)ポンプ11により、SOxを吸収し生成
した亜硫酸カルシウムを含有するスラリの一部が抜き出
され、酸化塔(図示せず)において石膏となって回収さ
れる。
The absorption tower 7 is newly replenished with a slurry necessary for continuously absorbing SOx in the exhaust gas by the pump 13, while the absorption tower bleed (exhaust) pump 11 absorbs SOx and contains calcium sulfite produced. Part of the slurry is extracted and recovered as gypsum in an oxidation tower (not shown).

本発明の対象は以上に述べた系統のうちの吸収塔への吸
収剤スラリの供給量の制御方法および吸収塔スラリ循環
流量の制御方法に関するものであり、その従来技術の一
例を以下に示す。
The object of the present invention relates to a method of controlling the supply amount of the absorbent slurry to the absorption tower and a method of controlling the circulation flow rate of the absorption tower slurry in the system described above, and an example of the conventional technique thereof is shown below.

第5図は従来技術の一例を示したものであり、脱硫装置
に流入する排ガス流量と排ガス中のSOx濃度をそれぞれ
計器17と18により検出し、掛算器21によりSOx量を算出
し、これに係数器22で一定の比率を掛けて必要な吸収剤
スラリ補給流量を決定する制御方法である。したがっ
て、この制御方法では、吸収剤の過剰率は流入SOx量に
かかわらず一定である。なお、吸収塔へのスラリ循環流
量に関しては、流入SOx量にかかわらず一定流量の制御
を行なっている。
FIG. 5 shows an example of conventional technology, in which the flow rate of exhaust gas flowing into the desulfurization unit and the SOx concentration in the exhaust gas are detected by the meters 17 and 18, respectively, and the SOx amount is calculated by the multiplier 21. This is a control method for determining a required absorbent slurry replenishment flow rate by multiplying a constant ratio in the coefficient unit 22. Therefore, with this control method, the excess ratio of the absorbent is constant regardless of the inflow SOx amount. Regarding the slurry circulation flow rate to the absorption tower, a constant flow rate control is performed regardless of the inflow SOx amount.

(発明が解決しようとする問題点) 以上のような制御方法では、脱硫装置を高負荷運転から
低負荷運転に負荷を低下させて運転した場合、流入SOx
量の低下および流入SOx量の低下に起因する吸収塔スラ
リのpH値上昇により、脱硫性能が上昇する。このため、
低負荷運転時には、必要以上の吸収剤の消費および吸収
塔スラリ循環ポンプ動力の不必要な消費、またその結果
として吸収剤スラリから石膏を製造する際多量の硫酸を
消費することになり、運転コストが高くなるというよう
な欠点があった。このような従来技術の欠点に対して、
第6図に示すような、各負荷において吸収塔内吸収液ス
ラリのpHを一定にする補正回路を付加した制御方法が考
案された。この方法は、低負荷時の脱硫率を目標値に維
持するために、吸収液のpHがあらかじめ設定した値にな
るように、吸収液のpHを測定する測定計20の値とpH設定
器からのpH設定値38を調節計23に入力し、調節計23によ
り、吸収剤スラリの補給量を制御するものである。とこ
ろが、pHを一定に保って運転した場合には、低負荷時す
なわち流入SOx量が低下した場合には、吸収塔内の吸収
液中の吸収剤濃度が低下する。吸収塔のスラリ保有量
は、一般に吸収塔からのスラリ排出量(吸収剤供給量に
ほぼ等しい)に対して約20時間分であり、流入排ガス側
の負荷変化速度に対して、吸収剤濃度の変化にはおくれ
が生じ、これがpHの応答おくれの原因となる。
(Problems to be Solved by the Invention) In the control method as described above, when the desulfurization device is operated by reducing the load from high load operation to low load operation, the inflow SOx
The desulfurization performance increases due to the increase in the pH value of the absorption tower slurry caused by the decrease in the amount of SOx and the decrease in the amount of inflowing SOx. For this reason,
During low load operation, excessive consumption of absorbent and unnecessary consumption of absorption tower slurry circulation pump power, and as a result, a large amount of sulfuric acid is consumed when producing gypsum from the absorbent slurry, the operating cost There was a drawback that the cost was high. To such drawbacks of the prior art,
A control method as shown in FIG. 6 was devised in which a correction circuit was added to keep the pH of the absorbent slurry in the absorption tower constant at each load. This method, in order to maintain the desulfurization rate at low load at the target value, so that the pH of the absorption liquid becomes a preset value, from the value of the measuring instrument 20 that measures the pH of the absorption liquid and the pH setter. The pH set value 38 is input to the controller 23, and the controller 23 controls the supplement amount of the absorbent slurry. However, when operating at a constant pH, when the load is low, that is, when the amount of inflowing SOx decreases, the concentration of the absorbent in the absorption liquid in the absorption tower decreases. The amount of slurry held in the absorption tower is generally about 20 hours for the amount of slurry discharged from the absorption tower (which is almost equal to the amount of absorbent supplied), and There is a lag in the change, which causes a lag in the pH response.

したがって、この制御方法では、低負荷で安定したpH
値、吸収液スラリ性状で運転している状態から急に負荷
上昇を行なった場合、負荷上昇に対して液組成(吸収剤
濃度)の変化がおくれ、一時的にpHが低下して脱硫率の
低下を招くことになる。
Therefore, with this control method, stable pH at low load
Value, when the load is suddenly increased from the state of operating with the absorption liquid slurry property, the liquid composition (absorbent concentration) changes due to the increase in the load, and the pH is temporarily lowered to decrease the desulfurization rate. Will lead to a decline.

このため、特に負荷変化の多いボイラ等に設置される脱
硫装置においては安定した運転ができないというような
欠点があった。
Therefore, there is a drawback that a desulfurizer installed in a boiler or the like, which has a large load change, cannot perform stable operation.

本発明の目的は、上記した従来技術の欠点をなくし、ボ
イラ等の負荷変動に対する追従性がよく、かつ、吸収剤
および吸収塔スラリ循環ポンプ動力を低減できる湿式排
ガス脱硫方法を提供することにある。
It is an object of the present invention to provide a wet exhaust gas desulfurization method which eliminates the above-mentioned drawbacks of the prior art, has good followability to load fluctuations of a boiler and the like, and can reduce power of an absorbent and an absorption tower slurry circulation pump. .

(問題点を解決するための手段) 要するに本発明は、吸収剤スラリの補給量に対して、吸
収塔スラリのpH値を制御系に内蔵されたシミュレーショ
ンモデルにより予測しておき、この予測結果に基づい
て、吸収剤スラリの補給量を決定するとともに、脱硫率
が常に目標値に追従できるように吸収塔スラリ循環流量
(吸収塔内への吸収剤スラリ噴霧量に等しい)を決定す
るようにしたものである。すなわち、本発明は、硫黄酸
成分(SOx)を含有する排ガスを吸収塔に供給して、吸
収塔内を循環する吸収液と接触させ、排ガス中のSOxを
除去するに際し、吸収塔に供給される排ガス中のSOx量
に対応して、吸収塔内を循環する吸収液のpH値を制御す
るようにした湿式排ガス脱硫方法において、排ガス中の
SOx量、循環吸収液のpH値、吸収塔における脱硫率およ
び吸収塔への吸収剤補給量に基づき、下記(1)式およ
び(2)式を用いて今後の循環吸収液のpH値を予測し、
この予測pH値を用いて吸収塔への吸収剤の補給量を制御
することを特徴とする。
(Means for Solving Problems) In short, the present invention predicts the pH value of the absorption tower slurry by a simulation model built in the control system with respect to the replenishment amount of the absorbent slurry, and Based on this, the amount of absorbent slurry replenishment is determined, and the absorption tower slurry circulation flow rate (equal to the amount of absorbent slurry sprayed into the absorption tower) is also determined so that the desulfurization rate can always follow the target value. It is a thing. That is, the present invention, the exhaust gas containing a sulfur acid component (SOx) is supplied to the absorption tower, and contacted with the absorbent circulating in the absorption tower, in removing SOx in the exhaust gas, is supplied to the absorption tower In the wet exhaust gas desulfurization method in which the pH value of the absorption liquid circulating in the absorption tower is controlled according to the SOx amount in the exhaust gas,
Predict the future pH value of the circulating absorbent by using the following equations (1) and (2) based on the SOx amount, the pH value of the circulating absorbent, the desulfurization rate in the absorber, and the amount of absorbent replenished to the absorber. Then
It is characterized in that the predicted pH value is used to control the supply amount of the absorbent to the absorption tower.

ここに、 pH:吸収液スラリpH k:修正パラメータ α、β、a、b:定数 η:設定脱硫率 X:吸収塔内循環スラリの吸収剤濃度(wt%) Gg:排ガス流量(Nm3/h) X H2O:水分 C SOx:入口SOx濃度(ppm) 〔Ca++〕:カルシウムイオン濃度(gイオン/) Δt:タイムステップ G sl:吸収剤スラリ補給流量(kg/h) Xs:吸収塔に補給する吸収剤スラリ中の吸収剤濃度(wt
%) G H2O:補給水量(kg/h) X:Δt前の吸収塔内循環スラリの吸収剤スラリ濃度 (実施例) 本発明になる湿式排ガス脱硫方法の実施例を第1図およ
び第2図に示す。図において、10は吸収塔循環ポンプ、
15は吸収剤スラリ補給流量調整弁、17は排ガス流量計、
18は入口SOx濃度計、19は吸収剤スラリ補給流量計、20
は吸収塔スラリpH計、21は掛算器、23は調節計、24は電
気/空気変換器、25は脱硫率設定器、26は関数発生器、
27は減算器、28は加算器、29はpH予測演算器、30はpH予
測現在値信号、31はパラメータ修正信号、32はt分後の
pH予測演算信号、33はt分後のpH目標値演算器、34は出
口SOx濃度計、35は割算器、36は吸収塔スラリ循環流量
計、37は吸収塔スラリ循環流量演算器である。
Here, pH: Absorbent slurry pH k: Modified parameters α, β, a, b: Constant η: Set desulfurization rate X: Absorbent concentration in the circulating slurry in the absorption tower (wt%) Gg: Exhaust gas flow rate (Nm 3 / h) XH 2 O: Moisture C SOx: Inlet SOx concentration (ppm) [Ca ++ ]: Calcium ion concentration (g ion /) Δt: Time step G sl: Absorbent slurry replenishment flow rate (kg / h) Xs: Absorption Absorbent concentration in the absorbent slurry supplied to the tower (wt
%) GH 2 O: Make-up water amount (kg / h) X * : Absorbent slurry concentration in the circulation slurry in the absorption tower before Δt (Example) An example of the wet exhaust gas desulfurization method according to the present invention is shown in FIG. 1 and FIG. Shown in Figure 2. In the figure, 10 is an absorption tower circulation pump,
15 is an absorbent slurry replenishment flow rate control valve, 17 is an exhaust gas flow meter,
18 is the inlet SOx concentration meter, 19 is the absorbent slurry replenishment flow meter, 20
Is an absorption tower slurry pH meter, 21 is a multiplier, 23 is a controller, 24 is an electric / air converter, 25 is a desulfurization rate setting device, 26 is a function generator,
27 is a subtractor, 28 is an adder, 29 is a pH prediction calculator, 30 is a pH prediction current value signal, 31 is a parameter correction signal, and 32 is after t minutes.
pH prediction calculation signal, 33 is a pH target value calculator after t minutes, 34 is an outlet SOx concentration meter, 35 is a divider, 36 is an absorption tower slurry circulation flow meter, and 37 is an absorption tower slurry circulation flow rate calculator. .

湿式排ガス脱硫装置の制御方法は、吸収剤スラリの供給
量制御とスラリ循環流量の制御に分けられるが、前者に
対しては第1図に示したように、排ガス流量計17とSOx
濃度計の計測値を掛算器21aで掛算した値を関数発生器2
6aに入力し、ここにおいて、排ガス中のSOxの絶対量に
対してpHの設定値を設け、pH計20の実測値との偏差を関
数発生器26cで補正し、これに関数発生器26bで、排ガス
中のSOxの絶対量に対して吸収剤スラリの過剰率の設定
値を設けて加算器28aで加算する。さらに、排ガス流量
計17の信号、SOx濃度計18の信号、脱硫率設定器25の信
号および吸収剤スラリ補給流量計19の信号から、pH予測
演算器29により、t分後のpH予測演算信号32を求め、5
分後のpH目標値演算器33の信号との間の偏差を調節計23
aで補正した信号を上記加算器28aで加算する。この加算
器28aの出力信号は吸収剤スラリの過剰率であるので、
掛算器21bにおいてSOxの絶対量と掛け合わせて吸収剤ス
ラリ流量の設定信号とし、吸収剤スラリ補給流量計19と
の偏差を調節計23cで補正した信号により吸収剤スラリ
補給流量調整弁15を開閉することにより吸収塔への吸収
剤スラリの補給量を調節する。
The control method of the wet type exhaust gas desulfurization apparatus can be divided into the control of the supply amount of the absorbent slurry and the control of the slurry circulation flow rate. For the former, as shown in Fig. 1, the exhaust gas flow meter 17 and SOx
The value generated by multiplying the measurement value of the densitometer by the multiplier 21a is the function generator 2
6a, where the pH set value is set for the absolute amount of SOx in the exhaust gas, the deviation from the actual measurement value of the pH meter 20 is corrected by the function generator 26c, and this is corrected by the function generator 26b. The set value of the excess rate of the absorbent slurry is set with respect to the absolute amount of SOx in the exhaust gas and added by the adder 28a. Further, from the signal of the exhaust gas flow meter 17, the signal of the SOx concentration meter 18, the signal of the desulfurization rate setting device 25, and the signal of the absorbent slurry replenishment flow meter 19, the pH predictive operation device 29 uses the pH predictive operation signal after t minutes. Find 32, 5
The deviation from the signal from the pH target value calculator 33 after
The signals corrected by a are added by the adder 28a. Since the output signal of the adder 28a is the excess ratio of the absorbent slurry,
In the multiplier 21b, it is multiplied by the absolute amount of SOx to set the absorbent slurry flow rate setting signal, and the deviation from the absorbent slurry replenishment flow meter 19 is corrected by the controller 23c to open / close the absorbent slurry replenishment flow rate adjustment valve 15. By doing so, the supply amount of the absorbent slurry to the absorption tower is adjusted.

なお、pH予測演算器29では、吸収塔スラリpH計20の信号
とpH予測現在値信号30との偏差を調節計23bで補正して
パラメータ修正信号31をpH予測演算器29にフィードバッ
クして内蔵シミュレーションモデルの自動修正を行な
う。シミュレーションモデルの概略を以下に示す。
In the pH prediction calculator 29, the deviation between the signal of the absorption tower slurry pH meter 20 and the pH prediction current value signal 30 is corrected by the controller 23b, and the parameter correction signal 31 is fed back to the pH prediction calculator 29 to be incorporated therein. Automatically correct the simulation model. The outline of the simulation model is shown below.

ここに、pH:吸収液スラリpH、k:修正パラメータ、α、
β、a、b:定数、η:設定脱硫率、X:吸収塔内循環スラ
リの吸収剤濃度(約1wt%)、Gg:排ガス流量(Nm3/
h)、X H2O:水分、C SOx:入口SOx濃度(ppm)、〔C
a++〕:カルシウムイオン濃度(gイオン/)、Δt:
タイムステップ、G sl:吸収剤スラリ補給流量(kg/
h)、Xs:吸収塔に補給する吸収剤スラリ中の吸収剤濃度
(約20wt%)、G H2O:補給水量(kg/h)、X:Δt前
の吸収塔内循環スラリの吸収剤スラリ濃度 (1)、(2)式よりt分後のpHを予測演算する。
Here, pH: absorption slurry pH, k: correction parameter, α,
β, a, b: constant, η: set desulfurization rate, X: concentration of absorbent in circulating slurry in absorption tower (about 1 wt%), Gg: exhaust gas flow rate (Nm 3 /
h), XH 2 O: Moisture, C SOx: Inlet SOx concentration (ppm), [C
a ++ ]: calcium ion concentration (g ion /), Δt:
Time step, G sl: Absorbent slurry replenishment flow rate (kg /
h), Xs: Absorbent concentration in the absorbent slurry to be replenished to the absorption tower (about 20 wt%), GH 2 O: Make-up water amount (kg / h), X * : Absorbent of circulating slurry in the absorption tower before Δt Slurry concentration The pH after t minutes is predicted and calculated from the equations (1) and (2).

次にt分後のpH目標値演算器33では、SOx量の絶対値に
対して、pHの設定値を決めるので、SOx量をオンライン
計測データより線形予測することによりpH目標値を求め
る。
Next, the pH target value calculator 33 after t minutes determines the pH set value with respect to the absolute value of the SOx amount. Therefore, the pH target value is obtained by linearly predicting the SOx amount from the online measurement data.

吸収塔スラリ循環流量の制御に対しては、第2図に示し
たように、オンライン計算による脱硫率信号すなわち、
入口SOx濃度計18の測定値と出口SOx濃度計の測定値の差
を減算器27で求め、この値を18の測定値で割算した、割
算器35の出力信号と脱硫率設定器25の信号との偏差を調
節計23dで補正した信号に、SOx濃度計18、脱硫率設定器
25、吸収塔スラリpH計20および排ガス流量計17の信号よ
り吸収剤スラリ循環流量演算器37において吸収塔スラリ
循環流量デマンド(要求量)を演算し、この信号を加算
器28bで加算し、吸収塔スラリ循環流量計36の測定信号
との偏差を調節計23eにより補正して吸収塔循環ポンプ1
0の回転数制御または台数制御により脱硫率を測定値に
維持する。
For the control of the absorption tower slurry circulation flow rate, as shown in FIG.
The difference between the measured value of the inlet SOx concentration meter 18 and the measured value of the outlet SOx concentration meter was obtained by the subtractor 27, and this value was divided by the measured value of 18.The output signal of the divider 35 and the desulfurization rate setting device 25 The SOx concentration meter 18 and the desulfurization rate setting device are added to the signal whose deviation from the
25, the absorption tower slurry circulation flow rate demand (request amount) is calculated in the absorbent slurry circulation flow rate calculator 37 from the signals of the absorption tower slurry pH meter 20 and the exhaust gas flow meter 17, and this signal is added by the adder 28b and absorbed. Absorption tower circulation pump 1 after correcting the deviation from the measurement signal of tower slurry circulation flow meter 36 by controller 23e
The desulfurization rate is maintained at the measured value by controlling the number of revolutions or the number of units at 0.

なお、吸収塔スラリ循環流量演算器37では以下のように
流量デマンドを計算する。
The absorption tower slurry circulation flow rate calculator 37 calculates the flow rate demand as follows.

η=1−BTU・EXP(−RTU1・RTU2・RTU3・RTU4) ……
(1) RUT1=f(pH)、RTU2=f(Gg)、 RTU3=f(C SOx)、RTU4=f(L/G) ……(2) ここに、η:脱硫率、BTU:定数、pH:吸収塔スラリpH、G
g:排ガス流量量、C SOx:入口排ガスSOx濃度、L/G:液ガ
ス比(循環スラリ量/排ガス量)であり、BTUは次式よ
り求める。
η = 1-BTU / EXP (-RTU1 / RTU2 / RTU3 / RTU4)
(1) RUT1 = f (pH), RTU2 = f (Gg), RTU3 = f (C SOx), RTU4 = f (L / G) (2) where η: desulfurization rate, BTU: constant, pH: Absorption tower slurry pH, G
g: exhaust gas flow rate, C SOx: inlet exhaust gas SOx concentration, L / G: liquid gas ratio (circulation slurry amount / exhaust gas amount), and BTU is calculated from the following formula.

BTU=−loge(1−ηo) ηoは基準脱硫率であり、いまηoを0.9とすると、BTU
≒2.30となる。また、RTU1、RTU2、RTU3、RTU4の値は第
3図に示す関係図より求める。
BTU = -loge (1-ηo) ηo is the standard desulfurization rate. If ηo is 0.9, then BTU
≒ 2.30. The values of RTU1, RTU2, RTU3, and RTU4 are obtained from the relationship diagram shown in FIG.

(1)、(2)式の関係よりオンライン計測データを用
いて、吸収塔スラリ循環流量デマンドLを計算する。
The absorption tower slurry circulation flow rate demand L is calculated using the online measurement data from the relationships of the equations (1) and (2).

(発明の効果)) 以上のように、本発明では吸収剤スラリ補給流量の制御
にシミュレーションモデルによるpH予測制御、吸収塔ス
ラリ循環流量の制御に脱硫率制御を採用しているので、
pHの応答性を改善して、pHを早く適正な設定値に追従さ
せることができること、また吸収塔スラリ循環流量によ
る脱硫率制御は応答が早く、負荷変化時においても、脱
硫率はほぼ設定値に維持できるので、ユーティリティコ
ストすなわち、吸収剤消費量および吸収塔スラリ循環ポ
ンプの動力コストを低減することができる。
(Effects of the Invention) As described above, in the present invention, the pH prediction control by the simulation model is used for the control of the absorbent slurry replenishment flow rate, and the desulfurization rate control is used for the control of the absorption tower slurry circulation flow rate.
The pH responsiveness can be improved and the pH can be quickly tracked to an appropriate set value.The desulfurization rate control by the circulation flow rate of the absorption tower slurry has a quick response, and the desulfurization rate is almost the set value even when the load changes. Therefore, the utility cost, that is, the absorbent consumption amount and the power cost of the absorption tower slurry circulation pump can be reduced.

本発明によれば、負荷変化時を含めたすべての運転条件
において、脱硫率をほぼ目標脱硫率に維持できるので、
負荷応答性が向上し、安定した運転を確保できる。
According to the present invention, the desulfurization rate can be maintained almost at the target desulfurization rate in all operating conditions including the time of load change.
The load response is improved and stable operation can be secured.

通常の脱硫装置においては、吸収剤の消費コストと吸収
塔循環ポンプ動力コストはほぼ等しいが、スラリ循環流
量を加減して脱硫率一定制御を実施した場合、一日の負
荷パターンは第7図のようになっており、また25%負荷
ではポンプ動力は100%負荷時の1/2程度であるので、循
環ポンプ動力の低減割合は、 となる。
In a normal desulfurizer, the consumption cost of the absorbent and the power cost of the absorption tower circulation pump are almost equal, but when the desulfurization rate constant control is performed by adjusting the slurry circulation flow rate, the daily load pattern is shown in Fig. 7. Since the pump power at 25% load is about half that at 100% load, the reduction rate of circulating pump power is Becomes

一方、pHの予測制御により石灰石の過剰率を1.05から1.
02に切り下げることが可能であり、よって、 の低減ができる。
On the other hand, the excess control of limestone from 1.05 to 1.
It is possible to round down to 02, so Can be reduced.

したがって、ポンプ動力コストの低減効果のほうが大き
いので、低負荷時のpHの設定値を高めにして、pH予測制
御により、この最適pH値を負荷変化時にも、いち早く達
成することにより、トータルユーティリティコストを低
減することができる。
Therefore, since the effect of reducing the pump power cost is greater, the pH set value at low load is increased and the pH predictive control is used to quickly achieve this optimum pH value even when the load changes. Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明になる湿式排ガス脱硫方法における吸
収剤スラリの補給量制御を示す図、第2図は、本発明に
なる吸収塔における吸収液循環量制御を示す図面、第3
図は、第2図の実施例において循環流量を決定する因子
の関係図、第4図は、従来の湿式脱硫装置の系統図、第
5図および第6図は、従来技術になる吸収剤スラリ補給
量の制御系図、第7図は、本発明を実施した場合におけ
る脱硫装置の負荷変化を示す図である。 7……吸収塔、10……吸収液循環ポンプ、15……吸収剤
スラリ補給流量調整弁、17……排ガス流量計、18……排
ガス入口SOx濃度計、19……吸収剤スラリ補給流量計、2
0……吸収塔スラリpH計、21a、21b……掛算器、23a、23
b、23c、23d、23e……調節計、25……脱硫率設定器、26
a、26b、26c……関数発生器、27……減算器、28a、28b
……加算器、29……pH予測演算器、30……pH予測現在値
信号、32……t分後のpH予測演算信号、33……t分後の
pH目標値演算器、34……排ガス出口SOx濃度計、35……
割算器、36……吸収塔スラリ循環流量計、37……吸収塔
スラリ循環流量演算器。
FIG. 1 is a diagram showing the replenishment amount control of the absorbent slurry in the wet exhaust gas desulfurization method according to the present invention, and FIG. 2 is a drawing showing the absorption liquid circulation amount control in the absorption tower according to the present invention.
FIG. 4 is a relational diagram of factors that determine the circulation flow rate in the embodiment of FIG. 2, FIG. 4 is a system diagram of a conventional wet desulfurization apparatus, and FIGS. 5 and 6 are absorbent slurry of a conventional technique. FIG. 7 is a control system diagram of the replenishment amount, and is a diagram showing a load change of the desulfurization apparatus when the present invention is implemented. 7 ... Absorption tower, 10 ... Absorption liquid circulation pump, 15 ... Absorbent slurry replenishment flow rate adjustment valve, 17 ... Exhaust gas flow meter, 18 ... Exhaust gas inlet SOx concentration meter, 19 ... Absorber slurry replenishment flow meter , 2
0 …… Absorption tower slurry pH meter, 21a, 21b …… Multiplier, 23a, 23
b, 23c, 23d, 23e ... Controller, 25 ... Desulfurization rate setting device, 26
a, 26b, 26c ... Function generator, 27 ... Subtractor, 28a, 28b
…… Adder, 29 …… pH prediction calculator, 30 …… pH prediction current value signal, 32 …… pH prediction calculation signal after t minutes, 33 …… pH minutes after calculation
pH target value calculator, 34 ... Exhaust gas outlet SOx concentration meter, 35 ...
Divider, 36 ... Absorption tower slurry circulation flow meter, 37 ... Absorption tower slurry circulation flow calculator.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01D 53/34 ZAB

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】硫黄酸成分(SOx)を含有する排ガスを吸
収塔に供給して、吸収塔内を循環する吸収液と接触さ
せ、排ガス中のSOxを除去するに際し、吸収塔に供給さ
れる排ガス中のSOx量に対応して、吸収塔内を循環する
吸収液のpH値を制御するようにした湿式排ガス脱硫方法
において、排ガス中のSOx量、循環吸収液のpH値、吸収
塔における脱硫率および吸収塔への吸収剤補給量に基づ
き、下記(1)式および(2)式を用いて今後の循環吸
収液のpH値を予測し、この予測pH値を用いて吸収塔への
吸収剤の補給量を制御することを特徴とする湿式排ガス
脱硫方法。 ここに、 pH:吸収液スラリpH k:修正パラメータ α、β、a、b:定数 η:設定脱硫率 X:吸収塔内循環スラリの吸収剤濃度(wt%) Gg:排ガス流量(Nm3/h) X H2O:水分 C SOx:入口SOx濃度(ppm) 〔Ca++〕:カルシウムイオン濃度(gイオン/) Δt:タイムステップ G sl:吸収剤スラリ補給流量(kg/h) Xs:吸収塔に補給する吸収剤スラリ中の吸収剤濃度(wt
%) G H2O:補給水量(kg/h) X:Δt前の吸収塔内循環スラリの吸収剤スラリ濃度
1. An exhaust gas containing a sulfuric acid component (SOx) is supplied to an absorption tower and brought into contact with an absorption liquid circulating in the absorption tower to be supplied to the absorption tower when SOx in the exhaust gas is removed. In a wet exhaust gas desulfurization method in which the pH value of the absorption liquid circulating in the absorption tower is controlled according to the SOx amount in the exhaust gas, the SOx amount in the exhaust gas, the pH value of the circulating absorption liquid, the desulfurization in the absorption tower Based on the rate and the amount of absorbent replenished to the absorption tower, the future pH value of the circulating absorption liquid is predicted using the following formulas (1) and (2), and the absorption to the absorption tower is performed using this predicted pH value. A wet exhaust gas desulfurization method characterized by controlling the supply amount of a chemical agent. Here, pH: Absorbent slurry pH k: Modified parameters α, β, a, b: Constant η: Set desulfurization rate X: Absorbent concentration in the circulating slurry in the absorption tower (wt%) Gg: Exhaust gas flow rate (Nm 3 / h) XH 2 O: Moisture C SOx: Inlet SOx concentration (ppm) [Ca ++ ]: Calcium ion concentration (g ion /) Δt: Time step G sl: Absorbent slurry replenishment flow rate (kg / h) Xs: Absorption Absorbent concentration in the absorbent slurry supplied to the tower (wt
%) GH 2 O: Make-up water amount (kg / h) X * : Absorbent slurry concentration in the circulating slurry in the absorption tower before Δt
【請求項2】特許請求の範囲第1項記載の湿式排ガス脱
硫方法において、吸収塔における脱硫率の現在値と脱硫
率設定器よりの設定値との偏差値を求め、この偏差値と
さらに、入口排ガス量およびその排ガス中のSOx濃度と
循環吸収液流量とその吸収液のpH値とに基づいて、今後
の循環吸収液流量を制御することを特徴とする湿式排ガ
ス脱硫方法。
2. The wet exhaust gas desulfurization method according to claim 1, wherein a deviation value between the present value of the desulfurization rate in the absorption tower and the setting value from the desulfurization rate setting device is calculated, and the deviation value and further, A wet exhaust gas desulfurization method characterized in that the flow rate of the circulating absorbent in the future is controlled based on the amount of the exhaust gas at the inlet, the SOx concentration in the exhaust gas, the flow rate of the circulating absorbent and the pH value of the absorbent.
JP61047027A 1986-03-04 1986-03-04 Wet exhaust gas desulfurization method Expired - Fee Related JPH0729023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047027A JPH0729023B2 (en) 1986-03-04 1986-03-04 Wet exhaust gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047027A JPH0729023B2 (en) 1986-03-04 1986-03-04 Wet exhaust gas desulfurization method

Publications (2)

Publication Number Publication Date
JPS62204829A JPS62204829A (en) 1987-09-09
JPH0729023B2 true JPH0729023B2 (en) 1995-04-05

Family

ID=12763692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047027A Expired - Fee Related JPH0729023B2 (en) 1986-03-04 1986-03-04 Wet exhaust gas desulfurization method

Country Status (1)

Country Link
JP (1) JPH0729023B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268320B2 (en) * 2007-10-15 2013-08-21 中国電力株式会社 Method for suppressing unreacted surplus slurry in exhaust gas desulfurization unit
CN114911279A (en) * 2021-02-08 2022-08-16 中国石油化工股份有限公司 Storage, distillation device tower top pH value regulation and control method, device and equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523810A (en) * 1991-07-24 1993-02-02 Kawasaki Steel Corp Method for deciding cutting position in cast slab

Also Published As

Publication number Publication date
JPS62204829A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US4836991A (en) Method for controlling wet-process flue gas desulfurization
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPH0729023B2 (en) Wet exhaust gas desulfurization method
JP2529244B2 (en) Absorption liquid circulation controller for wet flue gas desulfurization equipment
JP3091247B2 (en) Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit
JP2845975B2 (en) Air supply control unit for oxidation of wet flue gas desulfurization unit
JPS60110321A (en) Control of exhaust gas desulfurizing plant
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JP2565686B2 (en) Absorption liquid circulation flow controller for wet flue gas desulfurization equipment
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JP2984933B2 (en) Method and apparatus for controlling wet flue gas desulfurization
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JP2690754B2 (en) Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment
JP3651918B2 (en) Control method of wet flue gas desulfurization equipment
JP2798973B2 (en) Exhaust gas desulfurization equipment
JPH0417691B2 (en)
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPS58112025A (en) Controlling method of waste gas desulfurizing apparatus
JPH06319941A (en) Apparatus and method for controlling flue gas desulfurization in wet process
JP3009190B2 (en) Control method and control device for wet exhaust gas desulfurization device
JP2510583B2 (en) Exhaust gas treatment device
JPH0573452B2 (en)
JP2765868B2 (en) Alkali agent supply control device for wet flue gas desulfurization unit
JPH0899015A (en) Apparatus for controlling amount of feeding of absorbent for wet type flue gas desulfurization facility

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees