JP3091247B2 - Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit - Google Patents

Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit

Info

Publication number
JP3091247B2
JP3091247B2 JP03054925A JP5492591A JP3091247B2 JP 3091247 B2 JP3091247 B2 JP 3091247B2 JP 03054925 A JP03054925 A JP 03054925A JP 5492591 A JP5492591 A JP 5492591A JP 3091247 B2 JP3091247 B2 JP 3091247B2
Authority
JP
Japan
Prior art keywords
absorption tower
flow rate
value
exhaust gas
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03054925A
Other languages
Japanese (ja)
Other versions
JPH04290522A (en
Inventor
興和 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP03054925A priority Critical patent/JP3091247B2/en
Publication of JPH04290522A publication Critical patent/JPH04290522A/en
Application granted granted Critical
Publication of JP3091247B2 publication Critical patent/JP3091247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は湿式排ガス脱硫装置の吸
収塔への吸収液循環流量制御方法および制御装置に係
り、特に吸収塔循環流量を適切に制御して、低負荷時の
吸収塔循環ポンプ動力を低減するに好適な湿式排ガス脱
硫装置の吸収塔への吸収液循環流量制御方法および制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a control apparatus for controlling the flow rate of circulating an absorbent to an absorption tower of a wet exhaust gas desulfurization apparatus. The present invention relates to a method and apparatus for controlling the flow rate of circulating an absorbent to an absorption tower of a wet exhaust gas desulfurization apparatus suitable for reducing pump power.

【0002】[0002]

【従来の技術】湿式排煙脱硫装置は図6に示されるよう
に、入口排ガス22を吸収塔26において、吸収液循環
ライン24より供給される吸収液と気液接触させ、排ガ
ス中のSO2 は吸収液中に亜硫酸塩の形で固定され、排
ガスは排出ライン23を通って煙突から排出される。S
2 を吸収した吸収液は、塔部から循環タンク27に流
下する。循環タンク27には吸収剤スラリ流量調整弁2
8を通して吸収剤が供給され、SO2 の吸収性能を回復
した液は吸収塔循環ポンプ18により吸収塔26へ供給
される。循環液の一部は抜出しライン25を通って排出
され、後工程において、吸収液中の亜硫酸塩は酸化さ
れ、石こうとして回収される。
2. Description of the Related Art As shown in FIG. 6, in a wet flue gas desulfurization apparatus, an inlet exhaust gas 22 is brought into gas-liquid contact with an absorbing liquid supplied from an absorbing liquid circulating line 24 in an absorbing tower 26, and SO 2 in the exhaust gas is discharged. Is fixed in the form of sulfite in the absorbing solution, and the exhaust gas is discharged from the chimney through the discharge line 23. S
The absorbing liquid having absorbed O 2 flows down from the tower to the circulation tank 27. The circulation tank 27 has an absorbent slurry flow control valve 2
Absorbent is supplied through 8, and the liquid having recovered the absorption performance of SO 2 is supplied to the absorption tower 26 by the absorption tower circulation pump 18. Part of the circulating liquid is discharged through the withdrawal line 25, and in a later step, the sulfite in the absorbing liquid is oxidized and recovered as gypsum.

【0003】この種の湿式排煙脱硫装置の制御方式とし
て関連するものには、例えば特開昭60−110320
号公報が挙げられる。この制御方式では、吸収塔に流入
する排ガスの負荷量に対応してシミュレーションモデル
30により吸収塔26を循環する吸収液の最適pH値信
号31および吸収塔循環ポンプ18の最適稼動台数信号
32を設定し、負荷安定時には、最適稼動台数から1を
減じた台数を設定し、前述の最適pH値に一定の増加分
を加えてこれをpHの設定値とし、シミュレーションモ
デル30により、脱硫率が目標値を満足している場合に
限って、この変更した設定値に基づいて吸収剤供給量お
よびポンプ台数を制御している。
[0003] As a control method of this type of wet flue gas desulfurization apparatus, for example, Japanese Patent Application Laid-Open No. Sho 60-110320 is disclosed.
Publication. In this control method, an optimal pH value signal 31 of the absorbing liquid circulating through the absorption tower 26 and an optimal operating number signal 32 of the absorption tower circulating pump 18 are set by the simulation model 30 in accordance with the load of the exhaust gas flowing into the absorption tower. Then, when the load is stable, a number obtained by subtracting 1 from the optimum operation number is set, and a certain increment is added to the above-mentioned optimum pH value to obtain a set value of the pH. Only when the condition (1) is satisfied, the supply amount of the absorbent and the number of pumps are controlled based on the changed set value.

【0004】しかしながら、この制御方式では、シミュ
レーションモデルが実機の挙動を精度良く再現できるこ
とが必要不可欠である。脱硫装置においては、脱硫性能
が、排ガス流量、入口SO2 濃度、吸収液pHおよび液
−ガス比により支配されるが、同一のpHでも、吸収液
中の酸化状態すなわち、亜硫酸塩(例えば、CaS
3 )の濃度により脱硫性能が異なる。
However, in this control method, the simulation
That the simulation model can accurately reproduce the behavior of the actual machine.
And is essential. In desulfurization equipment, desulfurization performance
Is the exhaust gas flow rate, the inlet SOTwoConcentration, absorption solution pH and solution
-Governed by the gas ratio, but at the same pH,
Oxidation state, ie, sulfites (eg, CaS
O ThreeThe desulfurization performance differs depending on the concentration of ()).

【0005】図7に酸化状態と脱硫性能の関係を示す。
図から明らかなように、運転条件の変化に伴う脱硫率の
変化をシミュレーションモデルにより正確に予測できる
ためには、酸化状態すなわち、亜硫酸塩の濃度が必要と
なり、これはオンラインでは計測できないので、亜硫酸
塩の酸化速度の不確かさを考慮すると、手分析値による
データの修正が必要であり、運転操作上繁雑であるこ
と、またこのデータ修正作業には、オペレータが介入す
るので、人為的なミスが発生する可能性がある等という
点については配慮されていなかった。
FIG. 7 shows the relationship between the oxidation state and the desulfurization performance.
As is clear from the figure, in order to accurately predict the change in the desulfurization rate due to the change in operating conditions by a simulation model, the oxidation state, that is, the concentration of sulfite, is required. In consideration of the uncertainty of the salt oxidation rate, it is necessary to correct the data by manual analysis, which is complicated in driving operation. No consideration was given to the possibility of occurrence.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は吸収塔
循環ポンプの最適稼動台数をシミュレーションモデルに
よって決定しているが、シミュレーションモデルの精度
という点について配慮がされておらず、精度が低下する
と必要な脱硫率を維持できないこと、また、運転状態が
極端に変化した場合には、吸収液組成の手分析値により
シミュレーションモデルの係数等を修正する必要があ
り、オペレータへの負担が大きくなる等というような問
題があった。
In the above-mentioned prior art, the optimal number of operating absorber circulation pumps is determined by a simulation model. However, no consideration is given to the accuracy of the simulation model. If the desulfurization rate cannot be maintained, and if the operating condition changes drastically, it is necessary to correct the coefficients of the simulation model based on the manually analyzed values of the composition of the absorbing solution, thereby increasing the burden on the operator. There was such a problem.

【0007】本発明の目的は、オンラインで計測できる
情報のみを用いて、脱硫率を目標値近傍に維持できる制
御装置を提供することにある。
An object of the present invention is to provide a control device capable of maintaining a desulfurization rate near a target value using only information that can be measured online.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、酸化硫黄(SOx)を含有する排
ガスを吸収塔に導入し、アルカリ性吸収液と接触させて
SOxを除去する湿式排ガス脱硫装置の吸収塔への吸収
液循環流量制御方法において、吸収塔へ導入されるSO
x総量と吸収液pH値、脱硫率設定値に基づいて吸収塔
循環流量デマンド先行値を求め、吸収塔の入口と出口の
SOx濃度測定値より求めた脱硫率と脱硫率設定値との
間の偏差値およびこの偏差値の変化率に対応して自己調
整型ファジィ推論により循環流量補正量を求め、この補
正量を前記吸収塔循環流量デマンド先行値に加算した全
体流量デマンドに基づき吸収塔循環ポンプ台数を制御す
ることを特徴とする湿式排ガス脱硫装置の吸収塔への吸
収液循環流量制御方法に関する。
According to a first aspect of the present invention, an exhaust gas containing sulfur oxide (SOx) is introduced into an absorption tower, and is contacted with an alkaline absorbing solution to remove SOx. In the method for controlling the flow rate of circulating an absorbent to an absorption tower of a wet exhaust gas desulfurization apparatus, the SO introduced into the absorption tower is controlled.
x Calculate the leading value of the circulation flow rate demand based on the total amount and the pH value of the absorbent and the set value of the desulfurization rate, and determine the value between the desulfurization rate and the set value of the desulfurization rate determined from the measured SOx concentration values at the inlet and outlet of the absorber. A circulating flow correction amount is obtained by a self-adjustment type fuzzy inference corresponding to the deviation value and the rate of change of the deviation value, and the correction amount is added to the preceding value of the circulating flow demand prior to the absorption tower circulating pump. The present invention relates to a method for controlling a flow rate of circulating an absorbent to an absorption tower of a wet exhaust gas desulfurization apparatus, characterized in that the number is controlled.

【0009】第2の発明は、前記第1の発明において、
SOxがSO2 であり、かつ吸収塔導入されるSOx総
量を排ガス流量と吸収塔入口排ガスのSO2 濃度より求
めることを特徴とする湿式排ガス脱硫装置の吸収塔への
吸収液循環流量制御方法に関する。第3の発明は、SO
2 などの硫黄酸化物を含有する排ガスを吸収塔に導入し
てアルカリ性吸収液と接触させて硫黄酸化物を吸収除去
する湿式排ガス脱硫装置の吸収塔への吸収液循環流量制
御装置において、排ガス流量、吸収塔への入口排ガスS
2 濃度、吸収塔への吸収液pH値、脱硫率設定値に基
づき吸収塔への吸収液循環流量デマンド先行値を演算す
る流量デマンド先行値演算器と、排ガスの吸収塔入口、
出口のSO2 濃度測定値より脱硫率を演算する装置と、
演算された脱硫率と脱硫率設定値との偏差およびその偏
差の変化率に基づき制御ルールを自己調整できるファジ
ィ推論を用いて吸収塔循環流量のデマンド補正信号を演
算するファジィ制御器と、上記流量デマンド先行値演算
器の出力値とファジィ制御器の出力値に基づき吸収塔循
環流量を決定する装置とを設けたことを特徴とする湿式
排ガス脱硫装置の吸収塔への吸収液循環流量制御装置に
関する。
In a second aspect, in the first aspect,
SOx is SO 2, and the SOx amount introduced absorption tower relates to an absorbent liquid circulating flow control method to the absorption tower of a wet flue gas desulfurization apparatus characterized by determining from the SO 2 concentration in the absorption tower inlet gas and the exhaust gas flow rate . The third invention is an SO
Exhaust gas containing sulfur oxides such as 2 is introduced into the absorption tower and brought into contact with an alkaline absorbing solution to absorb and remove the sulfur oxides. , Exhaust gas S at the inlet to the absorption tower
O 2 concentration, the absorption solution pH value to the absorption tower, and flow demand prior value calculator for calculating an absorption liquid circulation flow rate demand preceding value of the absorption tower based on the desulfurization ratio setting value, the absorption tower inlet of the exhaust gas,
A device for calculating the desulfurization rate from the measured SO 2 concentration at the outlet,
A deviation between the calculated desulfurization rate and the desulfurization rate set value and a fuzzy controller that calculates a demand correction signal of the absorption tower circulation flow rate using fuzzy inference that can self-adjust the control rule based on the change rate of the deviation; A device for determining a circulation flow rate of an absorber based on an output value of a demand leading value calculator and an output value of a fuzzy controller is provided. .

【0010】[0010]

【作用】オンライン計測量に基づいた吸収塔循環流量デ
マンド先行値は、脱硫率を目標値に維持するためのベー
スとなる流量デマンドを運転状態の変化に対応して変化
させるように動作する。このベースとなる吸収塔循環流
量で運用すると、脱硫率と脱硫率設定値との間に偏差が
発生する。
The leading value of the demand for the circulation flow rate of the absorption tower based on the on-line measured quantity is operated so as to change the flow rate demand, which is the base for maintaining the desulfurization rate at the target value, in accordance with the change of the operation state. If the system is operated with the circulation flow rate of the absorption tower serving as the base, a deviation occurs between the desulfurization rate and the desulfurization rate set value.

【0011】この偏差および偏差の変化率に基づいて、
自己調整型のファジィ推論、すなわち、実時間で制御応
答を評価し、この評価に基づいて制御ルールを自動修正
してゆくファジィ推論によるフィードバック補正量分だ
け吸収塔循環流量を変えてやれば、偏差が減少していく
ので、脱硫率が目標値からはずれることがない。
Based on the deviation and the rate of change of the deviation,
Self-adjusting fuzzy inference, that is, the control response is evaluated in real time, and the control rule is automatically corrected based on this evaluation. , The desulfurization rate does not deviate from the target value.

【0012】[0012]

【実施例】本発明になる湿式排煙脱硫装置の吸収塔循環
流量制御方法の具体的実施例を図1に示す。図におい
て、6は流量デマンド先行値演算器であり、排ガス流量
計1、pH計2、入口SO2 濃度計3、脱硫率設定器4
のそれぞれの出力信号を用いて以下の演算を実施する。
脱硫率ηを次式で表現する。
FIG. 1 shows a specific embodiment of the method for controlling the circulation flow rate of an absorption tower of a wet flue gas desulfurization apparatus according to the present invention. In the figure, reference numeral 6 denotes a flow rate demand leading value calculator, which is an exhaust gas flow meter 1, a pH meter 2, an inlet SO 2 concentration meter 3, and a desulfurization rate setting device 4.
The following calculation is performed using the respective output signals of.
The desulfurization rate η is expressed by the following equation.

【数1】 (Equation 1)

【数2】 (Equation 2)

【0013】ここに、BTU:定数、pH:pH値、S
2 :入口SO2 濃度、L/G:液ガス比、f1
2 、f3 :関数脱硫率ηが脱硫率設定値ηset となる
ためには、(1)、(2)式より、
Here, BTU: constant, pH: pH value, S
O 2 : inlet SO 2 concentration, L / G: liquid-gas ratio, f 1 ,
f 2 , f 3 : In order for the functional desulfurization rate η to become the desulfurization rate set value η set , from the equations (1) and (2),

【数3】 (Equation 3)

【0014】ここに、Ld :流量デマンド先行値、
g :排ガス流量 したがって、(3)式により、流量デマンド先行値信号
11が求まる。一方、入口SO2 濃度計3および出口S
2 濃度計5の出力信号より、引算器7aおよび割算器
8を用いて脱硫率信号9を求め、引算器7bで脱硫率設
定器4の出力信号と脱硫率信号9との脱硫率偏差信号1
0を求めファジィ制御器13に入力する。
Here, L d : leading value of flow demand,
G g : Exhaust gas flow rate Accordingly, the flow rate demand preceding value signal 11 is obtained from the equation (3). On the other hand, the inlet SO 2 concentration meter 3 and the outlet S
A desulfurization rate signal 9 is obtained from the output signal of the O 2 concentration meter 5 using a subtractor 7a and a divider 8, and the desulfurization of the output signal of the desulfurization rate setting device 4 and the desulfurization rate signal 9 is performed by a subtractor 7b. Rate deviation signal 1
0 is obtained and input to the fuzzy controller 13.

【0015】ファジィ制御器13は図5に示すように、
制御性能評価器19、制御ルール修正器20およびファ
ジィ補正信号演算器21より構成される。制御性能評価
器19は、脱硫率偏差信号10に基づいて、以下の演算
を行なう。脱硫率偏差信号10は脱硫率設定器4の出力
信号ηset と脱硫率ηとの偏差であり、以下のようにス
ケーリングする。
As shown in FIG. 5, the fuzzy controller 13
It comprises a control performance evaluator 19, a control rule corrector 20, and a fuzzy correction signal calculator 21. The control performance evaluator 19 performs the following calculation based on the desulfurization rate deviation signal 10. The desulfurization rate deviation signal 10 is a deviation between the output signal η set of the desulfurization rate setting device 4 and the desulfurization rate η, and is scaled as follows.

【数4】 (Equation 4)

【数5】 (Equation 5)

【0016】ここに、ηset :脱硫率設定値、ηn :n
時刻点における脱硫率の計算値、Ke、
Here, η set : set value of desulfurization rate, η n : n
Calculated value of desulfurization rate at time point, Ke,

【外1】 :スケーリングファクタ、en :n時刻点における脱硫
率偏差規格値、△en :n時刻点における脱硫率偏差規
格値の変化 en および△en のメンバーシップ関数を図2に示す。
図の記号の意味は以下のとおりである。 NB:負で大きい( Negative Big ) 、NS:負で小さ
い( Negative Small) 、ZE:ほぼ零である( Zero E
qual ) 、PS:正で小さい( Positive Small ) 、P
B:正で大きい( Positive Big ) このように、制御性能評価器19では、制御性能en
よび△en をメンバーシップ関数で定量化する。
[Outside 1] : Scaling factor, e n: n Time desulfurization rate deviation standard value at point, △ e n: indicates a membership function of the change e n and △ e n desulfurization rate deviation standard value 2 in the n time point.
The meanings of the symbols in the figure are as follows. NB: negative and large (Negative Big), NS: negative and small (Negative Small), ZE: almost zero (Zero E)
qual), PS: Positive Small, P
B: large positive (Positive Big) Thus, the control performance evaluator 19, to quantify the control performance e n and △ e n in the membership functions.

【0017】制御性能評価はオペレータが行なっている
方法と同じように、en と△en 、すなわち制御状態を
直接評価し、制御ルールの修正量をフィードバックす
る。この修正量を決定する制御ルールを図4に示す。こ
の図の読み方は、en と△en の状況により、本来は過
去における制御出力に付加されるべきであった制御動作
の修正量、すなわち、吸収塔循環流量の補正分Qを示し
ている。図において、例えば、 もしen =NBで、△en =NBなら、Q=NBのよう
な制御ルールである。
The control performance evaluation is similar to a method which the operator is performing, e n and △ e n, namely to evaluate the control condition directly feeds back a correction amount of the control rules. FIG. 4 shows a control rule for determining the correction amount. How to read this figure, the situation of e n and △ e n, originally correction amount of the control operation that should have been added to the control output in the past, that is, the correction amount Q of the absorption tower circulating flow rate . In the figure, for example, if in e n = NB, if △ e n = NB, a control rule such as Q = NB.

【0018】したがって、制御性能評価器19では、脱
硫率の制御特性によって、吸収塔循環流量の補正量を決
定する制御ルールを作成する。次に、制御ルール修正器
20では、以下のようにして制御ルールを決定する。図
3に基本となる制御ルールを示す。この図の読み方は、
図4と同様であり、en と△en の状況により、補正す
べき吸収塔循環流量の増分Hを決定する。
Therefore, the control performance evaluator 19 creates a control rule for determining the correction amount of the circulation flow rate of the absorption tower based on the control characteristics of the desulfurization rate. Next, the control rule modifier 20 determines a control rule as follows. FIG. 3 shows a basic control rule. How to read this diagram
Is the same as that in FIG. 4, the status of e n and △ e n, determines the increment H of the absorption tower circulating flow to be corrected.

【0019】ここでは、制御性能評価器19による評価
結果に基づき現在の制御状態に責任があると思われる制
御ルールが修正または新規に作成される。サンプリング
時点kの制御状態は、過去における全制御動作の総合影
響によって引き起こされる。そこで、jサンプリング前
の制御動作を推論した制御ルールRk-j は、制御性能評
価器19で与えられた補正量Qk によって修正される。
Here, based on the evaluation result by the control performance evaluator 19, a control rule considered to be responsible for the current control state is modified or newly created. The control state at sampling time k is caused by the combined effect of all control operations in the past. Therefore, the control rule R kj that infers the control operation before j sampling is modified by the correction amount Q k given by the control performance evaluator 19.

【0020】ルールRk-j を{ek-j 、△ek-j 、H
k-j }と表わす。これは、図3の例では、 もしek-j =NBで、△ek-j =NBなら、Hk-j =N
Bとなる。したがって、修正されたルール
The rule R kj is defined as {e kj , △ e kj , H
kj }. This is because, in the example of FIG. 3, if e kj = NB, and if Δe kj = NB, then H kj = N
B. Therefore, the modified rule

【外2】 は次式で表現される。[Outside 2] Is represented by the following equation.

【数6】 (Equation 6)

【0021】制御ルールの差し換えは、ルール全体の集
合をRとすると、次の論理で行なう。
The replacement of the control rules is performed by the following logic, where R is the set of the entire rules.

【数7】 ここに、(Equation 7) here,

【外3】 はRk-j の補集合、∩と∪は集合の積と和を示す。この
ようにして、制御ルール修正器20では、自動的に制御
ルールが修正される。次に、ファジィ補正信号演算器2
1では、以下の演算を行なう。制御ルール修正器20
で、作成されたルールをR(M)、M=1、2、…、N
とする。ここでNはルールの個数を示す。
[Outside 3] Denotes the complement of R kj , and ∩ and ∪ denote the product and sum of the sets. In this way, the control rule corrector 20 automatically corrects the control rule. Next, the fuzzy correction signal calculator 2
In step 1, the following operation is performed. Control rule modifier 20
, And the created rule is R (M), M = 1, 2,..., N
And Here, N indicates the number of rules.

【0022】en 、△en の値に関するファジィ集合
を、ルールMについて、AM 、BM とする。ルールMか
ら決まる操作量の増分のファジィ集合をCM とし、メン
バーシップ関数をμcM とする。このとき、ルールMか
[0022] e n, the fuzzy set for the value of △ e n, the rules M, and A M, B M. The fuzzy set of the operation amount of the increment, which is determined from the rule M and C M, the membership functions and μc M. At this time, from rule M

【数8】 このWM を使用して、ルール1〜Mを満たす操作量の基
本増分のメンバーシップ関数
(Equation 8) Using this WM, the membership function of the basic increment of the operation amount satisfying the rules 1 to M

【外4】 [Outside 4] Is

【数9】 (Equation 9)

【0023】この(外4)の重心座標The coordinates of the center of gravity of

【外5】 を次式で計算する。[Outside 5] Is calculated by the following equation.

【数10】 (Equation 10)

【0024】この値(外5)を操作量の基本増分Pとす
る。n時点における吸収塔循環量の補正量を△∪nとす
ると、次の時点n+1における補正量△∪n+1
This value (outside 5) is set as a basic increment P of the manipulated variable. Assuming that the correction amount of the circulation amount of the absorber at the time point n is △ ∪n, the correction amount △ ∪n + 1 at the next time point n + 1 is

【数11】 ここに、G:制御ゲイン このように、ファジィ制御器13では、上述した演算を
サンプリング時間ごとに実施し、流量デマンド補正量信
号14を加算器12に入力する。加算器12では、流量
デマンド先行値信号11と流量デマンド補正信号14を
加算して流量デマンド信号15を出力し、ポンプ台数設
定器16に入力する。ポンプ台数設定器16では、循環
流量デマンドを下まわらないようなポンプ必要台数を求
め、これを最適稼動台数信号として、吸収塔循環ポンプ
18の台数を決定する。
[Equation 11] Here, G: control gain As described above, the fuzzy controller 13 performs the above-described calculation for each sampling time, and inputs the flow rate demand correction amount signal 14 to the adder 12. The adder 12 adds the flow rate demand leading value signal 11 and the flow rate demand correction signal 14 to output a flow rate demand signal 15, which is input to the pump number setting device 16. The number-of-pumps setting unit 16 obtains the required number of pumps that does not fall below the circulating flow demand, and uses this as the optimum operating number signal to determine the number of the absorption tower circulating pumps 18.

【0025】本制御方式は、基本的には、流量デマンド
先行値信号11と脱硫率偏差信号10を、自己調整型フ
ァジィ推論により信号処理したフィードバック補正信号
である流量デマンド補正信号14から、吸収塔循環流量
デマンドを求めるものであり、オンライン計測信号から
流量デマンド先行値を求める点と、フィードバック補正
を自己調整型ファジィ推論を利用するところに特徴があ
る。
The present control system is basically based on a flow rate demand correction signal 14 which is a feedback correction signal obtained by subjecting a flow rate demand preceding signal 11 and a desulfurization rate deviation signal 10 to signal processing by a self-adjustment type fuzzy inference. The method is for calculating the circulating flow demand, and is characterized in that a flow demand advance value is obtained from an online measurement signal, and that a self-adjustment type fuzzy inference is used for feedback correction.

【0026】なお、吸収塔循環流量の制御に関しては、
ここでは、ポンプ台数制御を想定しているが、流体継手
等を利用したポンプ回転数制御による流量制御の場合に
も同様の制御方式が適用できる。本発明においては、フ
ァジィ制御器13が脱硫率の制御性に基づいて、制御ル
ールを自己調整できるので、あらゆる運転状態で、脱硫
率を目標値近傍に維持でき、安定した脱硫装置の運転を
確保できるとともに、低負荷時のポンプ動力コストを低
減することができる。
As for the control of the circulation flow rate of the absorption tower,
Here, control of the number of pumps is assumed, but a similar control method can be applied to flow rate control by pump rotation speed control using a fluid coupling or the like. In the present invention, the fuzzy controller 13 can self-adjust the control rules based on the controllability of the desulfurization rate, so that the desulfurization rate can be maintained near the target value in any operating state, and stable operation of the desulfurization device is ensured. In addition to this, it is possible to reduce the pump power cost at a low load.

【0027】[0027]

【発明の効果】本発明によれば、吸収塔循環流量デマン
ドを補正する自己調整型ファジィ制御器を設置すること
により、脱硫率の変化挙動をみながら、吸収塔循環流量
または循環ポンプ稼動台数を決定できるので、あたかも
プラントの挙動を熟知したベテラン運転員による吸収塔
循環流量制御が可能となり、あらゆる運転状態におい
て、脱硫率を目標値に維持し、安定した脱硫性能を確保
できるとともに、循環量の適切な制御により、低負荷時
の吸収塔循環ポンプ動力を低減できるという効果があ
る。
According to the present invention, by installing a self-adjusting fuzzy controller for correcting the demand for the circulation flow rate of the absorption tower, the circulation flow rate of the absorption tower or the number of operating circulation pumps can be determined while observing the change behavior of the desulfurization rate. As a result, it is possible to control the circulating flow rate of the absorption tower by a veteran operator who is familiar with the behavior of the plant, maintain the desulfurization rate at the target value in all operating conditions, secure stable desulfurization performance, and By the appropriate control, there is an effect that the power of the pump for circulating the absorption tower at a low load can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明になる吸収塔循環流量制御方法の一実
施例を示す制御系統図。
FIG. 1 is a control system diagram showing one embodiment of a method for controlling a circulation flow rate of an absorption tower according to the present invention.

【図2】本願発明で使用するメンバーシップ関数の説明
図。
FIG. 2 is an explanatory diagram of a membership function used in the present invention.

【図3】、FIG.

【図4】本願発明で使用するファジィ制御器における制
御ルールの一例を示す説明図。
FIG. 4 is an explanatory diagram showing an example of a control rule in a fuzzy controller used in the present invention.

【図5】自己調整型ファジィ制御器の構成を示すブロッ
ク図。
FIG. 5 is a block diagram showing a configuration of a self-adjusting fuzzy controller.

【図6】従来の吸収塔循環流量制御方法を示す制御系統
図。
FIG. 6 is a control system diagram showing a conventional absorption tower circulation flow rate control method.

【図7】pHおよび酸化状態と脱硫率の関係を示す図で
ある。
FIG. 7 is a diagram showing the relationship between pH, oxidation state and desulfurization rate.

【符号の説明】[Explanation of symbols]

1…排ガス流量計、2…pH計、3…入口SO2 濃度
計、4…脱硫率設定器、5…出口SO2 濃度計、6…流
量デマンド先行値演算器、7a、7b…引算器、8…割
算器、9…脱硫率信号、10…脱硫率偏差信号、11…
流量デマンド先行値信号、12…加算器、13…ファジ
ィ制御器、14…流量デマンド補正信号、15…流量デ
マンド信号、16…ポンプ台数設定器、17…最適稼動
台数信号、18…吸収塔循環ポンプ、19…制御性能評
価器、20…制御ルール修正器、21…ファジィ補正信
号演算器。
1 ... an exhaust gas flowmeter, 2 ... pH meter, 3 ... inlet SO 2 concentration meter, 4 ... desulfurization rate setting device, 5 ... outlet SO 2 concentration meter, 6 ... flow demand prior value calculator, 7a, 7b ... subtractor , 8 divider, 9 ... desulfurization rate signal, 10 ... desulfurization rate deviation signal, 11 ...
Flow demand advance value signal, 12 ... Adder, 13 ... Fuzzy controller, 14 ... Flow demand correction signal, 15 ... Flow demand signal, 16 ... Pump number setting device, 17 ... Optimum operation number signal, 18 ... Absorption tower circulation pump , 19: control performance evaluator, 20: control rule corrector, 21: fuzzy correction signal calculator.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G05B 13/02 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 7 Identification code FI G05B 13/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化硫黄(SOx)を含有する排ガスを
吸収塔に導入し、アルカリ性吸収液と接触させてSOx
を除去する湿式排ガス脱硫装置の吸収塔への吸収液循環
流量制御方法において、吸収塔へ導入されるSOx総量
と吸収液pH値、脱硫率設定値に基づいて吸収塔循環流
量デマンド先行値を求め、吸収塔の入口と出口のSOx
濃度測定値より求めた脱硫率と脱硫率設定値との間の偏
差値およびこの偏差値の変化率に対応して自己調整型フ
ァジィ推論により循環流量補正量を求め、この補正量を
前記吸収塔循環流量デマンド先行値に加算した全体流量
デマンドに基づき吸収塔循環ポンプ台数を制御すること
を特徴とする湿式排ガス脱硫装置の吸収塔への吸収液循
環流量制御方法。
1. An exhaust gas containing sulfur oxide (SOx) is introduced into an absorption tower, and brought into contact with an alkaline absorbing solution to produce SOx.
In the method of controlling the circulation flow rate of the absorbent to the absorption tower of the wet exhaust gas desulfurization device for removing water, the leading demand value of the circulation flow rate of the absorption tower is determined based on the total amount of SOx introduced into the absorption tower, the pH value of the absorption liquid, and the set value of the desulfurization rate. , SOx at inlet and outlet of absorption tower
A circulating flow rate correction amount is determined by a self-adjusting fuzzy inference corresponding to a deviation value between the desulfurization rate obtained from the concentration measurement value and the desulfurization rate set value and a rate of change of the deviation value, and the correction amount is determined by the absorption tower. A method for controlling a circulation flow rate of an absorbent to an absorption tower of a wet exhaust gas desulfurization apparatus, wherein the number of absorption tower circulation pumps is controlled based on an overall flow rate demand added to a preceding value of a circulation flow rate demand.
【請求項2】 請求項1において、SOxがSO2 であ
り、かつ吸収塔へ導入されるSOx総量を排ガス流量と
吸収塔入口排ガスのSO2 濃度より求めることを特徴と
する湿式排ガス脱硫装置の吸収塔への吸収液循環流量制
御方法。
2. The wet exhaust gas desulfurization apparatus according to claim 1, wherein SOx is SO 2 , and the total amount of SOx introduced into the absorption tower is determined from the exhaust gas flow rate and the SO 2 concentration of the exhaust gas at the inlet of the absorption tower. A method for controlling the flow rate of circulating absorption liquid to the absorption tower.
【請求項3】 SO2 などの硫黄酸化物を含有する排ガ
スを吸収塔に導入してアルカリ性吸収液と接触させて硫
黄酸化物を吸収除去する湿式排ガス脱硫装置の吸収塔へ
の吸収液循環流量制御装置において、排ガス流量、吸収
塔への入口排ガスSO2 濃度、吸収塔への吸収液pH
値、脱硫率設定値に基づき吸収塔への吸収液循環流量デ
マンド先行値を演算する流量デマンド先行値演算器と、
排ガスの吸収塔入口、出口のSO2 濃度測定値より脱硫
率を演算する装置と、演算された脱硫率と脱硫率設定値
との偏差およびその偏差の変化率に基づき制御ルールを
自己調整できるファジィ推論を用いて吸収塔循環流量の
デマンド補正信号を演算するファジィ制御器と、上記流
量デマンド先行値演算器の出力値とファジィ制御器の出
力値に基づき吸収塔循環流量を決定する装置とを設けた
ことを特徴とする湿式排ガス脱硫装置の吸収塔への吸収
液循環流量制御装置。
3. An exhaust gas containing sulfur oxides such as SO 2 is introduced into an absorption tower and brought into contact with an alkaline absorption liquid to absorb and remove the sulfur oxides. In the control device, the flow rate of the exhaust gas, the concentration of SO 2 at the inlet of the exhaust gas to the absorption tower, the pH of the absorbing solution to the absorption tower
A flow rate demand advanced value calculator for calculating an absorption liquid circulation flow rate demand advance value to the absorption tower based on the value and the desulfurization rate set value;
Fuzzy absorption tower inlet of the exhaust gas, a device for calculating the desulfurization rate than SO 2 concentration measurements of the outlet, the control rule based on the deviation and the change rate of the deviation between the computed desulfurization rate and the desulfurization ratio setting value can self-adjusting A fuzzy controller for calculating a demand correction signal for the circulation flow rate of the absorption tower using inference, and a device for determining the circulation flow rate of the absorption tower based on the output value of the flow rate demand advance value calculator and the output value of the fuzzy controller are provided. An apparatus for controlling the flow rate of circulating absorption liquid to an absorption tower of a wet exhaust gas desulfurization apparatus.
JP03054925A 1991-03-19 1991-03-19 Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit Expired - Lifetime JP3091247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03054925A JP3091247B2 (en) 1991-03-19 1991-03-19 Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03054925A JP3091247B2 (en) 1991-03-19 1991-03-19 Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit

Publications (2)

Publication Number Publication Date
JPH04290522A JPH04290522A (en) 1992-10-15
JP3091247B2 true JP3091247B2 (en) 2000-09-25

Family

ID=12984197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03054925A Expired - Lifetime JP3091247B2 (en) 1991-03-19 1991-03-19 Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit

Country Status (1)

Country Link
JP (1) JP3091247B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747533A4 (en) * 2018-03-06 2021-03-31 Mitsubishi Power, Ltd. Operation support system and operation support method for desulfurization equipment
US11383906B2 (en) 2017-06-26 2022-07-12 David P. Goodrich Extensible paper and its use in the production of expanded slit packaging wrap and void fill products
US11702261B2 (en) 2017-06-26 2023-07-18 David Paul Goodrich Expanded slit sheet cushioning products with novel reduced dimension slit patterns
US11834240B2 (en) 2013-09-06 2023-12-05 David P. Goodrich Expanded slit sheet cushioning products with novel alternating expansion patterns

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3150615B2 (en) * 1996-06-28 2001-03-26 三菱重工業株式会社 Oxidation control method in flue gas desulfurization treatment
JP7193261B2 (en) * 2018-07-13 2022-12-20 三菱重工業株式会社 Wet type flue gas desulfurization equipment control method, wet type flue gas desulfurization equipment control device, and remote monitoring system provided with this wet type flue gas desulfurization equipment control device
JP2022157305A (en) * 2021-03-31 2022-10-14 三菱重工業株式会社 Method for controlling wet flue gas desulfurization equipment, control device of wet flue gas desulfurization equipment, remote control system with the control device of wet flue gas desulfurization equipment, information processing device, and information processing system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834240B2 (en) 2013-09-06 2023-12-05 David P. Goodrich Expanded slit sheet cushioning products with novel alternating expansion patterns
US11383906B2 (en) 2017-06-26 2022-07-12 David P. Goodrich Extensible paper and its use in the production of expanded slit packaging wrap and void fill products
US11702261B2 (en) 2017-06-26 2023-07-18 David Paul Goodrich Expanded slit sheet cushioning products with novel reduced dimension slit patterns
US11760548B2 (en) 2017-06-26 2023-09-19 David P. Goodrich Extensible paper and its use in the production of expanded slit packaging wrap and void fill products
EP3747533A4 (en) * 2018-03-06 2021-03-31 Mitsubishi Power, Ltd. Operation support system and operation support method for desulfurization equipment
JP7161294B2 (en) 2018-03-06 2022-10-26 三菱重工業株式会社 Operation support system and operation support method for desulfurization equipment

Also Published As

Publication number Publication date
JPH04290522A (en) 1992-10-15

Similar Documents

Publication Publication Date Title
JPH084709B2 (en) Wet Flue Gas Desulfurization Controller
CN101303595A (en) Open ring fuzzy control system for wet process FGD system
JP3091247B2 (en) Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit
CN112742187A (en) Method and device for controlling pH value in desulfurization system
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JP3009190B2 (en) Control method and control device for wet exhaust gas desulfurization device
JPH05317643A (en) Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor
JP2529244B2 (en) Absorption liquid circulation controller for wet flue gas desulfurization equipment
JP3202265B2 (en) Method for controlling circulation flow rate of absorption tower in wet flue gas desulfurization unit
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
JP2948810B1 (en) Method and apparatus for controlling wet flue gas desulfurization system
JP2738750B2 (en) Control method of exhaust gas desulfurization equipment
CN110501042B (en) Method for detecting and controlling oxidation rate of desulfurization absorption liquid
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JP2845975B2 (en) Air supply control unit for oxidation of wet flue gas desulfurization unit
JP2972263B2 (en) Absorbent supply amount control apparatus and method for controlling supply amount of absorbent in wet exhaust gas desulfurization device
JPH0899015A (en) Apparatus for controlling amount of feeding of absorbent for wet type flue gas desulfurization facility
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JP2565686B2 (en) Absorption liquid circulation flow controller for wet flue gas desulfurization equipment
JP2798973B2 (en) Exhaust gas desulfurization equipment
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JP2690754B2 (en) Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment
JPH0871364A (en) Method and apparatus for controlling supply amount of absorbent in wet exhaust gas desulfurization equipment
JPS62204829A (en) Method for desulfurizing wet off-gas
JPS6121720A (en) Control apparatus of wet waste gas desulfurization apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11