JPH05317643A - Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor - Google Patents

Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor

Info

Publication number
JPH05317643A
JPH05317643A JP4127755A JP12775592A JPH05317643A JP H05317643 A JPH05317643 A JP H05317643A JP 4127755 A JP4127755 A JP 4127755A JP 12775592 A JP12775592 A JP 12775592A JP H05317643 A JPH05317643 A JP H05317643A
Authority
JP
Japan
Prior art keywords
flow rate
desulfurization
value
exhaust gas
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4127755A
Other languages
Japanese (ja)
Inventor
Tetsuo Itami
哲郎 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4127755A priority Critical patent/JPH05317643A/en
Publication of JPH05317643A publication Critical patent/JPH05317643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a device for controlling the circulating flow rate of a liquid absorbent for a wet flue gas desulfurizer where the circulating flow rate of the liquid absorbent is controlled to keep the desulfurization efficiency at the desired value without measuring the sulfite concentration in the liquid absorbent. CONSTITUTION:A exhaust gas flow rate 2, a liquid absorbent pH value 3, an inlet SO2 concentration 4 and a desulfurization rate 6 are inputted into an on-line measured value related estimator 36 consisting of a hierarchical neural net to calculate the liquid absorbent circulating flow rate, and a weight coefficient 27 of neurone bond in the estimator 36 is determined so that deviation between the liquid absorbent circulating flow rate and the actual circulating flow rate may not be more than the prescribed value. Next, an exhaust gas flow rate 7 after elapsing of time of dt, a liquid absorbent pH at 8 and an inlet SO2 concentration 9 and the neurone bond weight coefficient 27 in the estimator 36 are inputted into a flow rate demand preceded value calculator 37 having a neural net of the same constitution as the estimator 36 to obtain a liquid absorbent circulating flow rate preceded value 12, a signal 12 being corrected by a deviation signal 14 of a desulfurization rate 13 obtained from the inlet SO2 concentration 9 and an outlet SO2 concentration 10 and a desulfurization rate set value 11 to determine the number of liquid absorbent pumps in operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿式排ガス脱硫装置の
吸収液循環流量制御方法および装置に係り、特に吸収塔
循環流量を適切に制御して、低負荷時の吸収塔循環ポン
プ動力を低減するに好適な湿式排ガス脱硫装置の吸収液
循環流量制御方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a circulating flow rate of an absorbent in a wet exhaust gas desulfurization apparatus, and in particular, appropriately controlling a circulating flow rate of an absorbing tower to reduce power of an absorbing tower circulating pump at a low load. The present invention relates to a method and an apparatus for controlling an absorption liquid circulation flow rate of a wet exhaust gas desulfurization apparatus suitable for

【0002】[0002]

【従来の技術】湿式排ガス脱硫装置は図6に示されるよ
うに、入口排ガス40を吸収塔43において、吸収液循
環ライン41より供給される吸収液と気液接触させ、排
ガス中のSO2 は吸収液中に亜硫酸塩の形で固定され、
排ガスは排出ライン44を通って煙突から排出される。
SO2 を吸収した吸収液は、塔部から循環タンク45に
流下する。循環タンク45には吸収剤スラリ流量調整弁
46を通して石灰石スラリなどの吸収剤が供給され、S
2 の吸収性能を回復した液は吸収塔循環ポンプ50に
より吸収塔43内へ供給され噴霧される。循環液の一部
は抜出しライン42を通って排出され、後工程におい
て、吸収液中の亜硫酸塩は酸化され石こうとして回収さ
れる。
2. Description of the Related Art A wet exhaust gas desulfurization apparatus, as shown in FIG. 6, brings an inlet exhaust gas 40 into a gas-liquid contact with an absorption liquid supplied from an absorption liquid circulation line 41 in an absorption tower 43, so that SO 2 in the exhaust gas is Fixed in the form of sulfite in the absorbent,
The exhaust gas is discharged from the stack through the discharge line 44.
The absorption liquid that has absorbed SO 2 flows down from the tower portion to the circulation tank 45. The circulation tank 45 is supplied with an absorbent such as limestone slurry through an absorbent slurry flow rate adjusting valve 46, and S
The liquid that has recovered the O 2 absorption performance is supplied into the absorption tower 43 by the absorption tower circulation pump 50 and sprayed. Part of the circulating liquid is discharged through the extraction line 42, and in a subsequent step, the sulfite in the absorbing liquid is oxidized and recovered as gypsum.

【0003】この種の湿式排煙脱硫装置の制御方式とし
て関連するものには、例えば特開昭60−110320
号公報が挙げられる。この制御方式では、吸収塔に流入
する排ガスの負荷量に対応してシミュレーションモデル
48により吸収塔を循環する吸収液の最適pH値信号4
9および吸収塔循環ポンプ50の最適稼動台数信号47
を設定し、負荷安定時には最適稼動台数から1を減じた
台数を設定し、前述の最適pH値に一定の増加分を加え
てこれをpHの設定値とし、シミュレーションモデル4
8により、脱硫率が目標値を満足している場合に限っ
て、この変更した設定値に基づいて吸収剤供給量および
ポンプ台数を制御している。
A related control system of this type of wet flue gas desulfurization apparatus is, for example, JP-A-60-110320.
The gazette is cited. In this control method, the optimum pH value signal 4 of the absorption liquid circulating through the absorption tower is calculated by the simulation model 48 according to the load amount of the exhaust gas flowing into the absorption tower.
9 and the optimum operating number signal 47 of the absorption tower circulation pump 50
When the load is stable, the optimum operating number is subtracted from the set number by 1, and a certain increment is added to the above-mentioned optimum pH value to make it the set value of pH.
8, the absorbent supply amount and the number of pumps are controlled based on the changed set value only when the desulfurization rate satisfies the target value.

【0004】しかしながら、この制御方式では、シミュ
レーションモデルが実機の挙動を精度よく再現できるこ
とが必要不可欠である。脱硫装置においては、脱硫性能
が、排ガス流量、入口SO2 濃度、吸収液pHおよび液
−ガス比により支配されるが、同一のpHでも、吸収液
中の酸化状態すなわち、亜硫酸塩の濃度により脱硫性能
が異なる。
However, in this control method, it is essential that the simulation model can accurately reproduce the behavior of the actual machine. In the desulfurization device, the desulfurization performance is governed by the exhaust gas flow rate, the inlet SO 2 concentration, the absorption liquid pH and the liquid-gas ratio, but even at the same pH, it is desulfurized depending on the oxidation state in the absorption liquid, that is, the concentration of sulfite. Performance is different.

【0005】図5に酸化状態と脱硫性能の関係を示す。
図から明らかなように、運転条件の変化に伴う脱硫率の
変化をシミュレーションにより正確に予測できるために
は、酸化状態すなわち亜硫酸塩の濃度が必要となり、こ
れはオンラインでは計測できないので、亜硫酸塩の酸化
速度の不確かさを考慮すると、手分析値によるデータの
修正が必要であり、運転操作上繁雑であること、また、
このデータ修正作業には、オペレータが介入するので、
人為的なミスが発生する可能性がある等という点につい
ては配慮されていなかった。
FIG. 5 shows the relationship between the oxidation state and desulfurization performance.
As is clear from the figure, the oxidation state, that is, the concentration of sulfite, is required to accurately predict the change in the desulfurization rate due to the change in operating conditions by simulation, and this cannot be measured online. Considering the uncertainty of the oxidation rate, it is necessary to correct the data by manual analysis and it is complicated in driving operation.
Since the operator intervenes in this data correction work,
No consideration was given to the possibility of human error.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は吸収塔
循環ポンプの最適稼動台数をシミュレーションモデルに
よって決定しているが、シミュレーションモデルの精度
という点について配慮がされておらず、精度が低下する
と必要な脱硫率を維持できないこと、また、運転状態が
極端に変化した場合には、液組成の手分析値によりシミ
ュレーションモデルの係数等を修正する必要があり、オ
ペレータへの負担が大きくなる等という問題があった。
In the above-mentioned prior art, the optimum operating number of absorption tower circulation pumps is determined by a simulation model. However, the accuracy of the simulation model is not taken into consideration, and it is necessary if the accuracy decreases. Problem that the desulfurization rate cannot be maintained, and when the operating conditions change drastically, it is necessary to correct the coefficients of the simulation model etc. by the manual analysis value of the liquid composition, which increases the burden on the operator. was there.

【0007】一方オンライン計測できる情報のみを用い
て、脱硫率を目標値近傍に維持できる制御装置としてフ
ァジィ制御を適用する方法があるが、この場合でも熟練
オペレータからのヒアリング等を通して採取した情報を
まとめて、制御系設計者が制御ルールとして形式化する
必要があり必ずしも最適な制御系となっていないという
問題があった。
On the other hand, there is a method of applying fuzzy control as a control device that can maintain the desulfurization rate near the target value using only the information that can be measured online, but even in this case, the information collected through interviews with skilled operators is summarized. Then, there is a problem that the control system designer has to formalize as a control rule and is not necessarily an optimum control system.

【0008】本発明の目的は、上記従来技術の問題点を
なくし、オンライン計測量のみを用いて、なおかつ制御
ルール等をあらかじめ設定しなくても、脱硫率を目標値
近傍に維持できる湿式排ガス脱硫装置の吸収液循環流量
制御方法および装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems of the prior art, to use only the on-line measured amount, and to maintain the desulfurization rate near the target value without presetting control rules or the like. It is an object of the present invention to provide a method and an apparatus for controlling an absorption liquid circulation flow rate of an apparatus.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、脱硫装置入口での排ガス流量およ
びSO2 濃度と、該装置の吸収液pH値と脱硫率とに基
づいて湿式排ガス脱硫装置での吸収液循環流量を制御す
る方法において、あらかじめ、運転中の脱硫装置での計
測によって求めた処理排ガス流量、入口排ガスSO2
度、脱硫率、吸収液pH値を、階層型ニューラルネット
に入力して前記脱硫装置での吸収塔吸収液循環流量を算
出し、この算出値と実際の吸収液循環流量の差が所定範
囲になるように前記ニューラルネットのニューロン間の
結合の重み係数を決定しておき、所定時間後の前記脱硫
装置での処理排ガス流量、入口排ガスSO2 濃度および
吸収液pH値の測定値と脱硫率設定値を、前記階層型ニ
ューラルネットと同一構成のニューラルネットに入力
し、かつ前記決定ずみの各ニューロン間の結合の重み係
数を使って吸収塔の所要吸収液循環流量を算出し、これ
に基づき該流量を制御することを特徴とする湿式排ガス
脱硫装置の吸収液循環流量制御方法に関する。
To achieve the above object, the first invention of the present application is based on the exhaust gas flow rate and SO 2 concentration at the desulfurization unit inlet, the absorption liquid pH value of the unit and the desulfurization rate. In the method for controlling the absorption liquid circulation flow rate in the wet exhaust gas desulfurization device, the treated exhaust gas flow amount, the inlet exhaust gas SO 2 concentration, the desulfurization rate, and the absorption liquid pH value, which are obtained in advance by measurement in the desulfurization device in operation, are hierarchically calculated. It is input to the neural network to calculate the absorption tower circulation flow rate in the desulfurizer, and the weight of the connection between the neurons of the neural network is adjusted so that the difference between the calculated value and the actual absorption circulation flow rate is within a predetermined range. leave determine the coefficients, treated flue gas flow rate at the desulfurization apparatus after a predetermined time, the measured value and the desulfurization ratio setting value of the inlet flue gas SO 2 concentration and the absorption liquid pH value, the said hierarchical neural network A wet type characterized by calculating a required absorption liquid circulation flow rate of the absorption tower by using a weighting factor of the connection between the determined neurons and inputting it to the configured neural net, and controlling the flow rate based on this. The present invention relates to a method for controlling an absorption liquid circulation flow rate of an exhaust gas desulfurization device.

【0010】第2の発明は、脱硫装置入口での排ガス流
量およびSO2 濃度と、該装置の吸収液pH値と脱硫率
とに基づいて湿式排ガス脱硫装置での吸収液循環流量を
制御する方法において、あらかじめ、運転中の脱硫装置
での計測によって求めた処理排ガス流量、入口排ガスS
2 濃度、脱硫率、吸収液pH値を、階層型ニューラル
ネットに入力して前記脱硫装置での吸収塔吸収液循環流
量を算出し、この算出値と実際の吸収液循環流量の差が
所定範囲になるように前記ニューラルネットのニューロ
ン間の結合の重み係数を決定しておき、所定時間後の前
記脱硫装置での処理排ガス流量、入口排ガスSO2 濃度
および吸収液pH値の測定値と脱硫率設定値を、前記階
層型ニューラルネットに入力して吸収塔の所要吸収液循
環流量を算出し、脱硫装置入口と出口でのSO2 濃度の
測定値より求めた脱硫率と脱硫率設定値との偏差量に基
づき前記所要吸収液循環流量算出値を補正し、補正後の
該流量によって吸収塔吸収液循環流量を制御することを
特徴とする湿式排ガス脱硫装置の吸収液循環流量制御方
法に関する。
A second aspect of the present invention is a method for controlling the circulating flow rate of an absorbent in a wet exhaust gas desulfurization apparatus based on the exhaust gas flow rate and SO 2 concentration at the desulfurization apparatus inlet and the absorption solution pH value and desulfurization rate of the apparatus. In, the treated exhaust gas flow rate, the inlet exhaust gas S, which was previously obtained by measurement with the desulfurization apparatus in operation
The O 2 concentration, the desulfurization rate, and the absorption liquid pH value are input to the hierarchical neural net to calculate the absorption tower circulation liquid of the absorption tower in the desulfurization device, and the difference between the calculated value and the actual absorption liquid circulation flow is predetermined. The weighting coefficient of the coupling between the neurons of the neural network is determined so as to be within the range, and the measured exhaust gas flow rate, the inlet exhaust gas SO 2 concentration, and the absorption liquid pH value in the desulfurization device after a predetermined time and the desulfurization The desulfurization rate and desulfurization rate set value calculated from the measured SO 2 concentration at the desulfurization apparatus inlet and outlet by calculating the required absorption liquid circulation flow rate of the absorption tower by inputting the rate setting value into the hierarchical neural network. A method for controlling an absorption liquid circulation flow rate of a wet exhaust gas desulfurization apparatus, characterized in that the required absorption liquid circulation flow rate calculated value is corrected based on the deviation amount and the absorption tower absorption liquid circulation flow rate is controlled by the corrected flow rate.

【0011】第3の発明は、脱硫装置入口での排ガス流
量およびSO2 濃度と、脱硫装置吸収液pH値と、脱硫
率とに基づいて吸収塔での吸収液循環流量を制御する湿
式排ガス脱硫装置の制御装置において、脱硫装置での計
測によって求めた処理排ガス流量、入口排ガスSO2
度、吸収液pH値、脱硫率を入力して吸収塔での吸収液
循環流量を算出し、この算出値と実際の循環流量との差
が所定値以内にあるように、その内部の階層型ニューラ
ルネットワークのニューロン間の結合重み係数を修正決
定するオンライン計測量関係推定装置と、所定時間後の
前記脱硫装置での処理排ガス流量、入口排ガスSO2
度、吸収液pH値および脱硫率設定値と前記オンライン
計測関係推定装置によって決定されたニューロン間の結
合の重み係数とを使って吸収塔での吸収液循環流量を算
出する階層型ニューラルネットで構成される流量デマン
ド先行値演算器と、脱硫装置入口および出口でのSO2
濃度測定より求めた脱硫率と脱硫率設定値との偏差に基
づき補正信号を発生する流量先行値補正装置と、前記流
量デマンド先行値演算器と流量先行値補正装置との各出
力信号に基づき吸収塔吸収液循環流量を制御する手段と
を設けたことを特徴とする湿式排ガス脱硫装置の吸収液
循環流量制御装置に関する。
A third aspect of the present invention is a wet type exhaust gas desulfurization for controlling the absorption liquid circulating flow rate in the absorption tower based on the exhaust gas flow rate and SO 2 concentration at the desulfurization device inlet, the desulfurization device absorption liquid pH value, and the desulfurization rate. In the controller of the system, the treated exhaust gas flow rate, inlet exhaust gas SO 2 concentration, absorption liquid pH value, and desulfurization rate obtained by measurement in the desulfurization device are input to calculate the absorption liquid circulation flow rate in the absorption tower, and the calculated value So that the difference between the actual circulation flow rate and the actual circulation flow rate is within a predetermined value, an on-line measurement quantity relation estimation device that corrects and determines the connection weight coefficient between the neurons of the hierarchical neural network therein, and the desulfurization device after a predetermined time treated flue gas flow rate, inlet gas SO 2 density, absorption liquid pH value and using a weighting factor binding between the desulfurization ratio setting value and the online measuring relationship neurons determined by estimating apparatus in A flow rate demand prior value calculator configured in a hierarchical neural network for calculating the absorption liquid circulation flow rate of the absorption tower Te, SO 2 in the desulfurization apparatus inlet and outlet
Absorption based on the output signals of the flow rate advance value correction device that generates a correction signal based on the deviation between the desulfurization rate and the desulfurization rate set value obtained from the concentration measurement, and the output signals of the flow rate demand advance value calculator and the flow rate advance value correction device. The present invention relates to an absorbent circulating flow rate control device for a wet exhaust gas desulfurization apparatus, which is provided with means for controlling a tower absorbent circulating flow rate.

【0012】第4の発明は、上記第3の発明において、
流量デマンド先行値演算器と流量先行値補正装置の出力
信号により求めた吸収塔吸収液循環流量に基づき、吸収
塔循環ポンプの稼動台数を決定する手段を設けたことを
特徴とする湿式排ガス脱硫装置の吸収液循環流量制御装
置に関する。
A fourth invention is the same as the third invention,
Wet exhaust gas desulfurization apparatus characterized by including means for determining the number of operating absorption tower circulation pumps based on the absorption tower circulation flow rate of the absorption tower determined by the output signals of the flow rate demand advance value calculator and the flow rate advance value correction device. Of the absorption liquid circulation flow rate control device.

【0013】[0013]

【作用】オンライン計測量に基づく吸収液循環流量先行
値は、脱硫システムのオンライン計測量の間に成立する
関係式を時々刻々推定しながら計算算出された信号であ
るので、脱硫率を設定値に維持するためのベースとなる
流量デマンドを運転状態の変化に適応して変化させるよ
うに動作する。このように運転状態の変化に対して適応
的に計算された流量デマンドにさらに通常のフィードバ
ック制御により実際の脱硫率偏差をゼロに近づけるよう
にしているので、脱硫率が目標からはずれることがな
い。
[Advantage] Since the absorption liquid circulation flow rate preceding value based on the online measurement amount is a signal calculated while estimating the relational expression established between the online measurement amounts of the desulfurization system momentarily, the desulfurization rate is set to the set value. It operates so as to adapt the flow rate demand, which is the basis for maintaining it, in accordance with changes in operating conditions. As described above, the actual desulfurization rate deviation is made to approach zero by the flow rate demand that is adaptively calculated with respect to the change in the operating state, so that the desulfurization rate does not deviate from the target.

【0014】[0014]

【実施例】本発明になる湿式排煙脱硫装置のニューラル
ネット適用型の吸収塔循環流量制御方法の具体的実施例
を図1に示す。図において、37は流量デマンド先行値
演算器であり、ある時点tにおいて、排ガス流量計2
2、pH計23、入口SO2濃度計24、脱硫率設定器
26のそれぞれの出力信号である時点tでの排ガス流量
7、時点tでのpH8、時点tでの入口SO2 濃度9、
脱硫率設定値11を用いて吸収液循環流量12を計算算
出する。この流量デマンド先行値演算器37は時点tで
の排ガス流量7、時点tでのpH8、時点tでの入口S
2 濃度9、脱硫率設定値を入力信号とし、吸収液循環
流量先行値12を出力とする階層型のニューラルネット
で構成されるが、そのニューロンの間の重み係数27
は、サンプリング間隔をdtとして時点t−dtでの排
ガス流量2、時点t−dtでのpH3、時点t−dtで
の入口SO2 濃度4および時点t−dtでの脱硫率6を
入力とし、時点t−dtでの吸収液循環流量1を出力と
するニューラルネットすなわちオンライン計測量関係推
定器36を構成するニューロンの間の重み係数27に等
しく設定されている。
FIG. 1 shows a concrete example of a method for controlling a circulation flow rate of an absorption tower of a wet flue gas desulfurization apparatus according to the present invention, to which a neural net is applied. In the figure, 37 is a flow rate demand advance value calculator, and at a certain time t, the exhaust gas flow meter 2
2, the pH meter 23, the inlet SO 2 concentration meter 24, the exhaust gas flow rate 7 at the time t which is the output signal of the desulfurization rate setting device 26, the pH at the time t 8, the inlet SO 2 concentration 9 at the time t,
The desulfurization rate set value 11 is used to calculate and calculate the absorption liquid circulation flow rate 12. This flow rate demand advance value calculator 37 has an exhaust gas flow rate 7 at time t, a pH 8 at time t, and an inlet S at time t.
The O 2 concentration 9 and desulfurization rate set value are used as input signals, and the absorption liquid circulation flow rate preceding value 12 is output.
Is the exhaust gas flow rate 2 at the time point t-dt, the pH 3 at the time point t-dt, the inlet SO 2 concentration 4 at the time point t-dt, and the desulfurization rate 6 at the time point t-dt. The weight coefficient 27 is set to be equal to that between the neurons constituting the neural network that outputs the absorbing liquid circulation flow rate 1 at the time point t-dt, that is, the online measurement amount relationship estimator 36.

【0015】一方、入口SO2 濃度計24と出口SO2
濃度計25の出力信号である時点tでの入口SO2 濃度
4と出口SO2 濃度10とから、引算器28aと割算器
29aを用いて時点tでの脱硫率13を求め、引算器2
8bで脱硫率設定値11との脱硫率偏差信号14を求
め、PI調節器15に入力する。PI調節器15では脱
硫率偏差信号14からPI動作により、流量先行値補正
信号16を出力し、加算器38で吸収液循環流量先行値
12に加算し流量デマンド信号17を計算し、これをポ
ンプ台数設定器18に入力して最適稼動台数信号19を
計算し最終的に吸収塔循環ポンプ20の稼動台数を設定
することで循環流量の制御を行なう。
On the other hand, the inlet SO 2 concentration meter 24 and the outlet SO 2 concentration meter
From the inlet SO 2 concentration 4 and the outlet SO 2 concentration 10 at the time t which is the output signal of the densitometer 25, the desulfurization rate 13 at the time t is obtained by using the subtractor 28a and the divider 29a, and the subtraction is performed. Bowl 2
In 8b, the desulfurization rate deviation signal 14 with respect to the desulfurization rate set value 11 is obtained and input to the PI controller 15. The PI controller 15 outputs the flow rate advance value correction signal 16 from the desulfurization rate deviation signal 14 by the PI operation, and the adder 38 adds it to the absorbing liquid circulation flow rate advance value 12 to calculate the flow rate demand signal 17, which is then pumped. The circulating flow rate is controlled by inputting to the number setting device 18 to calculate the optimum operating number signal 19 and finally setting the operating number of the absorption tower circulation pump 20.

【0016】以下でオンライン計測量関係推定器36の
内部構成について図2を用いて説明する。オンライン計
測量関係推定器36は時点t−dtでの排ガス流量2、
時点t−dtでのpH3、時点t−dtでの入口SO2
濃度4および時点t−dtでの脱硫率6をニューロン3
1a、31b、31c、31dにそれぞれ入力し、その
各ニューロンからの出力33a、33b、33c、33
dおよびシキイ値ニューロン32aからの一定値出力で
ある33e(−1)を、重みつき加算器34aにて、各
ニューロンからの入力対象とするニューロン31fへの
結合の重みを乗じた上で加算し、ニューロン31fに対
する入力35aを計算する。ここでニューロン31fは
第2層目の任意のニューロンである。すなわちニューロ
ン31a、31b、31c、31dの入力を X1=Gg(t−dt)、 X2=pH(t−dt)、 X3=SO2 in(t−dt)、 X4=ETA(t−dt)、 とすると、ニューロン31a、31b、31c、31d
はこれらをそのまま出力する。すなわち出力33a、3
3b、33c、33dは上記信号にほかならない。ここ
で上記式中のGg(t−dt)、pH(t−dt)、S
2 in(t−dt)、ETA(t−dt)は各々、排
ガス流量、pH、入口SO2 濃度、脱硫率を時間の関数
として表現したものである。
The internal structure of the online measurement quantity relationship estimator 36 will be described below with reference to FIG. The on-line measured amount relation estimator 36 uses the exhaust gas flow rate 2 at the time point t-dt,
PH 3 at time t-dt, inlet SO 2 at time t-dt
Desulfurization rate 6 at concentration 4 and time t-dt
1a, 31b, 31c and 31d, respectively, and outputs 33a, 33b, 33c and 33 from the respective neurons.
d and a constant value output 33e (-1) from the Shiki value neuron 32a are multiplied by the weight of the connection from each neuron to the input target neuron 31f by the weighted adder 34a, and then added. , The input 35a to the neuron 31f is calculated. Here, the neuron 31f is an arbitrary neuron in the second layer. That is, the inputs of the neurons 31a, 31b, 31c, 31d are X1 = Gg (t-dt), X2 = pH (t-dt), X3 = SO 2 in (t-dt), X4 = ETA (t-dt), Then, the neurons 31a, 31b, 31c, 31d
Outputs these as they are. That is, the outputs 33a, 3
3b, 33c, and 33d are none other than the above signals. Here, Gg (t-dt), pH (t-dt), S in the above formula.
O 2 in (t-dt) and ETA (t-dt) represent the exhaust gas flow rate, pH, inlet SO 2 concentration, and desulfurization rate as a function of time, respectively.

【0017】次に第2層目のi番目のニューロン31f
の入力35aは次式で与えられる。 X2i=W12i*X1+W12i*X2+W13i*
X3+W14i*X4−W15i ニューロン31fはこの入力X2iを次の関係によって
処理して出力33fを計算する。すなわち、出力33f
は次の信号である。
Next, the i-th neuron 31f in the second layer
The input 35a of is given by the following equation. X2i = W12i * X1 + W12i * X2 + W13i *
X3 + W14i * X4-W15i The neuron 31f processes this input X2i according to the following relation to calculate the output 33f. That is, the output 33f
Is the next signal.

【0018】Y2i=sigm(X2i) ここで関数sigm(X)は sigm(X)=tanh(X/2) で定義され、シグモイド関数とよばれる。これらの第2
層のニューロン31e、31f...からの出力は再び
重みつき加算器34bに入力され、重みつき加算器34
bから X33=W231*Y21+W232*Y22+...
+W23i*Y2i+...+W23n*Y2n−W2
3 が加算される。ここでnは第2層のニューロンの個数で
ありW23l,...W23i,...W23n、W2
3は重み係数である。この信号X33が第3層のニュー
ロン31zに入力されやはりシグモイド関数により処理
され出力される。
Y2i = sigm (X2i) Here, the function sigm (X) is defined by sigm (X) = tanh (X / 2) and is called a sigmoid function. These second
Layer neurons 31e, 31f. . . The output from is input to the weighted adder 34b again, and the weighted adder 34b
From b: X33 = W231 * Y21 + W232 * Y22 +. . .
+ W23i * Y2i +. . . + W23n * Y2n-W2
3 is added. Here, n is the number of neurons in the second layer, and W23l ,. . . W23i ,. . . W23n, W2
3 is a weighting coefficient. This signal X33 is input to the neuron 31z of the third layer and also processed and output by the sigmoid function.

【0019】Y3=sigm(X33) そしてこの出力Y3が時点t−dtでの吸収液循環流量
l、これをL(t−dt)と記す、と比較されるが、そ
れは誤差計算器30においてY3とL(t−dt)との
差の平方を計算し、これがゼロに近づくように例えば誤
差逆伝播法により重み係数W12i,...,W23
1,...,W23が決定される。
Y3 = sigm (X33) This output Y3 is compared with the absorption liquid circulation flow rate l at the time point t-dt, which is designated as L (t-dt), which is Y3 in the error calculator 30. And L (t-dt), the square of the difference is calculated, and the weight coefficient W12i ,. . . , W23
1 ,. . . , W23 is determined.

【0020】流量デマンド先行値演算器37はオンライ
ン計測量関係推定器と同じ構造のニューラルネットであ
り、これを図3で説明する。流量デマンド先行値演算器
37は時点tでの排ガス7、時点tでのpH8、時点t
での入口SO2 濃度9および脱硫率設定値11をニュー
ロン31a´、31b´、31c´、31d´にそれぞ
れ入力し、その各ニューロンからの出力33a´、33
b´、33c´、33d´およびシキイ値ニューロン3
2a´からの一定値出力である−1を重みつき加算器に
て各ニューロンからの入力対象とするニューロン31f
´に対する入力35a´を計算する。ここでニューロン
31f´は第2層目の任意のニューロンである。すなわ
ち、ニューロン31a´、31b´、31c´、31d
´の入力を X1´=Gg(t) X2´=pH(t) X3´=SO2 in(t) X4´=ETASET とすると、ニューロン31a´、31b´、31c´、
31d´はこれらをそのまま出力する。すなわち出力3
3a´、33b´、33c´、33d´は上記信号にほ
かならない。次に第2層目のi番目のニューロン31f
´の入力35a´は次式で与えられる。
The flow rate demand advance value calculator 37 is a neural network having the same structure as the online measurement quantity relationship estimator, which will be described with reference to FIG. The flow rate demand advance value calculator 37 indicates that the exhaust gas 7 at the time point t, the pH 8 at the time point t, the time point t
The inlet SO 2 concentration 9 and the desulfurization rate set value 11 at are input to the neurons 31a ′, 31b ′, 31c ′, 31d ′ respectively, and the outputs 33a ′, 33 from the neurons are input.
b ′, 33c ′, 33d ′ and Shiki value neuron 3
A constant value output -1 from 2a 'is input to each neuron 31f by a weighted adder.
Calculate input 35a 'for'. Here, the neuron 31f 'is an arbitrary neuron in the second layer. That is, the neurons 31a ', 31b', 31c ', 31d
When the input of ′ is X1 ′ = Gg (t) X2 ′ = pH (t) X3 ′ = SO 2 in (t) X4 ′ = ETASET, the neurons 31a ′, 31b ′, 31c ′,
31d 'outputs these as they are. Ie output 3
3a ', 33b', 33c 'and 33d' are none other than the above signals. Next, the i-th neuron 31f in the second layer
The input 35a 'of' is given by the following equation.

【0021】X2i´=W12i*X1´+...+W
14i*X4´−W15i であり、ここで重みW12i,...,W14iおよび
W15iはオンライン計測量関係推定器36を構成する
ニューラルネットで例えば逆伝播法により決定された値
を適用する。ニューロン31f´はこの入力X2i´を
次の関係によって処理して出力33f´を計算する。す
なわち、出力33f´は次の信号である。
X2i '= W12i * X1' +. . . + W
14i * X4'-W15i, where the weights W12i ,. . . , W14i, and W15i are neural nets that constitute the online measurement quantity relationship estimator 36, and values determined by the back propagation method, for example, are applied. The neuron 31f 'processes this input X2i' according to the following relation to calculate the output 33f '. That is, the output 33f 'is the next signal.

【0022】Y2i´=sigm(X2i´) さらにこれらの第2層のニューロン31e´、31f
´...からの出力が再び重みつき加算器34b´に入
力され、重みつき加算器34b´にて X33´=W231*Y21´+W232*Y22´
+...+W23n*Y2n´−W23 が計算される。ここでW231,.....W23はオ
ンライン計測量関係推定器36の内部構成であるニュー
ラルネットで例えば逆伝播法により決定された値を適用
する。この信号X33´が第3層のニューロン31z´
に入力されやはりシグモイド関数により処理され出力さ
れる。
Y2i '= sigm (X2i') Further, these second layer neurons 31e ', 31f
´. . . The output from is again input to the weighted adder 34b ', and X33' = W231 * Y21 '+ W232 * Y22' in the weighted adder 34b '.
+. . . + W23n * Y2n'-W23 is calculated. Here, W231 ,. . . . . W23 is a neural network which is an internal configuration of the online measurement quantity relationship estimator 36 and applies a value determined by, for example, the back propagation method. This signal X33 'is the third layer neuron 31z'
Is input to and is also processed by the sigmoid function and output.

【0023】Y3´=sigm(X33´) そして、この出力が吸収液循環流量先行値12として流
量デマンド先行値演算器37から出力される。本制御方
式は基本的には吸収液循環流量先行値12と脱硫率偏差
信号14をPI調節器15によりフィードバック補正処
理した流量先行値補正信号16との加算として流量デマ
ンドを計算するものであるが、オンライン計測量の間の
関係をニューラルネットにより推定し、吸収液循環流量
先行値12を、この推定結果を利用して脱硫率設定値か
ら逆算するところに特徴がある。
Y3 '= sigm (X33') Then, this output is output from the flow rate demand preceding value calculator 37 as the absorbing liquid circulation flow rate preceding value 12. This control system basically calculates the flow rate demand by adding the absorption liquid circulation flow rate preceding value 12 and the desulfurization rate deviation signal 14 to the flow rate preceding value correction signal 16 which is feedback-corrected by the PI controller 15. The characteristic is that the relationship between the online measurement amounts is estimated by a neural network, and the absorption liquid circulation flow rate preceding value 12 is calculated back from the desulfurization rate set value using this estimation result.

【0024】図5に示したように、脱硫装置において
は、排ガス中のSO2 を吸収して、吸収液中に生成する
亜硫酸塩の濃度、すなわち酸化状態により脱硫率が大巾
に異なってくる。したがって、同一の脱硫率偏差が発生
しても、酸化状態によって、脱硫率を目標値に維持する
ために増減しなければならない吸収塔循環流量の値が異
なってくる。すなわち、フィードバック補正を通常のP
Iコントローラで行なう場合には、通常は、比例ゲイン
および積分時間が一定であるので、前述のような酸化状
態の相異による適応修正は不可能である。
As shown in FIG. 5, in the desulfurization apparatus, the desulfurization rate varies greatly depending on the concentration of sulfite produced in the absorption liquid by absorbing SO 2 in the exhaust gas, that is, the oxidation state. .. Therefore, even if the same desulfurization rate deviation occurs, the absorption tower circulation flow rate value that must be increased or decreased to maintain the desulfurization rate at the target value varies depending on the oxidation state. That is, the feedback correction is performed by the normal P
When the I controller is used, the proportional gain and the integration time are usually constant, so that the adaptive correction due to the difference in the oxidation state as described above is impossible.

【0025】本発明では、流量デマンド先行値演算器3
7を用いて、ニューラルネットによるプロセス変数間の
関係の推定に基づき、図4のように流量デマンド先行値
を計算するので、あらゆる運転状態において、脱硫率が
目標値近傍に維持される。このように、本発明において
は、流量先行値が、あたかも熟練オペレータによって制
御されているように動作するので、特殊な運転状態にお
いても、脱硫率を目標値近傍に制御できる。図1、図
2、図3を使った前記実施例の説明では、オンライン計
測量関係推定器36と流量デマンド先行値演算器37は
別々のニューロンネットワークとしているが、前記36
と37を同一のニューロンネットワークとして使用し、
t−dt時点での前記推定器36に入る入力と、t時点
で前記演算器37に入る入力信号を切換器を用いて切換
えて使用することにより、本発明を実施することも可能
であり、本発明に含まれる。
In the present invention, the flow rate demand advance value calculator 3
7, the flow rate demand advance value is calculated based on the estimation of the relationship between the process variables by the neural network as shown in FIG. 4, so that the desulfurization rate is maintained near the target value in all operating conditions. As described above, in the present invention, the preceding flow rate value operates as if controlled by a skilled operator, so that the desulfurization rate can be controlled to be close to the target value even in a special operating condition. In the description of the embodiment using FIGS. 1, 2, and 3, the online measurement quantity relation estimator 36 and the flow rate demand preceding value calculator 37 are separate neuron networks.
And 37 as the same neuron network,
It is also possible to implement the present invention by switching the input signal entering the estimator 36 at time t-dt and the input signal entering the calculator 37 at time t using a switch. Included in the present invention.

【0026】[0026]

【発明の効果】本発明によれば、ニューラルネットを適
用した流量デマンド先行値演算器を設置して吸収液循環
流量先行値を計算する方式となっており、この流量デマ
ンド先行値演算器が、オンライン計測量の間の関係を時
々刻々に推定しているオンライン計測量関係推定器のニ
ューラルネットと同じ重み結合を有する構造となってい
るので、脱硫率の変化挙動を見ながら時々刻々に流量デ
マンド先行値を与え、吸収塔循環ポンプ稼動台数を決定
するものとなり、あたかもプラントの挙動を熟知したベ
テラン運転員によるごとき吸収塔循環流量制御が可能と
なる。
According to the present invention, a flow rate demand advance value calculator to which a neural network is applied is installed to calculate the absorption liquid circulation flow rate advance value. This flow rate demand advance value calculator is Since the structure has the same weight coupling as the neural network of the online measurement quantity estimator, which estimates the relationship between the online measurement quantities moment by moment, the flow rate demand can be changed momentarily while observing the change behavior of the desulfurization rate. The preceding value is given to determine the operating number of the absorption tower circulation pump, and it becomes possible to control the absorption tower circulation flow rate as if by an experienced operator who is familiar with the behavior of the plant.

【0027】したがって、通常の運転状態のみならず吸
収液の酸化状態が変化して、脱硫システムのオンライン
計測量の間の関係が大幅に変化したような場合であって
も安定した脱硫性能を確保でき、吸収塔循環流量の適切
な制御により低負荷時の吸収塔循環ポンプ動力を低減で
きるという効果がある。
Therefore, stable desulfurization performance is ensured even when the oxidation state of the absorbing liquid changes not only under normal operating conditions, but the relationship between the online measurement amounts of the desulfurization system changes significantly. Therefore, there is an effect that the absorption tower circulation pump power at a low load can be reduced by appropriately controlling the absorption tower circulation flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる吸収塔循環流量制御方法の1実施
例を示す制御系統図。
FIG. 1 is a control system diagram showing an embodiment of an absorption tower circulation flow rate control method according to the present invention.

【図2】オンライン計測量関係推定器の内部構造である
ニューラルネットの1実施例を示す説明図。
FIG. 2 is an explanatory diagram showing an embodiment of a neural network which is an internal structure of an online measurement quantity relationship estimator.

【図3】流量デマンド先行値演算器の内部構造であるニ
ューラルネットの1実施例を示す説明図。
FIG. 3 is an explanatory diagram showing an embodiment of a neural network which is an internal structure of a flow rate demand advance value calculator.

【図4】循環ポンプ台数を設定するための原理図。FIG. 4 is a principle diagram for setting the number of circulation pumps.

【図5】pHおよび酸化状態と脱硫率の関係を示す説明
図。
FIG. 5 is an explanatory view showing the relationship between pH and oxidation state and desulfurization rate.

【図6】従来の吸収塔循環流量制御方法を示す制御系統
図。
FIG. 6 is a control system diagram showing a conventional absorption tower circulation flow rate control method.

【符号の説明】[Explanation of symbols]

1…時点(t−dt)での吸収液循環流量、2…時点
(t−dt)での排ガス流量、3…時点(t−dt)で
のpH、4…時点(t−dt)での入口SO2 濃度、5
…時点(t−dt)での出口SO2 濃度、6…時点(t
−dt)での脱硫率、7…時点tでの排ガス流量、8…
時点tでのpH、9…時点tでの入口SO 2 濃度、10
…時点tでの出口SO2 濃度、11…脱硫率設定値、1
2…吸収液循環流量先行値、13…時点tでの脱硫率、
14…脱硫率偏差信号、15…PI調節器、16…流量
先行値補正信号、17…流量デマンド信号、18…ポン
プ台数設定器、19…最適稼動台数信号、20…吸収塔
循環ポンプ、21…循環流量流量計、22…排ガス流量
計、23…pH計、24…入口SO2 濃度計、25…出
口SO2 濃度計、26…脱硫率設定器、27…重み係数
信号、28…引算器、29…割算器、30…誤差計算
器、31…ニューロン、32…シキイ値ニューロン、3
3…出力信号、34…重みつき加算器、35…入力信
号、36…オンライン計測量関係推定器、37…流量デ
マンド先行値演算器、38…加算器。
 1 ... Absorption liquid circulation flow rate at time point (t-dt), 2 ... time point
Exhaust gas flow rate at (t-dt), 3 ... At time (t-dt)
PH, 4 ... inlet SO at time point (t-dt)2Concentration, 5
... Exit SO at time point (t-dt)2Concentration, 6 ... Time (t
Desulfurization rate at -dt), 7 ... Exhaust gas flow rate at time t, 8 ...
PH at time t, 9 ... inlet SO at time t 2Concentration 10
… Exit SO at time t2Concentration, 11 ... Desulfurization rate set value, 1
2 ... Leading value of circulating flow rate of absorbing liquid, 13 ... Desulfurization rate at time t,
14 ... Desulfurization rate deviation signal, 15 ... PI controller, 16 ... Flow rate
Leading value correction signal, 17 ... Flow rate demand signal, 18 ... Pon
Number setting device, 19 ... Optimal operating signal, 20 ... Absorption tower
Circulation pump, 21 ... Circulation flow meter, 22 ... Exhaust gas flow rate
Total, 23 ... pH meter, 24 ... Inlet SO2Densitometer, 25 ...
Mouth SO2Densitometer, 26 ... Desulfurization rate setting device, 27 ... Weighting factor
Signal, 28 ... Subtractor, 29 ... Divider, 30 ... Error calculation
Vessel, 31 ... Neuron, 32 ... Shiki value neuron, 3
3 ... Output signal, 34 ... Weighted adder, 35 ... Input signal
No., 36 ... Estimator for online measurement relation, 37 ... Flow rate data
Mand leading value calculator, 38 ... Adder.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 脱硫装置入口での排ガス流量およびSO
2 濃度と、該装置の吸収液pH値と脱硫率とに基づいて
湿式排ガス脱硫装置での吸収液循環流量を制御する方法
において、あらかじめ、運転中の脱硫装置での計測によ
って求めた処理排ガス流量、入口排ガスSO2 濃度、脱
硫率、吸収液pH値を、階層型ニューラルネットに入力
して前記脱硫装置での吸収塔吸収液循環流量を算出し、
この算出値と実際の吸収液循環流量の差が所定範囲にな
るように前記ニューラルネットのニューロン間の結合の
重み係数を決定しておき、所定時間後の前記脱硫装置で
の処理排ガス流量、入口排ガスSO2 濃度および吸収液
pH値の測定値と脱硫率設定値を、前記階層型ニューラ
ルネットと同一構成のニューラルネットに入力し、かつ
前記決定ずみの各ニューロン間の結合の重み係数を使っ
て吸収塔の所要吸収液循環流量を算出し、これに基づき
該流量を制御することを特徴とする湿式排ガス脱硫装置
の吸収液循環流量制御方法。
1. Exhaust gas flow rate and SO at the desulfurizer inlet
2 Concentration, in the method of controlling the absorption liquid circulation flow rate in the wet exhaust gas desulfurization device based on the absorption liquid pH value and desulfurization rate of the device, in advance, the treated exhaust gas flow rate obtained by measurement in the desulfurization device in operation The inlet exhaust gas SO 2 concentration, the desulfurization rate, and the absorption liquid pH value are input to a hierarchical neural net to calculate the absorption tower circulation liquid flow rate in the desulfurization device,
The weighting coefficient of the coupling between the neurons of the neural network is determined in advance so that the difference between this calculated value and the actual circulating flow rate of the absorbing liquid is within a predetermined range, and the treated exhaust gas flow rate at the desulfurization unit after a predetermined time, the inlet The measured values of the exhaust gas SO 2 concentration and the absorption liquid pH value and the desulfurization rate set value are input to a neural network having the same structure as the hierarchical neural network, and the weighting coefficient of the connection between the determined neurons is used. A method for controlling a circulating flow rate of an absorbent for a wet exhaust gas desulfurization apparatus, which comprises calculating a required circulating flow rate of an absorbent in an absorption tower and controlling the flow based on the calculated flow rate.
【請求項2】 脱硫装置入口での排ガス流量およびSO
2 濃度と、該装置の吸収液pH値と脱硫率とに基づいて
湿式排ガス脱硫装置での吸収液循環流量を制御する方法
において、あらかじめ、運転中の脱硫装置での計測によ
って求めた処理排ガス流量、入口排ガスSO2 濃度、脱
硫率、吸収液pH値を、階層型ニューラルネットに入力
して前記脱硫装置での吸収塔吸収液循環流量を算出し、
この算出値と実際の吸収液循環流量の差が所定範囲にな
るように前記ニューラルネットのニューロン間の結合の
重み係数を決定しておき、所定時間後の前記脱硫装置で
の処理排ガス流量、入口排ガスSO2 濃度および吸収液
pH値の測定値と脱硫率設定値を、前記階層型ニューラ
ルネットに入力して吸収塔の所要吸収液循環流量を算出
し、脱硫装置入口と出口でのSO2 濃度の測定値より求
めた脱硫率と脱硫率設定値との偏差量に基づき前記所要
吸収液循環流量算出値を補正し、補正後の該流量によっ
て吸収塔吸収液循環流量を制御することを特徴とする湿
式排ガス脱硫装置の吸収液循環流量制御方法。
2. Exhaust gas flow rate and SO at the desulfurizer inlet
2 Concentration, in the method of controlling the absorption liquid circulation flow rate in the wet exhaust gas desulfurization device based on the absorption liquid pH value and desulfurization rate of the device, in advance, the treated exhaust gas flow rate obtained by measurement in the desulfurization device in operation The inlet exhaust gas SO 2 concentration, the desulfurization rate, and the absorption liquid pH value are input to a hierarchical neural net to calculate the absorption tower circulation liquid flow rate in the desulfurization device,
The weighting coefficient of the coupling between the neurons of the neural network is determined in advance so that the difference between this calculated value and the actual circulating flow rate of the absorbing liquid is within a predetermined range, and the treated exhaust gas flow rate at the desulfurization unit after a predetermined time, the inlet The measured values of exhaust gas SO 2 concentration and absorption liquid pH value and desulfurization rate set value are input to the hierarchical neural network to calculate the required absorption liquid circulation flow rate of the absorption tower, and the SO 2 concentration at the desulfurization device inlet and outlet. The required absorption liquid circulation flow rate calculation value is corrected based on the deviation amount between the desulfurization rate and the desulfurization rate set value obtained from the measured value, and the absorption tower absorption liquid circulation flow rate is controlled by the corrected flow rate. Method for controlling a circulating flow rate of an absorbent in a wet exhaust gas desulfurization apparatus.
【請求項3】 脱硫装置入口での排ガス流量およびSO
2 濃度と、脱硫装置吸収液pH値と、脱硫率とに基づい
て吸収塔での吸収液循環流量を制御する湿式排ガス脱硫
装置の制御装置において、脱硫装置での計測によって求
めた処理排ガス流量、入口排ガスSO2 濃度、吸収液p
H値、脱硫率を入力して吸収塔での吸収液循環流量を算
出し、この算出値と実際の循環流量との差が所定値以内
にあるように、その内部の階層型ニューラルネットワー
クのニューロン間の結合重み係数を修正決定するオンラ
イン計測量関係推定装置と、所定時間後の前記脱硫装置
での処理排ガス流量、入口排ガスSO2 濃度、吸収液p
H値および脱硫率設定値と前記オンライン計測関係推定
装置によって決定されたニューロン間の結合の重み係数
とを使って吸収塔での吸収液循環流量を算出する階層型
ニューラルネットで構成される流量デマンド先行値演算
器と、脱硫装置入口および出口でのSO2濃度測定より
求めた脱硫率と脱硫率設定値との偏差に基づき補正信号
を発生する流量先行値補正装置と、前記流量デマンド先
行値演算器と流量先行値補正装置との各出力信号に基づ
き吸収塔吸収液循環流量を制御する手段とを設けたこと
を特徴とする湿式排ガス脱硫装置の吸収液循環流量制御
装置。
3. Exhaust gas flow rate and SO at the desulfurizer inlet
2 concentration, desulfurizer absorption liquid pH value, in the control device of the wet exhaust gas desulfurization device to control the absorption liquid circulation flow rate in the absorption tower based on the desulfurization rate, the treated exhaust gas flow rate obtained by measurement in the desulfurization device, Inlet exhaust gas SO 2 concentration, absorption liquid p
The H value and the desulfurization rate are input to calculate the circulating flow rate of the absorbing liquid in the absorption tower, and the neurons of the hierarchical neural network in the inside are adjusted so that the difference between this calculated value and the actual circulating flow rate is within a predetermined value. An on-line measurement amount relation estimation device for correcting and determining the coupling weight coefficient between the two , a treated exhaust gas flow rate in the desulfurization device after a predetermined time, an inlet exhaust gas SO 2 concentration, and an absorbent p
A flow rate demand composed of a hierarchical neural network for calculating the absorption liquid circulation flow rate in the absorption tower using the H value, the desulfurization rate set value, and the weighting factor of the coupling between the neurons determined by the online measurement relation estimation device. A preceding value calculator, a preceding flow value correction device that generates a correction signal based on a deviation between the desulfurization rate and a desulfurization rate set value obtained by measuring the SO 2 concentration at the inlet and outlet of the desulfurization device, and the preceding flow rate demand preceding value calculation And a means for controlling the absorption tower circulation flow rate of the absorption tower based on the respective output signals of the tank and the flow rate preceding value correction apparatus.
【請求項4】 請求項3において、流量デマンド先行値
演算器と流量先行値補正装置の出力信号により求めた吸
収塔吸収液循環流量に基づき、吸収塔循環ポンプの稼動
台数を決定する手段を設けたことを特徴とする湿式排ガ
ス脱硫装置の吸収液循環流量制御装置。
4. The means for determining the number of operating absorption tower circulation pumps according to claim 3, based on the absorption tower circulation liquid circulation flow rate obtained from the output signals of the flow rate advance value calculator and the flow rate advance value correction device. An absorption liquid circulation flow rate control device for a wet exhaust gas desulfurization device.
JP4127755A 1992-05-20 1992-05-20 Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor Pending JPH05317643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127755A JPH05317643A (en) 1992-05-20 1992-05-20 Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127755A JPH05317643A (en) 1992-05-20 1992-05-20 Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor

Publications (1)

Publication Number Publication Date
JPH05317643A true JPH05317643A (en) 1993-12-03

Family

ID=14967892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127755A Pending JPH05317643A (en) 1992-05-20 1992-05-20 Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor

Country Status (1)

Country Link
JP (1) JPH05317643A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113989B2 (en) 2011-10-07 2018-10-30 General Electric Technology Gmbh Sulphite sensor and method for measuring sulphite concentration in a substance
CN109420424A (en) * 2017-08-22 2019-03-05 邢台国泰发电有限责任公司 A kind of wet desulfurization of flue gas by limestone-gypsum method energy saving of system optimization method
US10416105B2 (en) 2015-06-12 2019-09-17 Alstom Technology Ltd. Dibasic acid sensor and method for continuously measuring dibasic acid concentration in a substance
CN110368815A (en) * 2019-08-05 2019-10-25 中船动力研究院有限公司 Sodium alkali desulfurization control method, control device and desulphurization system
WO2020013220A1 (en) * 2018-07-13 2020-01-16 三菱日立パワーシステムズ株式会社 Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
CN112892194A (en) * 2021-01-20 2021-06-04 国家能源集团宁夏煤业有限责任公司 Method for regulating and controlling liquid ammonia adding amount of boiler flue gas desulfurization device
CN114879514A (en) * 2022-07-07 2022-08-09 大唐环境产业集团股份有限公司 Multi-model wet desulphurization efficiency prediction method based on optimal training sample
WO2022210827A1 (en) * 2021-03-31 2022-10-06 三菱重工業株式会社 Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113989B2 (en) 2011-10-07 2018-10-30 General Electric Technology Gmbh Sulphite sensor and method for measuring sulphite concentration in a substance
US10416105B2 (en) 2015-06-12 2019-09-17 Alstom Technology Ltd. Dibasic acid sensor and method for continuously measuring dibasic acid concentration in a substance
CN109420424A (en) * 2017-08-22 2019-03-05 邢台国泰发电有限责任公司 A kind of wet desulfurization of flue gas by limestone-gypsum method energy saving of system optimization method
WO2020013220A1 (en) * 2018-07-13 2020-01-16 三菱日立パワーシステムズ株式会社 Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment
EP3804839A4 (en) * 2018-07-13 2021-08-11 Mitsubishi Power, Ltd. Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
RU2759855C1 (en) * 2018-07-13 2021-11-18 Мицубиси Пауэр, Лтд. Method for controlling device for wet desulfurization of flue gases, device for controlling device for wet desulfurization of flue gases and remote monitoring system containing device for controlling device for wet desulfurization of flue gases
CN110368815A (en) * 2019-08-05 2019-10-25 中船动力研究院有限公司 Sodium alkali desulfurization control method, control device and desulphurization system
CN112892194A (en) * 2021-01-20 2021-06-04 国家能源集团宁夏煤业有限责任公司 Method for regulating and controlling liquid ammonia adding amount of boiler flue gas desulfurization device
WO2022210827A1 (en) * 2021-03-31 2022-10-06 三菱重工業株式会社 Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system
CN114879514A (en) * 2022-07-07 2022-08-09 大唐环境产业集团股份有限公司 Multi-model wet desulphurization efficiency prediction method based on optimal training sample

Similar Documents

Publication Publication Date Title
CN109879410B (en) Sewage treatment aeration control system
US5159547A (en) Self-monitoring tuner for feedback controller
JP2539540B2 (en) Process control equipment
WO2002088426A1 (en) Continuous pickling method and continuous pickling device
JPH05317643A (en) Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor
JP6063058B2 (en) Acid concentration control method and apparatus for pickling in cold rolling
CN111013370A (en) Wet desulphurization slurry supply amount prediction method based on deep neural network
CN105867138A (en) Stable platform control method and device based on PID controller
US5410470A (en) Process control method and system with employment of fuzzy inference
JP3091247B2 (en) Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit
JPS62143103A (en) Plant control device
CN115586718A (en) Smith-fuzzy PID control method of B-type foam mixing system
CN115481720A (en) Coagulant dosing amount prediction method based on BR-NARX neural network
Wu et al. Water level control by fuzzy logic and neural networks
JPS63229126A (en) Control method for wet exhaust gas desulfurizer
JP3202265B2 (en) Method for controlling circulation flow rate of absorption tower in wet flue gas desulfurization unit
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JP2565686B2 (en) Absorption liquid circulation flow controller for wet flue gas desulfurization equipment
US6235178B1 (en) Method and device for coating a metal strip
JPH08318262A (en) Pumping-up water flow rate control device of adjusting basin
JPH05125713A (en) Controller for reverse regulating gate for flow rate of dam
Ramond et al. Direct adaptive predictive control of an hydro-electric plant
JPS58189712A (en) Method for controlling pumping-up volume of sewage pump