WO2022210827A1 - Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system - Google Patents

Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system Download PDF

Info

Publication number
WO2022210827A1
WO2022210827A1 PCT/JP2022/015797 JP2022015797W WO2022210827A1 WO 2022210827 A1 WO2022210827 A1 WO 2022210827A1 JP 2022015797 W JP2022015797 W JP 2022015797W WO 2022210827 A1 WO2022210827 A1 WO 2022210827A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
concentration
flue gas
learning model
flow rate
Prior art date
Application number
PCT/JP2022/015797
Other languages
French (fr)
Japanese (ja)
Inventor
駿 郡司
仁 須藤
信弥 金森
一貴 吉田
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2022210827A1 publication Critical patent/WO2022210827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to a control method for a wet flue gas desulfurization apparatus, a control apparatus for a wet flue gas desulfurization apparatus, a remote monitoring system provided with the control apparatus for the wet flue gas desulfurization apparatus, an information processing device, and an information processing system.
  • exhaust gas generated by a combustion device such as a boiler is introduced into an absorption tower of the desulfurization system, and brought into gas-liquid contact with an absorption liquid circulating in the absorption tower.
  • the absorbent e.g., calcium carbonate
  • SO 2 sulfur dioxide
  • SO2 is removed ( exhaust gas is desulfurized).
  • the absorbent that has absorbed SO 2 drops and is stored in the storage tank below the absorption tower.
  • An absorbent is supplied to the storage tank, and the absorbent whose absorption performance has been restored by the supplied absorbent is supplied to the upper part of the absorption tower by a circulating pump, and is subjected to gas-liquid contact with exhaust gas ( SO2 absorption). be done. Since the circulation pump that circulates the absorbent consumes a large amount of power, conventionally, in order to suppress power consumption, the amount of absorbent required based on the flow rate of the flue gas flowing into the absorber and the SO2 concentration in the flue gas is used. The circulation flow rate is calculated and the number of operating circulation pumps is controlled.
  • Patent Literature 1 discloses a technique for appropriately adjusting operating conditions of a circulation pump for circulating an absorbent in an absorption tower of such a wet flue gas desulfurization apparatus.
  • a circulation pump for circulating an absorbent in an absorption tower of such a wet flue gas desulfurization apparatus.
  • the correlation between the operating data and the SO 2 concentration at the absorption tower outlet, and the operating data and the absorption liquid is modeled by machine learning, and based on the table obtained by these two learning models, the circulating flow rate of the absorbent and the absorbent concentration are controlled to be optimized.
  • Patent Document 1 does not specify parameters that are highly correlated with the SO 2 concentration and the absorbent concentration at the outlet of the absorption tower when constructing the learning model. Therefore, there is a risk that prediction disturbance will occur, and the widening of the learning range of the operating data may increase the computational load. In addition, it is necessary to construct two learning models by machine learning the correlation between the operating data and the SO 2 concentration at the absorption tower outlet, and the correlation between the operating data and the concentration of the absorbent contained in the absorbent. The calculation tends to be complicated because of the presence of
  • At least one embodiment of the present disclosure has been made in view of the above circumstances, and control of a wet flue gas desulfurization apparatus that can easily perform control for circulating an absorbent in an absorption tower of a wet flue gas desulfurization apparatus
  • An object is to provide a method, a control device, a remote monitoring system, an information processing device, and an information processing system.
  • a method for controlling a wet flue gas desulfurization apparatus includes: A control method for a wet flue gas desulfurization apparatus for performing desulfurization by bringing exhaust gas generated in a combustion apparatus and an absorbing liquid into gas-liquid contact in an absorption tower, comprising: Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A step of building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower; calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A step of creating a table showing the input amount of and the circulation flow rate of the absorbent; and determining control target values for the amount of the absorbent
  • a control device for a wet flue gas desulfurization apparatus includes: A control device for a wet flue gas desulfurization device that performs gas-liquid contact between an exhaust gas generated in a combustion device and an absorbing liquid in an absorption tower to perform desulfurization, Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model building unit for building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower; calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent; A control target value determination unit for determining control
  • the remote monitoring system according to at least one embodiment of the present disclosure, a control device for a wet flue gas desulfurization system according to at least one embodiment of the present disclosure; and a remote monitoring device electrically connected to the control device of the wet flue gas desulfurization system.
  • An information processing device that executes processing related to control of a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device and an absorbent into gas-liquid contact in an absorption tower, Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device;
  • a learning model building unit for building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower; calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value;
  • a table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
  • a control target value determination unit for determining control target values of the amount of the
  • Information processing consisting of an information processing device that executes processing related to the control of a wet flue gas desulfurization device that performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact with the absorption liquid in the absorption tower, and a terminal capable of communication.
  • the information processing device is At least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower and the output of a generator driven by the gas generated in the combustion device, according to the request from the terminal and a learning model building unit for building a learning model by machine learning about the relationship between the explanatory variable including the future absorption tower outlet and the objective variable, which is the sulfur dioxide concentration; calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent; A control target value determination unit for determining control target values of the amount of the absorbent charged and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
  • a control method, a control device, and a remote monitoring system for a wet flue gas desulfurization apparatus capable of easily performing control for circulating an absorbent in an absorption tower of a wet flue gas desulfurization apparatus , an information processing device, and an information processing system.
  • FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus according to one embodiment
  • FIG. 1 is a configuration diagram of a remote monitoring system according to one embodiment
  • FIG. 4 is a flow chart showing a control method for a wet flue gas desulfurization system according to one embodiment.
  • FIG. 4 is a flowchart showing a correction calculation for the objective variable of the learning model in step S3 of FIG. 3
  • FIG. 4 is a flowchart showing a correction calculation for explanatory variables of a learning model in step S3 of FIG. 3
  • FIG. 6 is a flowchart showing correction calculation of explanatory variables of a learning model using correction values calculated in FIG. 5 ;
  • FIG. 4 is a flowchart showing a correction calculation for the objective variable of the learning model in step S3 of FIG. 3
  • FIG. 4 is a flowchart showing a correction calculation for explanatory variables of a learning model in step S3 of FIG. 3
  • FIG. 6 is a flowchar
  • FIG. 7 is a diagram showing a determination flow of optimization conditions for performing a correction operation in FIG. 6;
  • FIG. 10 is a calculation example showing predicted values of SO 2 concentration calculated by a learning model when CaCO 3 concentration and the number of operating fixed displacement circulating pumps are changed for each generator output;
  • FIG. 9 is an example of a table created based on the calculation result of FIG. 8.
  • FIG. It is an example of computation showing predicted values of SO 2 concentration calculated by a learning model when the CaCO 3 concentration and the displacement of a variable displacement circulating pump are changed for each generator output.
  • 11 is an example of a table created based on the calculation result of FIG. 10;
  • 1 is a configuration diagram of an information processing system according to an embodiment;
  • FIG. 13 is a diagram showing an internal configuration of the information processing apparatus of FIG. 12 together with a control device;
  • FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus 10 according to one embodiment.
  • the wet flue gas desulfurization device 10 is a device for desulfurizing the exhaust gas generated in the combustion device 1 .
  • the combustion device 1 is, for example, a boiler for generating steam, and is configured as part of a power plant capable of generating power by supplying the steam generated by the combustion device 1 to a power generator 5 .
  • the wet flue gas desulfurization apparatus 10 includes an absorption tower 11 communicating with a combustion apparatus 1 via a pipe 2, and a plurality of circulation pumps 12a, 12b provided in a circulation pipe 3 for absorbing liquid circulating in the absorption tower 11. 12c, .
  • An absorbent slurry supply unit 13 for supplying slurry (absorbent slurry) of calcium carbonate (CaCO 3 ), which is an absorbent contained in the liquid, into the absorption tower 11, and gypsum for recovering gypsum in the absorbent. and a recovery unit 14 .
  • the absorber 11 is provided with an outflow pipe 16 through which the exhaust gas desulfurized by the operation described later flows out from the absorber 11 as an outflow gas. gas analyzer 17 is provided.
  • the absorbent slurry supply unit 13 includes an absorbent slurry production facility 21 for producing absorbent slurry, an absorbent slurry supply pipe 22 communicating between the absorbent slurry production facility 21 and the absorption tower 11, and an absorbent slurry.
  • An absorbent slurry supply amount control valve 23 for controlling the flow rate of the absorbent slurry flowing through the supply pipe 22 is provided.
  • the gypsum recovery unit 14 includes a gypsum separator 25, a gypsum slurry withdrawal pipe 26 communicating between the gypsum separator 25 and the absorption tower 11, and a gypsum slurry withdrawal pump 27 provided in the gypsum slurry withdrawal pipe 26. I have it.
  • the wet type flue gas desulfurization device 10 is provided with a control device 15 for the wet type flue gas desulfurization device 10 .
  • the control device 15 acquires operation data including various detectors for acquiring various operation data (e.g., temperature and pressure at various parts, flow rates of various fluids, etc.) of the combustion device 1 and the wet flue gas desulfurization device 10.
  • a driving data receiving unit 30 electrically connected to the unit 20 is provided.
  • the operating data acquisition unit 20 includes a gas analyzer 17 .
  • the control device 15 includes a learning model construction unit 38 electrically connected to the operation data reception unit 30, a table generation unit 31 electrically connected to the learning model construction unit 38, and a table generation unit 31 electrically connected to the learning model construction unit 38.
  • 34 and a learning model correction unit 35 electrically connected to the learning model construction unit 38 .
  • the circulation pump adjustment unit 33 is electrically connected to each circulation pump 12 .
  • the absorbent slurry supply controller 34 is electrically connected to the absorbent slurry supply amount control valve 23 .
  • FIG. 2 shows the configuration of a remote monitoring system 40 for remotely monitoring the control state of the wet flue gas desulfurization equipment 10 (see FIG. 1).
  • the remote monitoring system 40 is electrically connected to a distributed control system (DCS) 41 of each device constituting the combustion device 1 (see FIG. 1) and the wet flue gas desulfurization device 10 (see FIG. 1), and to the DCS 41.
  • An edge server 42 equipped with a control device 15, and a remote monitoring device such as a desktop personal computer or tablet computer electrically communicatively connected to the edge server 42 via a cloud or a virtual private network (VPN). 43.
  • a control state of the wet flue gas desulfurization apparatus 10 can be remotely monitored by a remote monitoring device 43 which is normally located away from the edge server 42 .
  • the exhaust gas generated in the combustion device 1 flows through the pipe 2, flows into the absorption tower 11, and rises in the absorption tower 11.
  • the absorbent flows through the circulation pipe 3 and into the absorption tower 11 , where the absorption liquid flows down.
  • the absorbent flowing down in the absorption tower 11 accumulates in the absorption tower 11 , flows out from the absorption tower 11 by the circulation pump 12 , and flows through the circulation pipe 3 .
  • the absorbent circulates within the absorption tower 11 .
  • SO 2 contained in the exhaust gas is expressed by the following reaction formula: SO 2 +CaCO 3 +2H 2 O+1/2O 2 ⁇ CaSO 4.2H 2 O+CO 2 , reacts with CaCO 3 in the absorbent to precipitate gypsum (CaSO 4 .2H 2 O) in the absorbent.
  • the SO 2 concentration in the effluent gas tends to decrease as the circulation flow rate of the absorbent circulating in the absorption tower 11 increases, unless the CaCO 3 concentration in the absorbent fluctuates greatly.
  • the control device 15 controls the number of operating circulation pumps 12 by a control method described later to control the circulation flow rate, thereby controlling the concentration of SO 2 in the outflow gas, for example, below a preset value. So the SO2 concentration in the effluent gas can be controlled.
  • the gypsum precipitated in the absorbing liquid in the absorption tower 11 is extracted as gypsum slurry from the absorption tower 11 by the gypsum slurry extraction pump 27 , and the gypsum slurry flows through the gypsum slurry extraction pipe 26 to the gypsum separator 25 . flow into Gypsum and water are separated in the gypsum separator 25, the gypsum is recovered, and the water is sent to a drainage facility (not shown).
  • the control device 15 controls the opening degree of the absorbent slurry supply amount control valve 23 by a control method to be described later, and absorbs the absorbent slurry produced in the absorbent slurry production facility 21 through the absorbent slurry supply pipe 22. Feed into column 11 .
  • the CaCO 3 concentration in the absorbent falls within a preset range, and large fluctuations in the CaCO 3 concentration during desulfurization of the flue gas are suppressed.
  • FIG. 3 is a flow chart showing a control method for the wet flue gas desulfurization system 10 according to one embodiment.
  • step S1 After collecting various operation data of the combustion device 1 and the wet-type flue gas desulfurization device 10 in step S1, in step S2, various operation data and the future SO2 concentration in the outflow gas flowing out from the absorber 11 Build a learning model for relationships using machine learning.
  • step S3 the learning model constructed in step S2 is corrected.
  • step S4 a table is created using the corrected learning model obtained in step S3.
  • step S5 based on the table created in step S4, the circulation flow rate of the absorbing liquid and the supply amount of the CaCO 3 absorbent slurry are controlled so that the SO 2 concentration in the outflow gas is equal to or lower than a preset value.
  • step S6 the operating conditions of the circulation pump 12 are adjusted based on the control target value of the circulation flow rate determined in step S5, and in step S7, the CaCO 3 absorbent determined in step S5
  • the absorbent slurry supply amount control valve 23 is controlled based on the control target value of the slurry supply amount. Thereby, the SO 2 concentration in the outflow gas is controlled so as to be equal to or lower than the preset value.
  • step S3 may be omitted if the accuracy of the learning model before correction is sufficient.
  • FIG. 3 illustrates the case where step S7 is performed after step S6, but step S7 may be performed before step S6, or steps S6 and S7 may be performed simultaneously.
  • step S1 as shown in FIG. 1, after the operation data acquisition unit 20 acquires various operation data of the combustion device 1 and the wet-type flue gas desulfurization device 10, the acquired various operation data are transmitted to the control device 15.
  • the control device 15 collects various types of operation data as the operation data receiving unit 30 receives the operation data.
  • various operating data include the SO2 concentration in the outflow gas.
  • step S2 the learning model building unit 38 builds a learning model by machine learning regarding the relationship between the various operating data collected by the operating data acquisition unit 20 and the future SO 2 concentration in the outflow gas.
  • the learning model is constructed as a regression model using a regression technique such as multiple regression, ridge regression, Lasso regression, or Elastic Net, for example.
  • n is an arbitrary natural number
  • k1 to kn are coefficients
  • b is an arbitrary intercept.
  • the learning model obtained by machine learning uses an explanatory variable consisting of a plurality of parameters included in the operating data acquired by the operating data acquisition unit 20 and the future SO 2 concentration in the outflow gas as objective variables, and calculates the correlation between the two. It is built as a model to show.
  • the combination of parameters included in the explanatory variables of the learning model can be arbitrarily selected from the following candidates.
  • the explanatory variables of the learning model are, among the above candidates, i) generator output command value (output command value from the outside for the generator 5), iii) boiler air flow rate or boiler exhaust gas flow rate (for the combustion device 1 supply air flow rate or flue gas flow rate from the combustion device 1 ), or iv) desulfurization inlet SO2 concentration or boiler outlet SO2 concentration ( SO2 concentration at the inlet of the absorption tower 11 or SO2 concentration at the combustion device 1 outlet).
  • generator output command value output command value from the outside for the generator 5
  • boiler air flow rate or boiler exhaust gas flow rate for the combustion device 1 supply air flow rate or flue gas flow rate from the combustion device 1
  • desulfurization inlet SO2 concentration or boiler outlet SO2 concentration SO2 concentration at the inlet of the absorption tower 11 or SO2 concentration at the combustion device 1 outlet
  • the explanatory variables of the learning model are, among the above candidates, iii) boiler air flow rate or boiler exhaust gas flow rate (supply air flow rate to combustion device 1 or exhaust gas flow rate from combustion device 1), and iv) desulfurization inlet SO 2 concentration or boiler exit SO2 concentration ( SO2 concentration at absorber 11 inlet or SO2 concentration at combustor 1 exit).
  • iii) boiler air flow rate or boiler exhaust gas flow rate supply air flow rate to combustion device 1 or exhaust gas flow rate from combustion device 1
  • desulfurization inlet SO 2 concentration or boiler exit SO2 concentration SO2 concentration at absorber 11 inlet or SO2 concentration at combustor 1 exit
  • step S3 the learning model correction unit 35 corrects the learning model constructed in step S2.
  • the correction of the learning model is performed based on the error between the SO 2 concentration predicted value calculated by the learning model and the measured value, and is performed for the explanatory variable and the objective function of the learning model.
  • FIG. 4 is a flowchart showing the correction calculation for the objective variable of the learning model in step S3 of FIG.
  • the correction time ⁇ Vp corresponding to the measurement delay is output after the predicted value Vp calculated using the learning model to be corrected.
  • the predicted value Vp calculated using the learning model does not include the time required for the gas analyzer 17 to measure the measured value Vm.
  • the correction time ⁇ Vp corresponds to the time required for the gas analyzer 17 to measure the actual measurement value Vm. It can be made comparable to the value Vm.
  • the corrected predicted value Vp′ is obtained.
  • the ratio (Vm/Vp') between the predicted value Vp' after correction and the measured value Vm of the gas analyzer 17 is calculated, and the moving average thereof is calculated to obtain the correction value A related to the objective function.
  • the correction value A calculated in this manner is applied to the learning model.
  • the learning model after correction is expressed by the following formula.
  • SO 2 concentration at the outlet of the absorption tower (k1 x explanatory variable 1 + k2 x explanatory variable 2 + ... + kn x explanatory variable n + b) x A (2)
  • FIG. 5 is a flowchart showing the correction calculation for the explanatory variables of the learning model in step S3 of FIG.
  • a case of correcting the explanatory variable SG which is a parameter having a correlation with the output of the generator 5 (the generator output Y), will be described.
  • a reference table Tr that defines the correlation between the generator output Y and the values X1 to X4 of the explanatory variable SG is prepared in advance.
  • the reference table Tr prescribes values X1 to X4 of the explanatory variable SG for each value of the generator output Y, as shown in FIG.
  • the values X1 to A reference table Tr is shown containing characteristic functions defining X4.
  • the learning model correction unit 35 outputs the corresponding explanatory variable SG by inputting the generator output Y obtained from the outside to such a reference table Tr. On the other hand, the learning model correction unit 35 obtains the actual measurement value SGm of the explanatory variable based on the result obtained by the operation data receiving unit 30, and the ratio (SGm/SG) to the value SG of the explanatory variable output from the reference table Tr. Ask for Then, by calculating the moving average of the ratio, the correction value B for the explanatory function is obtained.
  • FIG. 6 is a flowchart showing correction calculation of the explanatory variable SG of the learning model using the correction value B calculated in FIG.
  • the optimization condition C includes at least one (for example, all) conditions for determining whether or not the environment for correcting the reference table Tr with the correction value B is in place. It can be determined from various points of view that the operation state is stable in the control device 15 and that no abnormality has occurred.
  • FIG. 7 is a diagram showing a determination flow of the optimization condition C for performing correction calculation in FIG.
  • determination is made based on the following five conditions.
  • Condition 1 Abnormalities are not monitored in explanatory variables.
  • Condition 2 The instrument for acquiring the actual measurement value SGm of the explanatory variable is not being adjusted.
  • Condition 3) The generator output (or boiler load) is above a predetermined value (for example, 0% to 50%).
  • the plant must be in a smoking state.
  • Condition 5 Initialization of the computing software must be completed.
  • the learning model correction unit 35 multiplies the correction value B by the explanatory variable SG value corresponding to the generator output for the characteristic function defined in the reference table Tr. By doing so, the explanatory variables are corrected. As a result of such correction, the characteristic functions defined in the reference table Tr are updated as shown in FIG. ing).
  • a table T is created based on the learning model corrected at step S3.
  • Table T is created by the amount of absorbent added so that the predicted value of SO 2 concentration calculated by the learning model satisfies a preset reference value (for example, becomes equal to or lower than the reference value) for each generator output. and by calculating the circulation flow rate of the absorbent.
  • FIG. 8 is a calculation example showing predicted values of SO 2 concentration calculated by the learning model when changing the CaCO 3 concentration and the number of fixed capacity circulation pumps 12 in operation for each generator output.
  • 9 is an example of a table T created based on the calculation result of FIG.
  • the CaCO 3 concentration is a parameter corresponding to the amount of absorbent charged, and can take a value of "2 to 5" as an allowable range.
  • the number of circulating pumps 12 in operation is a parameter corresponding to the circulating amount of the absorbent, and can take a value of "8 to 10" as an allowable range.
  • the table creating unit 31 changes the CaCO 3 concentration to "4" by increasing by one step the CaCO 3 concentration, which has less impact on the operation cost than the number of operating circulation pumps. Then, the predicted value of the SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creating unit 31 specifies that the optimum CaCO 3 concentration at the generator output of "50%” is "4" and the number of operating circulation pumps is "8".
  • the table creation unit 31 changes the CaCO 3 concentration to “5” by increasing by one step the CaCO 3 concentration, which has less influence on the operation cost than the number of operating circulation pumps.
  • the SO 2 concentration predicted by the learning model is 110 ppm, still exceeding the reference value (100 ppm).
  • the table creation unit 31 specifies that the optimum CaCO 3 concentration is "3" and the number of operating pumps is "9” when the generator output is "60%".
  • the table creation unit 31 creates the table T shown in FIG. 9 by specifying the optimum CaCO 3 concentration and the number of operating circulation pumps for each generator output in this way.
  • the table T is created so that the CaCO 3 concentration decreases and increases at the timing when the number of operating circulation pumps 12 increases stepwise as the generator output increases.
  • FIG. 10 is a calculation example showing predicted values of the SO 2 concentration calculated by the learning model when the CaCO 3 concentration and the capacity of the variable displacement circulation pump 12 are changed for each generator output
  • FIG. is an example of a table T created based on the calculation result of FIG.
  • the CaCO 3 concentration is a parameter corresponding to the amount of absorbent charged, and can take a value of "2 to 5" as an allowable range.
  • the circulating pump capacity is a parameter corresponding to the circulating amount of the absorbent, and can take a value of "10 to 100" as an allowable range.
  • the table creating unit 31 changes the CaCO 3 concentration to "4" by increasing by one step the CaCO 3 concentration, which has less influence on the operation cost than the capacity of the circulating pump. Then, the predicted value of the SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creating unit 31 specifies that the optimum CaCO 3 concentration at the generator output of "50%” is "4" and the circulation pump capacity is "10".
  • the table creating unit 31 changes the pump displacement to "15".
  • the SO 2 concentration predicted by the learning model is 110 ppm, still exceeding the reference value (100 ppm).
  • the table generator 31 changes the circulating pump capacity to "18”.
  • the predicted value of SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creation unit 31 specifies that the optimum CaCO 3 concentration at the generator output of "60%" is "5" and the circulation pump capacity is "18".
  • the table creating unit 31 creates the table shown in FIG. 11 by specifying the optimum CaCO 3 concentration and circulation pump capacity for each generator output in this way.
  • the table T is created so that the pump displacement increases at the timing when the increase in the CaCO 3 concentration becomes insufficient as the generator output increases.
  • the search for the optimum CaCO 3 concentration and the number of operating circulation pumps (or circulation pump capacity) for creating the tables is performed to minimize the operation cost.
  • the search may be performed from other viewpoints.
  • the graph-format table T as shown in FIGS. 9 and 11 is illustrated, but the table T does not necessarily have to be in such a form, and may be in the form of a matrix, formula, or the like.
  • step S5 the control target value determination unit 32 acquires the command value of the generator output, and based on the table T created in step S4, the control target value (absorbent input amount and Each control target value) of the circulation flow rate of the absorbing liquid is determined.
  • the circulation pump adjustment unit 33 controls the circulation pumps 12a to 12c based on the control target value determined in step S5, and the absorbent slurry supply control unit 34 adjusts the supply amount of the absorbent. Control.
  • step S5 the circulation flow rate is adjusted by controlling the number of circulation pumps based on the table shown in FIG. , the pump capacity is controlled based on the table T shown in FIG.
  • the amount of absorbent introduced into the absorption tower 11 and the inside of the absorption tower 11 are controlled within a range in which the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value.
  • the circulation flow rate of the circulating absorbent can be adjusted appropriately.
  • Such a control calculation can obtain control target values for the amount of absorbent introduced into the absorber 11 and the circulation flow rate of the absorbent circulating in the absorber 11 based on a single learning model. Therefore, the computational burden is small.
  • Each processing executed by the control device 15 in the above embodiment is executed by the information processing device 44 (see FIG. 12) electrically communicably connected to the edge server 42 in the cloud environment or via VPN. Configurations are possible.
  • the information processing device 44 includes an operation data reception unit 30, a learning model construction unit 38, a learning model correction unit 35, a table creation unit 31, and a control target value determination unit 32.
  • the control target value determination unit 32 By communicating the determined control target value to the circulation pump adjustment section 33 and the absorbent slurry supply control section 34 in the control device 15, the circulation pump and the absorbent supply amount may be controlled.
  • the operation data receiving unit 30 may receive various kinds of operation data via the operation data relay unit 39 (FIG. 13) of the control device 15, or may receive various kinds of operation data from the operation data acquisition unit 20 as described above. may be received.
  • operation data relay unit 39 FIG. 13
  • the control target values of the circulating pump and absorbent are not directly controlled, but only displayed.
  • a driving index map generated in a cloud environment is sent to a customer-owned device (terminal 45) and illustrated through a dedicated application, and the local driving index map is updated by the customer.
  • the information processing device 44 may also include a circulation pump control section 33 and an absorbent slurry supply control section 34 to remotely control the circulation pump and the supply amount of absorbent. Furthermore, the information processing device 44 may be configured to execute each process in response to a request from the terminal 45 .
  • a method for controlling a wet flue gas desulfurization apparatus includes: In the absorption tower (for example, the absorption tower 11 of the above-described embodiment), the wet-type flue gas desulfurization device (for example, the wet-type flue gas desulfurization device of the above-described embodiment) performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact.
  • the wet-type flue gas desulfurization device for example, the wet-type flue gas desulfurization device of the above-described embodiment
  • the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Since such a control calculation can obtain control target values for the amount of absorbent introduced into the absorption tower and the circulation flow rate of the absorbent circulating in the absorption tower based on a single learning model, Low computational load.
  • At least one circulation pump e.g., In order to reduce the operation cost of the circulation pump 12
  • a search is made for the amount of the absorbent to be supplied and the circulation flow rate of the absorbent so that the predicted value satisfies the reference value.
  • the amount of absorbent input and the circulation flow rate of the absorbent are adjusted so as to reduce the operating cost. is searched for.
  • the operating cost of the plant can be effectively reduced while suppressing the sulfur dioxide discharged from the absorption tower within a necessary range.
  • a step of correcting the learning model based on an error between the predicted value of the concentration of sulfur dioxide in the exhaust gas at the outlet of the absorber by the learning model and the measured value is further provided.
  • control accuracy can be improved by correcting the learning model based on the error between the predicted value obtained by the learning model and the actual measurement value.
  • the at least one parameter includes at least one of an external command value of the output, the output, the air flow rate of the combustion device, and the sulfur dioxide concentration at the absorption tower inlet.
  • the data to be learned is efficiently narrowed down, thereby reducing the computational burden of machine learning and improving the performance. It is possible to build a learning model that can predict with high accuracy.
  • the at least one parameter includes the combustor air flow rate and the absorber inlet sulfur dioxide concentration.
  • the learning target data can be efficiently narrowed down to further reduce the computational burden of machine learning, while achieving better accuracy. Build predictable learning models.
  • the learning model is represented by a linear polynomial.
  • the reference table is defined as a function indicating the relationship between the previously specified parameters and the output.
  • the parameters having a correlation with the generator output are defined as a reference table indicating the correlation.
  • the at least one circulation pump is of fixed displacement type.
  • the amount of absorbent to the absorption tower is within the range where the concentration of sulfur dioxide in the future effluent gas is equal to or lower than a preset reference value.
  • the amount of input and the circulation flow rate of the absorbent circulating in the absorption tower can be adjusted appropriately.
  • the at least one circulation pump is of variable displacement type.
  • the amount of absorbent to the absorption tower is within the range where the concentration of sulfur dioxide in the future effluent gas is equal to or lower than a preset reference value.
  • the amount of input and the circulation flow rate of the absorbent circulating in the absorption tower can be adjusted appropriately.
  • the wet-type flue gas desulfurization device performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact.
  • control device for example, the control device 15 of the above embodiment
  • Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device
  • a learning model construction unit for example, the learning model construction unit 38 of the above embodiment
  • a predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value
  • a table creating unit for example, the table creating unit 31
  • a control target value determination unit for example, the control target value decision unit 32.
  • the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Such a control calculation can obtain control target values for the amount of absorbent introduced into the absorber 11 and the circulation flow rate of the absorbent circulating in the absorber based on a single learning model. , the computational burden is small.
  • a remote monitoring system includes: a control device for a wet flue gas desulfurization system according to the above aspect (10); and a remote monitoring device electrically connected to the control device of the wet flue gas desulfurization system.
  • control state of the wet flue gas desulfurization system can be remotely monitored.
  • the wet-type flue gas desulfurization device performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact.
  • an information processing device for example, the information processing device 44 of the above embodiment
  • Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device
  • a learning model construction unit for example, the learning model construction unit 38 of the above embodiment
  • a predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value
  • a table creating unit for example, the table creating unit 31
  • a control target value determination unit for example, the control target value decision unit 32.
  • the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Since such a control calculation can obtain control target values for the amount of absorbent introduced into the absorption tower and the circulation flow rate of the absorbent circulating in the absorption tower based on a single learning model, Low computational load.
  • the wet-type flue gas desulfurization device performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact.
  • An information processing system for example, the an information processing system 46
  • the information processing device is At least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower and the output of a generator driven by the gas generated in the combustion device, according to the request from the terminal and a learning model construction unit (for example, the learning model construction unit 38 of the above embodiment) for constructing a learning model by machine learning about the relationship between the explanatory variable including the future absorption tower outlet and the objective variable, which is the sulfur dioxide concentration ,
  • a predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value
  • a table creating unit for example, the table creating unit 31
  • a control target value determination unit for example, the control target value decision unit 32.
  • the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Since such a control calculation can obtain control target values for the amount of absorbent introduced into the absorption tower and the circulation flow rate of the absorbent circulating in the absorption tower based on a single learning model, Low computational load.

Abstract

A wet flue gas desulfurisation device comprises an absorption column, a circulating pump and an absorbing agent slurry supply unit. In this control method for said device, a learning model is constructed, by machine learning, for the relationship between: explanatory variables which include the absorbing agent concentration in an absorption liquid, the circulation flow rate of the absorption liquid and at least one parameter that correlates with the output of a generator; and a target variable which is a future concentration of sulfur dioxide at the outlet of the absorption column. For each generator output, a predicted value of the concentration of sulfur dioxide from the learning model is calculated, and a table indicating an introduced amount of the absorbing agent and a circulation flow rate of the absorption liquid that would be required for the predicted value to be less than or equal to a reference value is created. On the basis of said table, control target values are determined for the introduced amount of the absorbing agent and the circulation flow rate of the absorption liquid, which correspond to the state of the generator.

Description

湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、この湿式排煙脱硫装置の制御装置を備えた遠隔監視システム、情報処理装置、及び、情報処理システムControl method for wet flue gas desulfurization equipment, control device for wet flue gas desulfurization equipment, remote monitoring system provided with this control device for wet flue gas desulfurization equipment, information processing device, and information processing system
 本開示は、湿式排煙脱硫装置の制御方法、湿式排煙脱硫装置の制御装置、この湿式排煙脱硫装置の制御装置を備えた遠隔監視システム、情報処理装置、及び、情報処理システムに関する。
 本願は、2021年3月31日に日本国特許庁に出願された特願2021-061440号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a control method for a wet flue gas desulfurization apparatus, a control apparatus for a wet flue gas desulfurization apparatus, a remote monitoring system provided with the control apparatus for the wet flue gas desulfurization apparatus, an information processing device, and an information processing system.
This application claims priority based on Japanese Patent Application No. 2021-061440 filed with the Japan Patent Office on March 31, 2021, the content of which is incorporated herein.
 湿式排煙脱硫装置では、ボイラ等の燃焼装置で発生した排ガスを脱硫装置の吸収塔内に導入し、吸収塔を循環する吸収液と気液接触させる。気液接触の過程で、吸収液中の吸収剤(例えば、炭酸カルシウム)と排ガス中の二酸化硫黄(SO)とが反応することにより、排ガス中のSOは吸収液に吸収され、排ガスからSOが除去(排ガスが脱硫)される。一方、SOを吸収した吸収液は落下して、吸収塔下方の貯留タンク内に溜められる。貯留タンクには吸収剤が供給され、供給された吸収剤で吸収性能を回復した吸収液は循環ポンプによって吸収塔の上方に供給され、排ガスとの気液接触(SOの吸収)に供せられる。吸収液を循環させる循環ポンプは消費電力が大きいため、従来は、消費電力の抑制を目的として、吸収塔に流入する排ガスの流量と排ガス中のSO濃度等に基づいて必要となる吸収液の循環流量を計算し、循環ポンプの運転台数の制御が行われている。 In a wet flue gas desulfurization system, exhaust gas generated by a combustion device such as a boiler is introduced into an absorption tower of the desulfurization system, and brought into gas-liquid contact with an absorption liquid circulating in the absorption tower. During the gas-liquid contact process, the absorbent (e.g., calcium carbonate) in the absorbent reacts with the sulfur dioxide (SO 2 ) in the flue gas, so that the SO 2 in the flue gas is absorbed by the absorbent and removed from the flue gas. SO2 is removed ( exhaust gas is desulfurized). On the other hand, the absorbent that has absorbed SO 2 drops and is stored in the storage tank below the absorption tower. An absorbent is supplied to the storage tank, and the absorbent whose absorption performance has been restored by the supplied absorbent is supplied to the upper part of the absorption tower by a circulating pump, and is subjected to gas-liquid contact with exhaust gas ( SO2 absorption). be done. Since the circulation pump that circulates the absorbent consumes a large amount of power, conventionally, in order to suppress power consumption, the amount of absorbent required based on the flow rate of the flue gas flowing into the absorber and the SO2 concentration in the flue gas is used. The circulation flow rate is calculated and the number of operating circulation pumps is controlled.
 特許文献1では、このような湿式排煙脱硫装置の吸収塔において吸収液を循環させるための循環ポンプの運転条件を適切に調節するための技術が開示されている。この文献では、ボイラ等の燃焼装置及び湿式排煙脱硫装置から得られた運転データを用いて、運転データと吸収塔出口におけるSO濃度との相関関係、及び、運転データと吸収液に含まれる吸収剤濃度との相関関係を、それぞれ機械学習によってモデル化し、これら2つの学習モデルによって求められるテーブルに基づいて、吸収液の循環流量や吸収剤濃度を最適化するように制御している。 Patent Literature 1 discloses a technique for appropriately adjusting operating conditions of a circulation pump for circulating an absorbent in an absorption tower of such a wet flue gas desulfurization apparatus. In this document, using operating data obtained from a combustion apparatus such as a boiler and a wet flue gas desulfurization apparatus, the correlation between the operating data and the SO 2 concentration at the absorption tower outlet, and the operating data and the absorption liquid The correlation with the absorbent concentration is modeled by machine learning, and based on the table obtained by these two learning models, the circulating flow rate of the absorbent and the absorbent concentration are controlled to be optimized.
特開2020-11163号公報JP 2020-11163 A
 しかしながら上記特許文献1では、学習モデルを構築する際に、吸収塔出口におけるSO濃度や吸収剤濃度と相関性の高いパラメータが特定されていない。そのため、予測外乱が発生するおそれがあり、また運転データの学習範囲が広くなることで、演算負担が大きくなるおそれがある。また運転データと吸収塔出口におけるSO濃度との相関関係、及び、運転データと吸収液に含まれる吸収剤濃度との相関関係を、それぞれ機械学習することによって、2つの学習モデルを構築する必要があることからも演算が複雑となる傾向がある。 However, Patent Document 1 does not specify parameters that are highly correlated with the SO 2 concentration and the absorbent concentration at the outlet of the absorption tower when constructing the learning model. Therefore, there is a risk that prediction disturbance will occur, and the widening of the learning range of the operating data may increase the computational load. In addition, it is necessary to construct two learning models by machine learning the correlation between the operating data and the SO 2 concentration at the absorption tower outlet, and the correlation between the operating data and the concentration of the absorbent contained in the absorbent. The calculation tends to be complicated because of the presence of
 本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、湿式排煙脱硫装置の吸収塔において吸収液を循環させるための制御を簡易的に実施可能な湿式排煙脱硫装置の制御方法、制御装置、遠隔監視システム、情報処理装置、及び、情報処理システムを提供することを目的とする。 At least one embodiment of the present disclosure has been made in view of the above circumstances, and control of a wet flue gas desulfurization apparatus that can easily perform control for circulating an absorbent in an absorption tower of a wet flue gas desulfurization apparatus An object is to provide a method, a control device, a remote monitoring system, an information processing device, and an information processing system.
 本開示の少なくとも一実施形態に係る湿式排煙脱硫装置の制御方法は、上記課題を解決するために、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
 前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する工程と、
 前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成する工程と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する工程と
を備える。
In order to solve the above problems, a method for controlling a wet flue gas desulfurization apparatus according to at least one embodiment of the present disclosure includes:
A control method for a wet flue gas desulfurization apparatus for performing desulfurization by bringing exhaust gas generated in a combustion apparatus and an absorbing liquid into gas-liquid contact in an absorption tower, comprising:
Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A step of building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A step of creating a table showing the input amount of and the circulation flow rate of the absorbent;
and determining control target values for the amount of the absorbent to be supplied and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
 本開示の少なくとも一実施形態に係る湿式排煙脱硫装置の制御装置は、上記課題を解決するために、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
 前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
 前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成するためのテーブル作成部と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と
を備える。
In order to solve the above problems, a control device for a wet flue gas desulfurization apparatus according to at least one embodiment of the present disclosure includes:
A control device for a wet flue gas desulfurization device that performs gas-liquid contact between an exhaust gas generated in a combustion device and an absorbing liquid in an absorption tower to perform desulfurization,
Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model building unit for building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
A control target value determination unit for determining control target values of the amount of the absorbent charged and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
 本開示の少なくとも一実施形態に係る遠隔監視システムは、上記課題を解決するために、
 本開示の少なくとも一実施形態に係る湿式排煙脱硫装置の制御装置と、
 前記湿式排煙脱硫装置の制御装置に電気的に接続された遠隔監視装置と
を備える。
In order to solve the above problems, the remote monitoring system according to at least one embodiment of the present disclosure,
a control device for a wet flue gas desulfurization system according to at least one embodiment of the present disclosure;
and a remote monitoring device electrically connected to the control device of the wet flue gas desulfurization system.
 本開示の少なくとも一実施形態に係る情報処理装置は、上記課題を解決するために、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御に係る処理を実行する情報処理装置であって、
 前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
 前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成するためのテーブル作成部と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と
を備える。
An information processing device according to at least one embodiment of the present disclosure, in order to solve the above problems,
An information processing device that executes processing related to control of a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device and an absorbent into gas-liquid contact in an absorption tower,
Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model building unit for building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
A control target value determination unit for determining control target values of the amount of the absorbent charged and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
 本開示の少なくとも一実施形態に係る情報処理システムは、上記課題を解決するために、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御に係る処理を実行する情報処理装置と通信可能な端末とからなる情報処理システムであって、
 前記情報処理装置は、
 前記端末からの要求により、前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
 前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成するためのテーブル作成部と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と
を備える。
An information processing system according to at least one embodiment of the present disclosure, in order to solve the above problems,
Information processing consisting of an information processing device that executes processing related to the control of a wet flue gas desulfurization device that performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact with the absorption liquid in the absorption tower, and a terminal capable of communication. a system,
The information processing device is
At least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower and the output of a generator driven by the gas generated in the combustion device, according to the request from the terminal and a learning model building unit for building a learning model by machine learning about the relationship between the explanatory variable including the future absorption tower outlet and the objective variable, which is the sulfur dioxide concentration;
calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
A control target value determination unit for determining control target values of the amount of the absorbent charged and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
 本開示の少なくとも一実施形態によれば、湿式排煙脱硫装置の吸収塔において吸収液を循環させるための制御を簡易的に実施可能な湿式排煙脱硫装置の制御方法、制御装置、遠隔監視システム、情報処理装置、及び、情報処理システムを提供できる。 According to at least one embodiment of the present disclosure, a control method, a control device, and a remote monitoring system for a wet flue gas desulfurization apparatus capable of easily performing control for circulating an absorbent in an absorption tower of a wet flue gas desulfurization apparatus , an information processing device, and an information processing system.
一実施形態に係る湿式排煙脱硫装置の構成図である。1 is a configuration diagram of a wet flue gas desulfurization apparatus according to one embodiment; FIG. 一実施形態に係る遠隔監視システムの構成図である。1 is a configuration diagram of a remote monitoring system according to one embodiment; FIG. 一実施形態に係る湿式排煙脱硫装置の制御方法を示すフローチャートである。4 is a flow chart showing a control method for a wet flue gas desulfurization system according to one embodiment. 図3のステップS3における学習モデルの目的変数に関する補正演算を示すフロー図である。FIG. 4 is a flowchart showing a correction calculation for the objective variable of the learning model in step S3 of FIG. 3; 図3のステップS3における学習モデルの説明変数に関する補正演算を示すフロー図である。FIG. 4 is a flowchart showing a correction calculation for explanatory variables of a learning model in step S3 of FIG. 3; 図5で算出された補正値を用いた学習モデルの説明変数の補正演算を示すフロー図である。FIG. 6 is a flowchart showing correction calculation of explanatory variables of a learning model using correction values calculated in FIG. 5 ; 図6で補正演算が実施されるための最適化条件の判定フローを示す図である。FIG. 7 is a diagram showing a determination flow of optimization conditions for performing a correction operation in FIG. 6; 発電機出力ごとに、CaCO濃度と固定容量式の循環ポンプの運転台数を変化させた場合の学習モデルによって算出されたSO濃度の予測値を示す演算例である。FIG. 10 is a calculation example showing predicted values of SO 2 concentration calculated by a learning model when CaCO 3 concentration and the number of operating fixed displacement circulating pumps are changed for each generator output; FIG. 図8の演算結果に基づいて作成されたテーブルの例である。9 is an example of a table created based on the calculation result of FIG. 8. FIG. 発電機出力ごとに、CaCO濃度と可変容量式の循環ポンプの容量を変化させた場合の学習モデルによって算出されたSO濃度の予測値を示す演算例である。It is an example of computation showing predicted values of SO 2 concentration calculated by a learning model when the CaCO 3 concentration and the displacement of a variable displacement circulating pump are changed for each generator output. 図10の演算結果に基づいて作成されたテーブルの例である。11 is an example of a table created based on the calculation result of FIG. 10; 一実施形態に係る情報処理システムの構成図である。1 is a configuration diagram of an information processing system according to an embodiment; FIG. 図12の情報処理装置の内部構成を制御装置とともに示す図である。13 is a diagram showing an internal configuration of the information processing apparatus of FIG. 12 together with a control device; FIG.
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Several embodiments of the present invention will be described below with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative positions, and the like of components described in the following embodiments are not intended to limit the scope of the present invention, but merely illustrative examples.
 図1は一実施形態に係る湿式排煙脱硫装置10の構成図である。
 湿式排煙脱硫装置10は、燃焼装置1で発生した排ガスを脱硫するための装置である。燃焼装置1は例えば蒸気を生成するためのボイラであり、燃焼装置1で生成された蒸気は発電機5に供給されることにより発電可能な発電プラントの一部として構成されている。湿式排煙脱硫装置10は、燃焼装置1と配管2を介して連通する吸収塔11と、吸収塔11内を循環する吸収液の循環用配管3に設けられた複数の循環ポンプ12a,12b,12c,・・・(図1では、3台の循環ポンプが代表的に例示されており、台数は限定されない。また、これらを総称する場合には適宜「循環ポンプ12」と称する)と、吸収液に含まれる吸収剤である炭酸カルシウム(CaCO)のスラリー(吸収剤スラリー)を吸収塔11内に供給するための吸収剤スラリー供給部13と、吸収液中の石膏を回収するための石膏回収部14とを備えている。吸収塔11には、後述する動作で脱硫された排ガスが吸収塔11から流出ガスとして流出するための流出配管16が設けられ、流出配管16には、流出ガス中のSO濃度を測定するためのガス分析計17が設けられている。
FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus 10 according to one embodiment.
The wet flue gas desulfurization device 10 is a device for desulfurizing the exhaust gas generated in the combustion device 1 . The combustion device 1 is, for example, a boiler for generating steam, and is configured as part of a power plant capable of generating power by supplying the steam generated by the combustion device 1 to a power generator 5 . The wet flue gas desulfurization apparatus 10 includes an absorption tower 11 communicating with a combustion apparatus 1 via a pipe 2, and a plurality of circulation pumps 12a, 12b provided in a circulation pipe 3 for absorbing liquid circulating in the absorption tower 11. 12c, . An absorbent slurry supply unit 13 for supplying slurry (absorbent slurry) of calcium carbonate (CaCO 3 ), which is an absorbent contained in the liquid, into the absorption tower 11, and gypsum for recovering gypsum in the absorbent. and a recovery unit 14 . The absorber 11 is provided with an outflow pipe 16 through which the exhaust gas desulfurized by the operation described later flows out from the absorber 11 as an outflow gas. gas analyzer 17 is provided.
 吸収剤スラリー供給部13は、吸収剤スラリーを製造するための吸収剤スラリー製造設備21と、吸収剤スラリー製造設備21と吸収塔11とを連通する吸収剤スラリー供給用配管22と、吸収剤スラリー供給用配管22を流通する吸収剤スラリーの流量を制御するための吸収剤スラリー供給量制御弁23とを備えている。石膏回収部14は、石膏分離器25と、石膏分離器25と吸収塔11とを連通する石膏スラリー抜き出し用配管26と、石膏スラリー抜き出し用配管26に設けられた石膏スラリー抜き出し用ポンプ27とを備えている。 The absorbent slurry supply unit 13 includes an absorbent slurry production facility 21 for producing absorbent slurry, an absorbent slurry supply pipe 22 communicating between the absorbent slurry production facility 21 and the absorption tower 11, and an absorbent slurry. An absorbent slurry supply amount control valve 23 for controlling the flow rate of the absorbent slurry flowing through the supply pipe 22 is provided. The gypsum recovery unit 14 includes a gypsum separator 25, a gypsum slurry withdrawal pipe 26 communicating between the gypsum separator 25 and the absorption tower 11, and a gypsum slurry withdrawal pump 27 provided in the gypsum slurry withdrawal pipe 26. I have it.
 湿式排煙脱硫装置10には、湿式排煙脱硫装置10の制御装置15が設けられている。制御装置15は、燃焼装置1及び湿式排煙脱硫装置10の各種運転データ(例えば、様々な部位における温度や圧力、各種流体の流量等)を取得するための種々の検出器を含む運転データ取得部20と電気的に接続された運転データ受信部30を備えている。運転データ取得部20には、ガス分析計17が含まれている。 The wet type flue gas desulfurization device 10 is provided with a control device 15 for the wet type flue gas desulfurization device 10 . The control device 15 acquires operation data including various detectors for acquiring various operation data (e.g., temperature and pressure at various parts, flow rates of various fluids, etc.) of the combustion device 1 and the wet flue gas desulfurization device 10. A driving data receiving unit 30 electrically connected to the unit 20 is provided. The operating data acquisition unit 20 includes a gas analyzer 17 .
 制御装置15は、運転データ受信部30に電気的に接続された学習モデル構築部38と、学習モデル構築部38に電気的に接続されたテーブル作成部31と、テーブル作成部31に電気的に接続された制御目標値決定部32と、制御目標値決定部32に電気的に接続された循環ポンプ調節部33と、制御目標値決定部32に電気的に接続された吸収剤スラリー供給制御部34と、学習モデル構築部38に電気的に接続された学習モデル補正部35とを備えている。循環ポンプ調節部33は、各循環ポンプ12のそれぞれに電気的に接続されている。吸収剤スラリー供給制御部34は、吸収剤スラリー供給量制御弁23に電気的に接続されている。 The control device 15 includes a learning model construction unit 38 electrically connected to the operation data reception unit 30, a table generation unit 31 electrically connected to the learning model construction unit 38, and a table generation unit 31 electrically connected to the learning model construction unit 38. The connected control target value determination unit 32, the circulation pump adjustment unit 33 electrically connected to the control target value determination unit 32, and the absorbent slurry supply control unit electrically connected to the control target value determination unit 32. 34 and a learning model correction unit 35 electrically connected to the learning model construction unit 38 . The circulation pump adjustment unit 33 is electrically connected to each circulation pump 12 . The absorbent slurry supply controller 34 is electrically connected to the absorbent slurry supply amount control valve 23 .
 図2には、湿式排煙脱硫装置10(図1参照)の制御状態を遠隔監視するための遠隔監視システム40の構成が示されている。遠隔監視システム40は、燃焼装置1(図1参照)及び湿式排煙脱硫装置10(図1参照)を構成する各機器の分散制御システム(DCS)41と、DCS41に電気的に接続されるとともに制御装置15を搭載したエッジサーバー42と、クラウド又はバーチャルプライベートネットワーク(VPN)を介してエッジサーバー42に電気的に通信可能なように接続されたデスクトップパソコンやタブレット型コンピュータ等のような遠隔監視装置43とを備えている。通常はエッジサーバー42から離れた場所に存在する遠隔監視装置43によって、湿式排煙脱硫装置10の制御状態を遠隔監視することができる。 FIG. 2 shows the configuration of a remote monitoring system 40 for remotely monitoring the control state of the wet flue gas desulfurization equipment 10 (see FIG. 1). The remote monitoring system 40 is electrically connected to a distributed control system (DCS) 41 of each device constituting the combustion device 1 (see FIG. 1) and the wet flue gas desulfurization device 10 (see FIG. 1), and to the DCS 41. An edge server 42 equipped with a control device 15, and a remote monitoring device such as a desktop personal computer or tablet computer electrically communicatively connected to the edge server 42 via a cloud or a virtual private network (VPN). 43. A control state of the wet flue gas desulfurization apparatus 10 can be remotely monitored by a remote monitoring device 43 which is normally located away from the edge server 42 .
 次に、燃焼装置1で発生した排ガスを湿式排煙脱硫装置10が脱硫する動作について説明する。
 図1に示されるように、燃焼装置1で発生した排ガスは、配管2を流通して吸収塔11に流入し、吸収塔11内を上昇する。循環ポンプ12の少なくとも1台が稼働することによって吸収液が循環用配管3を流通して吸収塔11に流入し、吸収塔11内において吸収液が流下する。吸収塔11内で流下した吸収液は、吸収塔11内に溜まり、循環ポンプ12によって吸収塔11から流出し、循環用配管3を流通する。このようにして、吸収液は吸収塔11内を循環する。
Next, the operation of desulfurizing the exhaust gas generated in the combustion device 1 by the wet flue gas desulfurization device 10 will be described.
As shown in FIG. 1, the exhaust gas generated in the combustion device 1 flows through the pipe 2, flows into the absorption tower 11, and rises in the absorption tower 11. As shown in FIG. By operating at least one of the circulation pumps 12 , the absorbent flows through the circulation pipe 3 and into the absorption tower 11 , where the absorption liquid flows down. The absorbent flowing down in the absorption tower 11 accumulates in the absorption tower 11 , flows out from the absorption tower 11 by the circulation pump 12 , and flows through the circulation pipe 3 . Thus, the absorbent circulates within the absorption tower 11 .
 吸収塔11内では、上昇する排ガスと流下する吸収液とが気液接触する。排ガスに含まれるSOは、以下の反応式
  SO+CaCO+2HO+1/2O→CaSO・2HO+CO
のように、吸収液中のCaCOと反応して、石膏(CaSO・2HO)が吸収液中に析出する。
In the absorption tower 11, the rising exhaust gas and the flowing absorbing liquid come into gas-liquid contact. SO 2 contained in the exhaust gas is expressed by the following reaction formula: SO 2 +CaCO 3 +2H 2 O+1/2O 2 →CaSO 4.2H 2 O+CO 2
, reacts with CaCO 3 in the absorbent to precipitate gypsum (CaSO 4 .2H 2 O) in the absorbent.
 このようにして、排ガス中のSOの一部が吸収液中に石膏として除去されるので、すなわち排ガスが脱硫されるので、流出配管16を介して吸収塔11から流出する流出ガス中のSO濃度は、配管2を介して吸収塔11に流入する排ガス中のSO濃度よりも低くなっている。吸収塔11から流出した流出ガスは、流出配管16を流通して大気中に放出されるが、その途中でガス分析計17によってSO濃度が測定され、その測定結果が制御装置15の運転データ受信部30に伝送される。 In this way, since part of the SO 2 in the flue gas is removed as gypsum in the absorbent, that is, the flue gas is desulfurized, SO 2 concentration is lower than the SO 2 concentration in the flue gas flowing into the absorption tower 11 via the pipe 2 . The effluent gas that has flowed out of the absorption tower 11 flows through the outflow pipe 16 and is released into the atmosphere. It is transmitted to the receiver 30 .
 流出ガス中のSO濃度は、吸収液中のCaCO濃度に大きな変動がなければ、吸収塔11内を循環する吸収液の循環流量が増加するほど低下する傾向がある。後述する制御方法によって制御装置15が循環ポンプ12の稼働台数を制御することで循環流量を制御することにより、流出ガス中のSO濃度を制御すること、例えば予め設定された設定値以下となるように流出ガス中のSO濃度を制御することができる。 The SO 2 concentration in the effluent gas tends to decrease as the circulation flow rate of the absorbent circulating in the absorption tower 11 increases, unless the CaCO 3 concentration in the absorbent fluctuates greatly. The control device 15 controls the number of operating circulation pumps 12 by a control method described later to control the circulation flow rate, thereby controlling the concentration of SO 2 in the outflow gas, for example, below a preset value. So the SO2 concentration in the effluent gas can be controlled.
 吸収塔11内で吸収液中に析出した石膏は、石膏スラリーとして石膏スラリー抜き出し用ポンプ27によって吸収塔11から抜き出され、石膏スラリーは、石膏スラリー抜き出し用配管26を流通して石膏分離器25に流入する。石膏分離器25において石膏と水とが分離されて、石膏は回収され、水は、図示しない排水設備に送られる。 The gypsum precipitated in the absorbing liquid in the absorption tower 11 is extracted as gypsum slurry from the absorption tower 11 by the gypsum slurry extraction pump 27 , and the gypsum slurry flows through the gypsum slurry extraction pipe 26 to the gypsum separator 25 . flow into Gypsum and water are separated in the gypsum separator 25, the gypsum is recovered, and the water is sent to a drainage facility (not shown).
 吸収液中のCaCOは、SOと反応して石膏となるので、排ガスの脱硫が行われるに従い、吸収液中のCaCO濃度は低下する。後述する制御方法によって制御装置15は吸収剤スラリー供給量制御弁23の開度を制御し、吸収剤スラリー製造設備21で製造された吸収剤スラリーを、吸収剤スラリー供給用配管22を介して吸収塔11内に供給する。これにより、吸収液中のCaCO濃度が予め設定された設定範囲内となり、排ガスの脱硫中におけるCaCO濃度の大きな変動が抑制される。 Since CaCO 3 in the absorbing liquid reacts with SO 2 to form gypsum, the concentration of CaCO 3 in the absorbing liquid decreases as the exhaust gas is desulfurized. The control device 15 controls the opening degree of the absorbent slurry supply amount control valve 23 by a control method to be described later, and absorbs the absorbent slurry produced in the absorbent slurry production facility 21 through the absorbent slurry supply pipe 22. Feed into column 11 . As a result, the CaCO 3 concentration in the absorbent falls within a preset range, and large fluctuations in the CaCO 3 concentration during desulfurization of the flue gas are suppressed.
 次に、制御装置15による湿式排煙脱硫装置10の制御方法について説明する。図3は一実施形態に係る湿式排煙脱硫装置10の制御方法を示すフローチャートである。 Next, a method of controlling the wet flue gas desulfurization apparatus 10 by the control device 15 will be described. FIG. 3 is a flow chart showing a control method for the wet flue gas desulfurization system 10 according to one embodiment.
 まず、ステップS1において燃焼装置1及び湿式排煙脱硫装置10の各種運転データを収集した後、ステップS2において、各種運転データと、吸収塔11から流出する流出ガス中の将来のSO濃度との関係について機械学習により学習モデルを構築する。次に、ステップS3において、ステップS2で構築された学習モデルを補正する。そしてステップS4において、ステップS3で得られた補正後の学習モデルを用いてテーブルを作成する。続くステップS5において、ステップS4で作成されたテーブルに基づいて、流出ガス中のSO濃度が予め設定された設定値以下となる吸収液の循環流量、CaCOの吸収剤スラリーの供給量について制御目標値を決定し、ステップS6において、ステップS5で決定された循環流量の制御目標値に基づいて循環ポンプ12の運転条件を調節し、ステップS7において、ステップS5で決定されたCaCOの吸収剤スラリーの供給量の制御目標値に基づいて吸収剤スラリー供給量制御弁23を制御する。これにより、予め設定された設定値以下となるように流出ガス中のSO濃度が制御される。 First, after collecting various operation data of the combustion device 1 and the wet-type flue gas desulfurization device 10 in step S1, in step S2, various operation data and the future SO2 concentration in the outflow gas flowing out from the absorber 11 Build a learning model for relationships using machine learning. Next, in step S3, the learning model constructed in step S2 is corrected. Then, in step S4, a table is created using the corrected learning model obtained in step S3. In the following step S5, based on the table created in step S4, the circulation flow rate of the absorbing liquid and the supply amount of the CaCO 3 absorbent slurry are controlled so that the SO 2 concentration in the outflow gas is equal to or lower than a preset value. A target value is determined, in step S6, the operating conditions of the circulation pump 12 are adjusted based on the control target value of the circulation flow rate determined in step S5, and in step S7, the CaCO 3 absorbent determined in step S5 The absorbent slurry supply amount control valve 23 is controlled based on the control target value of the slurry supply amount. Thereby, the SO 2 concentration in the outflow gas is controlled so as to be equal to or lower than the preset value.
 尚、ステップS3における学習モデルの補正は、補正前の学習モデルの精度が十分である場合には省略してもよい。また図3では、ステップS6の後にステップS7を実施する場合を例示しているが、ステップS6の前にステップS7を実施してもよいし、ステップS6及びS7を同時に実施してもよい。 Note that the correction of the learning model in step S3 may be omitted if the accuracy of the learning model before correction is sufficient. Further, FIG. 3 illustrates the case where step S7 is performed after step S6, but step S7 may be performed before step S6, or steps S6 and S7 may be performed simultaneously.
 次に、制御装置15による湿式排煙脱硫装置10の制御方法の各ステップについて詳細に説明する。
 ステップS1では、図1に示されるように、燃焼装置1及び湿式排煙脱硫装置10の各種運転データを運転データ取得部20が取得した後、取得された各種運転データが制御装置15に伝送されて運転データ受信部30が受信することで、制御装置15が各種運転データを収集する。前述したように、運転データ取得部20はガス分析計17を含んでいるので、各種運転データは流出ガス中のSO濃度を含んでいる。
Next, each step of the method of controlling the wet flue gas desulfurization apparatus 10 by the control device 15 will be described in detail.
In step S1, as shown in FIG. 1, after the operation data acquisition unit 20 acquires various operation data of the combustion device 1 and the wet-type flue gas desulfurization device 10, the acquired various operation data are transmitted to the control device 15. The control device 15 collects various types of operation data as the operation data receiving unit 30 receives the operation data. As described above, since the operating data acquisition section 20 includes the gas analyzer 17, various operating data include the SO2 concentration in the outflow gas.
 ステップS2では、学習モデル構築部38は、運転データ取得部20によって収集された各種運転データと、流出ガス中の将来のSO濃度との関係について機械学習により学習モデルを構築する。学習モデルは、例えば、重回帰、リッジ回帰、ラッソ回帰或いはElastic Net等の回帰手法を用いた回帰モデルとして構築される。本実施形態では、学習モデルの一例として、次式のように線形多項式で表される回帰モデルが構築される。
吸収塔出口におけるSO濃度=k1×説明変数1+k2×説明変数2+・・・+kn×説明変数n+b   (1)
 このように学習モデルとして線形多項式を用いることで、複雑なシミュレーションモデルに比べて説明可能性(解釈性)が高く、演算負荷も効果的に軽減できる。尚、nは任意の自然数であり、k1~knは係数であり、bは任意の切片である。
In step S2, the learning model building unit 38 builds a learning model by machine learning regarding the relationship between the various operating data collected by the operating data acquisition unit 20 and the future SO 2 concentration in the outflow gas. The learning model is constructed as a regression model using a regression technique such as multiple regression, ridge regression, Lasso regression, or Elastic Net, for example. In this embodiment, as an example of a learning model, a regression model represented by a linear polynomial as shown in the following equation is constructed.
SO 2 concentration at the outlet of the absorption tower=k1×explanatory variable 1+k2×explanatory variable 2+ . . . +kn×explanatory variable n+b (1)
By using a linear polynomial as a learning model in this way, the explainability (interpretability) is higher than that of a complicated simulation model, and the computational load can be effectively reduced. Note that n is an arbitrary natural number, k1 to kn are coefficients, and b is an arbitrary intercept.
 機械学習によって得られる学習モデルは、運転データ取得部20によって取得された運転データに含まれる複数のパラメータからなる説明変数と、流出ガス中の将来のSO濃度を目的変数として、両者の相関を示すモデルとして構築される。ここで学習モデルの説明変数に含まれる複数のパラメータの組み合わせは、以下の候補から任意に選択することができる。
i)発電機出力指令値(発電機5に対する外部からの出力指令値)
ii)発電機出力(発電機5の出力)
iii)ボイラ空気流量又はボイラ排ガス流量(燃焼装置1に対する供給空気流量又は燃焼装置1からの排ガス流量)
iv)脱硫入口SO濃度又はボイラ出口SO濃度(吸収塔11入口におけるSO濃度又は燃焼装置1出口におけるSO濃度)
v)脱硫出口SO濃度又は煙突入口SO濃度(吸収塔11出口におけるSO濃度)
vi)吸収液のCaCO濃度又はpH
vii)吸収液循環流量(循環ポンプ12の稼働台数又は吐出流量の制御値)
 これらの候補は、通常多くの湿式排煙脱硫装置10で従来から計測可能なパラメータである。
The learning model obtained by machine learning uses an explanatory variable consisting of a plurality of parameters included in the operating data acquired by the operating data acquisition unit 20 and the future SO 2 concentration in the outflow gas as objective variables, and calculates the correlation between the two. It is built as a model to show. The combination of parameters included in the explanatory variables of the learning model can be arbitrarily selected from the following candidates.
i) generator output command value (output command value from the outside for the generator 5)
ii) generator output (output of generator 5)
iii) Boiler air flow rate or boiler exhaust gas flow rate (supply air flow rate to combustion device 1 or exhaust gas flow rate from combustion device 1)
iv) desulfurization inlet SO2 concentration or boiler outlet SO2 concentration ( SO2 concentration at the absorption tower 11 inlet or SO2 concentration at the combustion device 1 outlet)
v) desulfurization outlet SO2 concentration or flue inlet SO2 concentration ( SO2 concentration at the outlet of the absorber tower 11 )
vi) CaCO3 concentration or pH of the absorption liquid
vii) Absorbent circulation flow rate (control value for the number of operating circulation pumps 12 or discharge flow rate)
These candidates are typically parameters conventionally measurable in many wet flue gas desulfurization systems 10 .
 本実施形態では学習モデルの説明変数は、上記候補のうち、i)発電機出力指令値(発電機5に対する外部からの出力指令値)、iii)ボイラ空気流量又はボイラ排ガス流量(燃焼装置1に対する供給空気流量又は燃焼装置1からの排ガス流量)、又は、iv)脱硫入口SO濃度又はボイラ出口SO濃度(吸収塔11入口におけるSO濃度又は燃焼装置1出口におけるSO濃度)のうち少なくとも1つが含まれるように選択される。より好ましくは、学習モデルの説明変数は、上記候補のうち、iii)ボイラ空気流量又はボイラ排ガス流量(燃焼装置1に対する供給空気流量又は燃焼装置1からの排ガス流量)、及び、iv)脱硫入口SO濃度又はボイラ出口SO濃度(吸収塔11入口におけるSO濃度又は燃焼装置1出口におけるSO濃度)を含むように選択される。これにより、目的関数である流出ガス中の将来のSO濃度を、良好な精度で予測可能な学習モデルを構築できる。また運転データ取得部20で取得される運転データから、このように一部のパラメータを説明変数として選定することで、学習対象データを効率的に絞り込み、機械学習の演算負担を軽減することができる。 In this embodiment, the explanatory variables of the learning model are, among the above candidates, i) generator output command value (output command value from the outside for the generator 5), iii) boiler air flow rate or boiler exhaust gas flow rate (for the combustion device 1 supply air flow rate or flue gas flow rate from the combustion device 1 ), or iv) desulfurization inlet SO2 concentration or boiler outlet SO2 concentration ( SO2 concentration at the inlet of the absorption tower 11 or SO2 concentration at the combustion device 1 outlet). One is selected to be included. More preferably, the explanatory variables of the learning model are, among the above candidates, iii) boiler air flow rate or boiler exhaust gas flow rate (supply air flow rate to combustion device 1 or exhaust gas flow rate from combustion device 1), and iv) desulfurization inlet SO 2 concentration or boiler exit SO2 concentration ( SO2 concentration at absorber 11 inlet or SO2 concentration at combustor 1 exit). As a result, it is possible to build a learning model capable of predicting the future SO 2 concentration in the outflow gas, which is the objective function, with good accuracy. By selecting some parameters as explanatory variables from the operating data acquired by the operating data acquisition unit 20, it is possible to efficiently narrow down the data to be learned and reduce the computational load of machine learning. .
 ステップS3では、学習モデル補正部35によって、ステップS2で構築された学習モデルの補正が行われる。学習モデルの補正は、学習モデルによって算出されるSO濃度の予測値と実測値との誤差に基づいて行われ、学習モデルの説明変数及び目的関数についてそれぞれ行われる。 In step S3, the learning model correction unit 35 corrects the learning model constructed in step S2. The correction of the learning model is performed based on the error between the SO 2 concentration predicted value calculated by the learning model and the measured value, and is performed for the explanatory variable and the objective function of the learning model.
 ここで図4は図3のステップS3における学習モデルの目的変数に関する補正演算を示すフロー図である。  Here, FIG. 4 is a flowchart showing the correction calculation for the objective variable of the learning model in step S3 of FIG.
 目的変数に関する補正演算では、まず、補正対象となる学習モデルを用いて算出された予測値Vpに対して、計測遅れ分に相当する補正時間ΔVpが遅れて出力される。学習モデルを用いて算出される予測値Vpには、ガス分析計17で実測値Vmを計測するために必要な時間が含まれていない。補正時間ΔVpは、ガス分析計17で実測値Vmを計測するために必要な時間に対応しており、予測値Vpに対して遅れて出力されることで、ガス分析計17で計測された実測値Vmと比較可能にすることができる。予測値Vpに対して補正時間ΔVpが遅れて出力されることにより、補正後の予測値Vp´が求められる。そして補正後の予測値Vp´と、ガス分析計17の実測値Vmとの比(Vm/Vp´)を算出し、その移動平均を算出することで、目的関数に関する補正値Aが求められる。 In the correction calculation for the objective variable, first, the correction time ΔVp corresponding to the measurement delay is output after the predicted value Vp calculated using the learning model to be corrected. The predicted value Vp calculated using the learning model does not include the time required for the gas analyzer 17 to measure the measured value Vm. The correction time ΔVp corresponds to the time required for the gas analyzer 17 to measure the actual measurement value Vm. It can be made comparable to the value Vm. By outputting the correction time ΔVp with a delay from the predicted value Vp, the corrected predicted value Vp′ is obtained. Then, the ratio (Vm/Vp') between the predicted value Vp' after correction and the measured value Vm of the gas analyzer 17 is calculated, and the moving average thereof is calculated to obtain the correction value A related to the objective function.
 このように算出された補正値Aは、学習モデルに適用される。例えば上記(1)式で表される学習モデルの場合、補正後の学習モデルは次式となる。
吸収塔出口におけるSO濃度=(k1×説明変数1+k2×説明変数2+・・・+kn×説明変数n+b)×A   (2)
The correction value A calculated in this manner is applied to the learning model. For example, in the case of the learning model represented by the above formula (1), the learning model after correction is expressed by the following formula.
SO 2 concentration at the outlet of the absorption tower = (k1 x explanatory variable 1 + k2 x explanatory variable 2 + ... + kn x explanatory variable n + b) x A (2)
 続いて図5は図3のステップS3における学習モデルの説明変数に関する補正演算を示すフロー図である。ここでは、補正演算の一例として、発電機5の出力(発電機出力Y)と相関を有するパラメータである説明変数SGを補正する場合について説明する。 Next, FIG. 5 is a flowchart showing the correction calculation for the explanatory variables of the learning model in step S3 of FIG. Here, as an example of the correction calculation, a case of correcting the explanatory variable SG, which is a parameter having a correlation with the output of the generator 5 (the generator output Y), will be described.
 発電機出力Yと説明変数SGの値X1~X4との相関を規定する基準テーブルTrが予め用意される。基準テーブルTrは、図5に示すように、発電機出力Yの値ごとに説明変数SGの値X1~X4を規定する。本実施形態では、発電機出力Yが25%MWである負荷点、50%MWである負荷点、75%MWである負荷点、100%MWである負荷点についてそれぞれ説明変数SGの値X1~X4を規定する特性関数を含む基準テーブルTrが示されている。 A reference table Tr that defines the correlation between the generator output Y and the values X1 to X4 of the explanatory variable SG is prepared in advance. The reference table Tr prescribes values X1 to X4 of the explanatory variable SG for each value of the generator output Y, as shown in FIG. In this embodiment, the values X1 to A reference table Tr is shown containing characteristic functions defining X4.
 学習モデル補正部35は、このような基準テーブルTrに対して、外部から取得した発電機出力Yを入力することにより、対応する説明変数SGを出力する。一方、学習モデル補正部35は、運転データ受信部30で取得した結果に基づいて説明変数の実測値SGmを求め、基準テーブルTrから出力された説明変数の値SGとの比(SGm/SG)を求める。そして当該比の移動平均を算出することで、説明関数に関する補正値Bが求められる。 The learning model correction unit 35 outputs the corresponding explanatory variable SG by inputting the generator output Y obtained from the outside to such a reference table Tr. On the other hand, the learning model correction unit 35 obtains the actual measurement value SGm of the explanatory variable based on the result obtained by the operation data receiving unit 30, and the ratio (SGm/SG) to the value SG of the explanatory variable output from the reference table Tr. Ask for Then, by calculating the moving average of the ratio, the correction value B for the explanatory function is obtained.
 このように算出された説明変数SGに関する補正値Bは、学習モデルに適用される。図6は図5で算出された補正値Bを用いた学習モデルの説明変数SGの補正演算を示すフロー図である。 The correction value B for the explanatory variable SG calculated in this way is applied to the learning model. FIG. 6 is a flowchart showing correction calculation of the explanatory variable SG of the learning model using the correction value B calculated in FIG.
 図6に示すように、最適化条件Cが成立した場合に、補正値Bによって基準テーブルTrに規定される特性関数が補正される。最適化条件Cは、補正値Bによる基準テーブルTrを補正するための環境が整っているか否かを判定するための少なくとも1つ(例えば全て)の条件を含み、例えば、湿式排煙脱硫装置10や制御装置15において動作状態が安定しており、且つ、異常などが発生していないことを多角的な観点から判定することができる。 As shown in FIG. 6, when the optimization condition C is satisfied, the characteristic function defined in the reference table Tr is corrected by the correction value B. The optimization condition C includes at least one (for example, all) conditions for determining whether or not the environment for correcting the reference table Tr with the correction value B is in place. It can be determined from various points of view that the operation state is stable in the control device 15 and that no abnormality has occurred.
 図7は図6で補正演算が実施されるための最適化条件Cの判定フローを示す図である。図7では、最適化条件Cの一例として、次の5つの条件に基づく判定がなされる。
(条件1)説明変数に異常が監視されていないこと。
(条件2)説明変数の実測値SGmを取得するための計器が調整中でないこと。
(条件3)発電機出力(又はボイラ負荷)が所定値(例えば0%~50%)以上であること。
(条件4)プラントが通煙状態であること。
(条件5)演算ソフトウェアの初期化が完了されていること。
FIG. 7 is a diagram showing a determination flow of the optimization condition C for performing correction calculation in FIG. In FIG. 7, as an example of the optimization condition C, determination is made based on the following five conditions.
(Condition 1) Abnormalities are not monitored in explanatory variables.
(Condition 2) The instrument for acquiring the actual measurement value SGm of the explanatory variable is not being adjusted.
(Condition 3) The generator output (or boiler load) is above a predetermined value (for example, 0% to 50%).
(Condition 4) The plant must be in a smoking state.
(Condition 5) Initialization of the computing software must be completed.
 このような最適化条件Cが成立した場合、学習モデル補正部35は、基準テーブルTrに規定される特性関数について、発電機出力に対応する説明変数SGの値に対して、補正値Bを乗算することにより、説明変数の補正を行う。このような補正の結果、図6に示すように、基準テーブルTrに規定される特性関数が更新される(一点鎖線は補正前の特性関数を示しており、実線は補正後の特性関数を示している)。 When such an optimization condition C is satisfied, the learning model correction unit 35 multiplies the correction value B by the explanatory variable SG value corresponding to the generator output for the characteristic function defined in the reference table Tr. By doing so, the explanatory variables are corrected. As a result of such correction, the characteristic functions defined in the reference table Tr are updated as shown in FIG. ing).
 ステップS4では、ステップS3で補正された学習モデルに基づいてテーブルTの作成が行われる。テーブルTの作成は、発電機出力ごとに、学習モデルによって算出されるSO濃度の予測値が、予め設定された基準値を満たす(例えば、基準値以下になる)ための吸収剤の投入量及び吸収液の循環流量を算出することにより行われる。 At step S4, a table T is created based on the learning model corrected at step S3. Table T is created by the amount of absorbent added so that the predicted value of SO 2 concentration calculated by the learning model satisfies a preset reference value (for example, becomes equal to or lower than the reference value) for each generator output. and by calculating the circulation flow rate of the absorbent.
 ここで図3のステップS4におけるテーブルTの作成方法について具体的に説明する。まず循環ポンプ12が固定容量式であることで、吸収液の循環流量が循環ポンプ12の台数制御によって行われる場合について図8及び図9を参照して説明する。図8は、発電機出力ごとに、CaCO濃度と固定容量式の循環ポンプ12の運転台数を変化させた場合の学習モデルによって算出されたSO濃度の予測値を示す演算例であり、図9は図8の演算結果に基づいて作成されたテーブルTの例である。 Here, the method of creating the table T in step S4 of FIG. 3 will be specifically described. First, a case where the circulation pumps 12 are of a fixed capacity type and the circulation flow rate of the absorbent is controlled by controlling the number of circulation pumps 12 will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a calculation example showing predicted values of SO 2 concentration calculated by the learning model when changing the CaCO 3 concentration and the number of fixed capacity circulation pumps 12 in operation for each generator output. 9 is an example of a table T created based on the calculation result of FIG.
 尚、CaCO濃度は吸収剤の投入量に対応するパラメータであり、許容範囲として「2~5」の値を取ることができる。また循環ポンプ12の運転台数は、吸収液の循環量に対応するパラメータであり、許容範囲として「8~10」の値を取ることができる。これらの許容範囲は、例えばプラント設計上の値から事前設定されてもよい。 Incidentally, the CaCO 3 concentration is a parameter corresponding to the amount of absorbent charged, and can take a value of "2 to 5" as an allowable range. The number of circulating pumps 12 in operation is a parameter corresponding to the circulating amount of the absorbent, and can take a value of "8 to 10" as an allowable range. These tolerances may be preset from plant design values, for example.
 図8において、まず発電機出力が「50%」である場合に着目すると、CaCO濃度が「3」、循環ポンプ運転台数が「8」である場合、学習モデルによるSO濃度の予想値は105ppmであり、基準値(100ppm)を超過している。この場合、テーブル作成部31は、循環ポンプ運転台数より運用コストに影響が低いCaCO濃度を1段階増加させることで「4」に変更する。すると、学習モデルによるSO濃度の予想値は100ppmとなり、基準値(100ppm)以下となる。従って、テーブル作成部31は、発電機出力が「50%」における最適なCaCO濃度は「4」であり、循環ポンプ運転台数は「8」であると特定する。 In FIG. 8, focusing on the case where the generator output is "50%", when the CaCO3 concentration is "3" and the number of operating circulation pumps is " 8 ", the predicted value of the SO2 concentration by the learning model is It is 105 ppm, exceeding the standard value (100 ppm). In this case, the table creating unit 31 changes the CaCO 3 concentration to "4" by increasing by one step the CaCO 3 concentration, which has less impact on the operation cost than the number of operating circulation pumps. Then, the predicted value of the SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creating unit 31 specifies that the optimum CaCO 3 concentration at the generator output of "50%" is "4" and the number of operating circulation pumps is "8".
 続いて発電機出力が「60%」である場合に着目すると、CaCO濃度が「4」、循環ポンプ運転台数が「8」である場合、学習モデルによるSO濃度の予想値は120ppmであり、基準値(100ppm)を超過している。この場合、テーブル作成部31は、循環ポンプ運転台数より運用コストに影響が低いCaCO濃度を1段階増加させることで「5」に変更する。しかしながら学習モデルによるSO濃度の予想値は110ppmであり、依然として基準値(100ppm)を超過している。この場合、CaCO濃度が許容範囲の上限値「5」に達しても基準値を満足することができないため、循環ポンプ運転台数を「9」に増加させるとともに、CaCO濃度を「3」に減少させる。その結果、学習モデルによるSO濃度の予想値は100ppmとなり、基準値(100ppm)以下となる。従って、テーブル作成部31は、発電機出力が「60%」における最適なCaCO濃度は「3」であり、ポンプ運転台数は「9」であると特定する。 Next, focusing on the case where the generator output is "60%", the CaCO3 concentration is "4", and the number of operating circulation pumps is " 8 ", the SO2 concentration predicted by the learning model is 120 ppm. , exceeds the reference value (100 ppm). In this case, the table creation unit 31 changes the CaCO 3 concentration to “5” by increasing by one step the CaCO 3 concentration, which has less influence on the operation cost than the number of operating circulation pumps. However, the SO 2 concentration predicted by the learning model is 110 ppm, still exceeding the reference value (100 ppm). In this case, even if the CaCO 3 concentration reaches the upper limit of the allowable range “5”, the standard value cannot be satisfied, so the number of operating circulation pumps is increased to “9” and the CaCO 3 concentration is set to “3”. Decrease. As a result, the predicted value of SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creation unit 31 specifies that the optimum CaCO 3 concentration is "3" and the number of operating pumps is "9" when the generator output is "60%".
 テーブル作成部31は、このように発電機出力ごとに、最適なCaCO濃度と循環ポンプ運転台数を特定することで図9に示すテーブルTを作成する。図9では、発電機出力が増加するに従って、循環ポンプ12の運転台数がステップ的に増加するタイミングでCaCO濃度が減少しながら増加するようにテーブルTが作成される。 The table creation unit 31 creates the table T shown in FIG. 9 by specifying the optimum CaCO 3 concentration and the number of operating circulation pumps for each generator output in this way. In FIG. 9, the table T is created so that the CaCO 3 concentration decreases and increases at the timing when the number of operating circulation pumps 12 increases stepwise as the generator output increases.
 次に循環ポンプ12が可変容量式であることで、吸収液の循環流量が循環ポンプ12の容量制御によって行われる場合について図10及び図11を参照して説明する。図10は、発電機出力ごとに、CaCO濃度と可変容量式の循環ポンプ12の容量を変化させた場合の学習モデルによって算出されたSO濃度の予測値を示す演算例であり、図11は図10の演算結果に基づいて作成されたテーブルTの例である。 Next, a case where the circulating pump 12 is of a variable capacity type so that the circulating flow rate of the absorbent is controlled by controlling the capacity of the circulating pump 12 will be described with reference to FIGS. 10 and 11. FIG. FIG. 10 is a calculation example showing predicted values of the SO 2 concentration calculated by the learning model when the CaCO 3 concentration and the capacity of the variable displacement circulation pump 12 are changed for each generator output, and FIG. is an example of a table T created based on the calculation result of FIG.
 尚、CaCO濃度は吸収剤の投入量に対応するパラメータであり、許容範囲として「2~5」の値を取ることができる。また循環ポンプ容量は、吸収液の循環量に対応するパラメータであり、許容範囲として「10~100」の値を取ることができる。これらの許容範囲は、例えばプラント設計上の値から事前設定されてもよい。 Incidentally, the CaCO 3 concentration is a parameter corresponding to the amount of absorbent charged, and can take a value of "2 to 5" as an allowable range. Also, the circulating pump capacity is a parameter corresponding to the circulating amount of the absorbent, and can take a value of "10 to 100" as an allowable range. These tolerances may be preset from plant design values, for example.
 図10において、まず発電機出力が「50%」である場合に着目すると、CaCO濃度が「3」、循環ポンプ容量が「10」である場合、学習モデルによるSO濃度の予想値は105ppmであり、基準値(100ppm)を超過している。この場合、テーブル作成部31は、循環ポンプ容量より運用コストに影響が低いCaCO濃度を1段階増加させることで「4」に変更する。すると、学習モデルによるSO濃度の予想値は100ppmとなり、基準値(100ppm)以下となる。従って、テーブル作成部31は、発電機出力が「50%」における最適なCaCO濃度は「4」であり、循環ポンプ容量は「10」であると特定する。 In FIG. 10, when the generator output is "50%", when the CaCO3 concentration is "3" and the circulating pump capacity is " 10 ", the SO2 concentration predicted by the learning model is 105 ppm. and exceeds the standard value (100 ppm). In this case, the table creating unit 31 changes the CaCO 3 concentration to "4" by increasing by one step the CaCO 3 concentration, which has less influence on the operation cost than the capacity of the circulating pump. Then, the predicted value of the SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creating unit 31 specifies that the optimum CaCO 3 concentration at the generator output of "50%" is "4" and the circulation pump capacity is "10".
 続いて発電機出力が「60%」である場合に着目すると、CaCO濃度が「5」、循環ポンプ容量が「10」である場合、学習モデルによるSO濃度の予想値は120ppmであり、基準値(100ppm)を超過している。この場合、テーブル作成部31は、CaCO濃度が許容範囲の上限値である「5」に達しているため、ポンプ容量を「15」に増加するように変更する。しかしながら学習モデルによるSO濃度の予想値は110ppmであり、依然として基準値(100ppm)を超過している。この場合、テーブル作成部31は、循環ポンプ容量を「18」に更に増加するように変更する。その結果、学習モデルによるSO濃度の予想値は100ppmとなり、基準値(100ppm)以下となる。従って、テーブル作成部31は、発電機出力が「60%」における最適なCaCO濃度は「5」であり、循環ポンプ容量は「18」であると特定する。 Next, focusing on the case where the generator output is "60%", when the CaCO3 concentration is "5" and the circulation pump capacity is " 10 ", the predicted value of the SO2 concentration by the learning model is 120 ppm, It exceeds the standard value (100 ppm). In this case, since the CaCO 3 concentration has reached the upper limit of the allowable range of "5", the table creating unit 31 changes the pump displacement to "15". However, the SO 2 concentration predicted by the learning model is 110 ppm, still exceeding the reference value (100 ppm). In this case, the table generator 31 changes the circulating pump capacity to "18". As a result, the predicted value of SO 2 concentration by the learning model is 100 ppm, which is below the reference value (100 ppm). Therefore, the table creation unit 31 specifies that the optimum CaCO 3 concentration at the generator output of "60%" is "5" and the circulation pump capacity is "18".
 テーブル作成部31は、このように発電機出力ごとに、最適なCaCO濃度と循環ポンプ容量を特定することで図11に示すテーブルを作成する。図11では、発電機出力が増加するに従って、CaCO濃度の増加では対応しきれなくなったタイミングで、ポンプ容量が増加するようにテーブルTが作成される。 The table creating unit 31 creates the table shown in FIG. 11 by specifying the optimum CaCO 3 concentration and circulation pump capacity for each generator output in this way. In FIG. 11, the table T is created so that the pump displacement increases at the timing when the increase in the CaCO 3 concentration becomes insufficient as the generator output increases.
 尚、図8~図11では、テーブルを作成するための最適なCaCO濃度と循環ポンプ運転台数(又は循環ポンプ容量)の探索を、運用コストを最小化するために循環ポンプ運転台数(又は循環ポンプ容量)を極力小さく抑えながら基準値を満たすSO濃度の予測値が得られるように行った場合を示しているが、他の観点から探索を行ってもよい。 8 to 11, the search for the optimum CaCO 3 concentration and the number of operating circulation pumps (or circulation pump capacity) for creating the tables is performed to minimize the operation cost. Although the case is shown in which the predicted value of the SO 2 concentration that satisfies the reference value is obtained while keeping the pump capacity as small as possible, the search may be performed from other viewpoints.
 また本実施形態では図9及び図11のようなグラフ形式のテーブルTを例示したが、テーブルTは必ずしもこのような形態である必要はなく、マトリックスや数式等の形態であってもよい。 Also, in this embodiment, the graph-format table T as shown in FIGS. 9 and 11 is illustrated, but the table T does not necessarily have to be in such a form, and may be in the form of a matrix, formula, or the like.
 ステップS5では、制御目標値決定部32は、発電機出力の指令値を取得し、ステップS4で作成したテーブルTに基づいて、当該発電機出力に対応する制御目標値(吸収剤の投入量及び吸収液の循環流量のそれぞれの制御目標値)を決定する。そしてステップS6及びS7は、ステップS5で決定された制御目標値に基づいて、循環ポンプ調節部33によって循環ポンプ12a~12cを制御するとともに、吸収剤スラリー供給制御部34によって吸収剤の供給量を制御する。 In step S5, the control target value determination unit 32 acquires the command value of the generator output, and based on the table T created in step S4, the control target value (absorbent input amount and Each control target value) of the circulation flow rate of the absorbing liquid is determined. In steps S6 and S7, the circulation pump adjustment unit 33 controls the circulation pumps 12a to 12c based on the control target value determined in step S5, and the absorbent slurry supply control unit 34 adjusts the supply amount of the absorbent. Control.
 尚、ステップS5において、循環流量の調節は、循環ポンプ12が固定容量式である場合には図9に示すテーブルに基づいて循環ポンプ台数を制御することによって行われ、循環ポンプ12が可変容量式である場合には図11に示すテーブルTに基づいてポンプ容量を制御することによって行われる。 In step S5, the circulation flow rate is adjusted by controlling the number of circulation pumps based on the table shown in FIG. , the pump capacity is controlled based on the table T shown in FIG.
 このように上記実施形態によれば、将来における流出ガス中のSO濃度が予め設定された基準値以下となる範囲で、吸収塔11への吸収剤の投入量、及び、吸収塔11内を循環する吸収液の循環流量を適切に調節できる。このような制御演算は、単一の学習モデルに基づいて吸収塔11への吸収剤の投入量、及び、吸収塔11内を循環する吸収液の循環流量についてそれぞれ制御目標値を求めることができるため、演算負担が少ない。 As described above, according to the above embodiment, the amount of absorbent introduced into the absorption tower 11 and the inside of the absorption tower 11 are controlled within a range in which the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. The circulation flow rate of the circulating absorbent can be adjusted appropriately. Such a control calculation can obtain control target values for the amount of absorbent introduced into the absorber 11 and the circulation flow rate of the absorbent circulating in the absorber 11 based on a single learning model. Therefore, the computational burden is small.
 尚、上記実施形態における制御装置15で実行する各処理をクラウド環境上あるいはVPNを介してエッジサーバー42に電気的に通信可能なように接続された情報処理装置44(図12参照)で実行する構成をとることが可能である。この場合、情報処理装置44は、運転データ受信部30、学習モデル構築部38、学習モデル補正部35、テーブル作成部31、及び制御目標値決定部32を備え、当該制御目標値決定部32で決定した制御目標値を制御装置15における循環ポンプ調節部33及び吸収剤スラリー供給制御部34に対して通信することで、循環ポンプや吸収剤の供給量を制御してもよい。 Each processing executed by the control device 15 in the above embodiment is executed by the information processing device 44 (see FIG. 12) electrically communicably connected to the edge server 42 in the cloud environment or via VPN. Configurations are possible. In this case, the information processing device 44 includes an operation data reception unit 30, a learning model construction unit 38, a learning model correction unit 35, a table creation unit 31, and a control target value determination unit 32. The control target value determination unit 32 By communicating the determined control target value to the circulation pump adjustment section 33 and the absorbent slurry supply control section 34 in the control device 15, the circulation pump and the absorbent supply amount may be controlled.
 また、運転データ受信部30は、制御装置15の運転データ中継部39(図13)を介して、各種運転データを受信してもよいし、前述したように運転データ取得部20から各種運転データを受信してもよい。とりわけ、クラウド環境上で演算する場合、セキュリティの観点から、循環ポンプや吸収剤の制御目標値を直接制御せず、表示のみとする場合がある。例えば、クラウド環境上で生成した運転指標図を、お客様所有のデバイス(端末45)に専用アプリを通して送信・図示し、現地の運転指標図の更新はお客様の手によって行われる場合がある。一方、情報処理装置44は、循環ポンプ調節部33及び吸収剤スラリー供給制御部34をも備え、遠隔で循環ポンプや吸収剤の供給量を制御してもよい。更に、情報処理装置44は、端末45からの要求により、情報処理装置44において各処理を実行する構成を備えてもよい。 Further, the operation data receiving unit 30 may receive various kinds of operation data via the operation data relay unit 39 (FIG. 13) of the control device 15, or may receive various kinds of operation data from the operation data acquisition unit 20 as described above. may be received. In particular, when calculating in a cloud environment, from the viewpoint of security, there are cases where the control target values of the circulating pump and absorbent are not directly controlled, but only displayed. For example, there are cases where a driving index map generated in a cloud environment is sent to a customer-owned device (terminal 45) and illustrated through a dedicated application, and the local driving index map is updated by the customer. On the other hand, the information processing device 44 may also include a circulation pump control section 33 and an absorbent slurry supply control section 34 to remotely control the circulation pump and the supply amount of absorbent. Furthermore, the information processing device 44 may be configured to execute each process in response to a request from the terminal 45 .
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components within the scope of the present disclosure, and the above-described embodiments may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood, for example, as follows.
(1)一実施形態に係る湿式排煙脱硫装置の制御方法は、
 吸収塔(例えば上記実施形態の吸収塔11)内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置(例えば上記実施形態の湿式排煙脱硫装置10)の制御方法であって、
 前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する工程と、
 前記パラメータと前記出力との関係を規定する基準テーブル(例えば上記実施形態の基準テーブルTr)に基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブル(例えば上記実施形態のテーブルT)を作成する工程と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する工程と
を備える。
(1) A method for controlling a wet flue gas desulfurization apparatus according to one embodiment includes:
In the absorption tower (for example, the absorption tower 11 of the above-described embodiment), the wet-type flue gas desulfurization device (for example, the wet-type flue gas desulfurization device of the above-described embodiment) performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact. 10) The control method,
Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A step of building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
A predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value A step of creating a table (for example, table T in the above embodiment) showing the amount of the absorbent charged and the circulation flow rate of the absorbent for satisfying the reference value;
and determining control target values for the amount of the absorbent to be supplied and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
 上記(1)の態様によれば、将来における流出ガス中のSO濃度が予め設定された基準値以下となる範囲で、吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量を適切に調節できる。このような制御演算は、単一の学習モデルに基づいて吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量についてそれぞれ制御目標値を求めることができるため、演算負担が少ない。 According to the above aspect (1), the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Since such a control calculation can obtain control target values for the amount of absorbent introduced into the absorption tower and the circulation flow rate of the absorbent circulating in the absorption tower based on a single learning model, Low computational load.
(2)他の態様では、上記(1)の態様において、
 前記テーブルを作成する工程では、予め設定された前記吸収剤の投入量及び前記吸収液の循環流量の許容範囲内において、前記吸収塔内に吸収液を循環させるための少なくとも1つの循環ポンプ(例えば上記実施形態の循環ポンプ12)の運用コストが少なくなるように、前記予測値が前記基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を探索する。
(2) In another aspect, in the aspect of (1) above,
In the step of creating the table, at least one circulation pump (e.g., In order to reduce the operation cost of the circulation pump 12) of the above-described embodiment, a search is made for the amount of the absorbent to be supplied and the circulation flow rate of the absorbent so that the predicted value satisfies the reference value.
 上記(2)の態様によれば、吸収塔から排出される二酸化硫黄濃度の予測値が基準値以下になる範囲において、運用コストが少なくなるように、吸収剤の投入量及び吸収液の循環流量の制御目標値が探索される。このように探索された制御目標値に基づいて制御を実施することで、吸収塔から排出される二酸化硫黄を必要な範囲で抑制しながら、プラントの運用コストを効果的に低減できる。 According to the aspect (2) above, in the range where the predicted value of the concentration of sulfur dioxide discharged from the absorption tower is equal to or lower than the reference value, the amount of absorbent input and the circulation flow rate of the absorbent are adjusted so as to reduce the operating cost. is searched for. By performing control based on the control target value searched for in this way, the operating cost of the plant can be effectively reduced while suppressing the sulfur dioxide discharged from the absorption tower within a necessary range.
(3)他の態様では、上記(1)の態様において、
 前記学習モデルによる前記吸収塔出口における前記排ガスの前記二酸化硫黄濃度の予測値と実測値との誤差に基づいて、前記学習モデルを補正する工程を更に備える。
(3) In another aspect, in the aspect of (1) above,
A step of correcting the learning model based on an error between the predicted value of the concentration of sulfur dioxide in the exhaust gas at the outlet of the absorber by the learning model and the measured value is further provided.
 上記(3)の態様によれば、学習モデルによって得られる予測値と実測値との誤差に基づいて学習モデルの補正を行うことで、制御精度を向上できる。 According to the aspect (3) above, the control accuracy can be improved by correcting the learning model based on the error between the predicted value obtained by the learning model and the actual measurement value.
(4)他の態様では、上記(1)から(3)のいずれか一態様において、
 前記少なくとも1つのパラメータは、前記出力の外部指令値、前記出力、前記燃焼装置の空気流量、吸収塔入口の二酸化硫黄濃度のうち少なくとも1つを含む。
(4) In another aspect, in any one aspect of (1) to (3) above,
The at least one parameter includes at least one of an external command value of the output, the output, the air flow rate of the combustion device, and the sulfur dioxide concentration at the absorption tower inlet.
 上記(4)の態様によれば、これらのパラメータのいずれか一つを学習モデルの説明変数に含めることで、学習対象データを効率的に絞り込むことで機械学習の演算負担を軽減しつつ、良好な精度で予測可能な学習モデルを構築できる。 According to the above aspect (4), by including any one of these parameters in the explanatory variables of the learning model, the data to be learned is efficiently narrowed down, thereby reducing the computational burden of machine learning and improving the performance. It is possible to build a learning model that can predict with high accuracy.
(5)他の態様では、上記(4)の態様において、
 前記少なくとも1つのパラメータは、前記燃焼装置の空気流量、及び、前記吸収塔入口の二酸化硫黄濃度を含む。
(5) In another aspect, in the aspect of (4) above,
The at least one parameter includes the combustor air flow rate and the absorber inlet sulfur dioxide concentration.
 上記(5)の態様によれば、これらのパラメータを学習モデルの説明変数に含めることで、学習対象データを効率的に絞り込むことで機械学習の演算負担をより軽減しつつ、より良好な精度で予測可能な学習モデルを構築できる。 According to the above aspect (5), by including these parameters in the explanatory variables of the learning model, the learning target data can be efficiently narrowed down to further reduce the computational burden of machine learning, while achieving better accuracy. Build predictable learning models.
(6)他の態様では、上記(1)から(5)のいずれか一態様において、
 前記学習モデルは線形多項式で表される。
(6) In another aspect, in any one aspect of (1) to (5) above,
The learning model is represented by a linear polynomial.
 上記(6)の態様によれば、学習モデルとして線形多項式を用いることで、複雑なシミュレーションモデルに比べて説明可能性(解釈性)が高く、演算負荷も効果的に軽減できる。 According to the aspect (6) above, by using a linear polynomial as a learning model, the explainability (interpretability) is high compared to a complicated simulation model, and the computational load can be effectively reduced.
(7)他の態様では、上記(1)から(6)のいずれか一態様において、
 前記基準テーブルは、予め特定された前記パラメータと前記出力との関係を示す関数として規定される。
(7) In another aspect, in any one aspect of (1) to (6) above,
The reference table is defined as a function indicating the relationship between the previously specified parameters and the output.
 上記(7)の態様によれば、発電機出力と相関を有するパラメータは、その相関を示す基準テーブルとして規定される。 According to the aspect (7) above, the parameters having a correlation with the generator output are defined as a reference table indicating the correlation.
(8)他の態様では、上記(2)の態様において、
 前記少なくとも1つの循環ポンプは固定容量式である。
(8) In another aspect, in the aspect of (2) above,
The at least one circulation pump is of fixed displacement type.
 上記(8)の態様によれば、固定容量式の循環ポンプを有するプラントにおいて、将来における流出ガス中の二酸化硫黄濃度が予め設定された基準値以下となる範囲で、吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量を適切に調節できる。 According to the above aspect (8), in a plant having a fixed displacement circulating pump, the amount of absorbent to the absorption tower is within the range where the concentration of sulfur dioxide in the future effluent gas is equal to or lower than a preset reference value. The amount of input and the circulation flow rate of the absorbent circulating in the absorption tower can be adjusted appropriately.
(9)他の態様では、上記(2)の態様において、
 前記少なくとも1つの循環ポンプは可変容量式である。
(9) In another aspect, in the aspect of (2) above,
The at least one circulation pump is of variable displacement type.
 上記(9)の態様によれば、可変容量式の循環ポンプを有するプラントにおいて、将来における流出ガス中の二酸化硫黄濃度が予め設定された基準値以下となる範囲で、吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量を適切に調節できる。 According to the above aspect (9), in a plant having a variable displacement circulating pump, the amount of absorbent to the absorption tower is within the range where the concentration of sulfur dioxide in the future effluent gas is equal to or lower than a preset reference value. The amount of input and the circulation flow rate of the absorbent circulating in the absorption tower can be adjusted appropriately.
(10)一態様に係る湿式排煙脱硫装置の制御装置は、
 吸収塔(例えば上記実施形態の吸収塔11)内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置(例えば上記実施形態の湿式排煙脱硫装置10)の制御装置(例えば上記実施形態の制御装置15)であって、
 前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部(例えば上記実施形態の学習モデル構築部38)と、
 前記パラメータと前記出力との関係を規定する基準テーブル(例えば上記実施形態の基準テーブルTr)に基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブル(例えば上記実施形態のテーブルT)を作成するためのテーブル作成部(例えば上記実施形態のテーブル作成部31)と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部(例えば上記実施形態の制御目標値決定部32)と
を備える。
(10) A control device for a wet flue gas desulfurization system according to one aspect,
In the absorption tower (for example, the absorption tower 11 of the above-described embodiment), the wet-type flue gas desulfurization device (for example, the wet-type flue gas desulfurization device of the above-described embodiment) performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact. 10) of the control device (for example, the control device 15 of the above embodiment),
Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model construction unit (for example, the learning model construction unit 38 of the above embodiment) for constructing a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
A predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value A table creating unit (for example, the table creating unit 31 )When,
Based on the table, a control target value determination unit (for example, the control target value decision unit 32).
 上記(10)の態様によれば、将来における流出ガス中のSO濃度が予め設定された基準値以下となる範囲で、吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量を適切に調節できる。このような制御演算は、単一の学習モデルに基づいて吸収塔11への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量についてそれぞれ制御目標値を求めることができるため、演算負担が少ない。 According to the above aspect (10), the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Such a control calculation can obtain control target values for the amount of absorbent introduced into the absorber 11 and the circulation flow rate of the absorbent circulating in the absorber based on a single learning model. , the computational burden is small.
(11)一態様に係る遠隔監視システムは、
 上記(10)の態様の湿式排煙脱硫装置の制御装置と、
 前記湿式排煙脱硫装置の制御装置に電気的に接続された遠隔監視装置と
を備える。
(11) A remote monitoring system according to one aspect includes:
a control device for a wet flue gas desulfurization system according to the above aspect (10);
and a remote monitoring device electrically connected to the control device of the wet flue gas desulfurization system.
 上記(11)の態様によれば、湿式排煙脱硫装置の制御状態を遠隔監視することができる。 According to the aspect (11) above, the control state of the wet flue gas desulfurization system can be remotely monitored.
(12)一態様に係る情報処理装置は、
 吸収塔(例えば上記実施形態の吸収塔11)内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置(例えば上記実施形態の湿式排煙脱硫装置10)の制御に係る処理を実行する情報処理装置(例えば上記実施形態の情報処理装置44)であって、
 前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部(例えば上記実施形態の学習モデル構築部38)と、
 前記パラメータと前記出力との関係を規定する基準テーブル(例えば上記実施形態の基準テーブルTr)に基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブル(例えば上記実施形態のテーブルT)を作成するためのテーブル作成部(例えば上記実施形態のテーブル作成部31)と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部(例えば上記実施形態の制御目標値決定部32)と
を備える。
(12) An information processing device according to one aspect,
In the absorption tower (for example, the absorption tower 11 of the above-described embodiment), the wet-type flue gas desulfurization device (for example, the wet-type flue gas desulfurization device of the above-described embodiment) performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact. 10) an information processing device (for example, the information processing device 44 of the above embodiment) that executes the process related to the control,
Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model construction unit (for example, the learning model construction unit 38 of the above embodiment) for constructing a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
A predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value A table creating unit (for example, the table creating unit 31 )When,
Based on the table, a control target value determination unit (for example, the control target value decision unit 32).
 上記(12)の態様によれば、将来における流出ガス中のSO濃度が予め設定された基準値以下となる範囲で、吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量を適切に調節できる。このような制御演算は、単一の学習モデルに基づいて吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量についてそれぞれ制御目標値を求めることができるため、演算負担が少ない。 According to the above aspect (12), the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Since such a control calculation can obtain control target values for the amount of absorbent introduced into the absorption tower and the circulation flow rate of the absorbent circulating in the absorption tower based on a single learning model, Low computational load.
(13)一態様に係る情報処理システムは、
 吸収塔(例えば上記実施形態の吸収塔11)内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置(例えば上記実施形態の湿式排煙脱硫装置10)の制御に係る処理を実行する情報処理装置(例えば上記実施形態の情報処理装置44)と通信可能な端末(例えば上記実施形態の端末45)とからなる情報処理システム(例えば上記実施形態の情報処理システム46)であって、
 前記情報処理装置は、
 前記端末からの要求により、前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部(例えば上記実施形態の学習モデル構築部38)と、
 前記パラメータと前記出力との関係を規定する基準テーブル(例えば上記実施形態の基準テーブルTr)に基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブル(例えば上記実施形態のテーブルT)を作成するためのテーブル作成部(例えば上記実施形態のテーブル作成部31)と、
 前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部(例えば上記実施形態の制御目標値決定部32)と
を備える。
(13) An information processing system according to one aspect,
In the absorption tower (for example, the absorption tower 11 of the above-described embodiment), the wet-type flue gas desulfurization device (for example, the wet-type flue gas desulfurization device of the above-described embodiment) performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact. 10) An information processing system (for example, the an information processing system 46),
The information processing device is
At least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower and the output of a generator driven by the gas generated in the combustion device, according to the request from the terminal and a learning model construction unit (for example, the learning model construction unit 38 of the above embodiment) for constructing a learning model by machine learning about the relationship between the explanatory variable including the future absorption tower outlet and the objective variable, which is the sulfur dioxide concentration ,
A predicted value of the sulfur dioxide concentration by the learning model is calculated for each output based on a reference table that defines the relationship between the parameter and the output (for example, the reference table Tr of the above embodiment), and the predicted value A table creating unit (for example, the table creating unit 31 )When,
Based on the table, a control target value determination unit (for example, the control target value decision unit 32).
 上記(13)の態様によれば、将来における流出ガス中のSO濃度が予め設定された基準値以下となる範囲で、吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量を適切に調節できる。このような制御演算は、単一の学習モデルに基づいて吸収塔への吸収剤の投入量、及び、吸収塔内を循環する吸収液の循環流量についてそれぞれ制御目標値を求めることができるため、演算負担が少ない。 According to the above aspect (13), the amount of absorbent introduced into the absorption tower and the amount of absorbent circulated in the absorption tower are within the range where the SO 2 concentration in the future outflow gas is equal to or lower than the preset reference value. It is possible to appropriately adjust the circulation flow rate of the absorbent. Since such a control calculation can obtain control target values for the amount of absorbent introduced into the absorption tower and the circulation flow rate of the absorbent circulating in the absorption tower based on a single learning model, Low computational load.
1 燃焼装置
2 配管
3 循環用配管
5 発電機
10 湿式排煙脱硫装置
11 吸収塔
12 循環ポンプ
13 吸収剤スラリー供給部
14 石膏回収部
15 制御装置
16 流出配管
17 ガス分析計
20 運転データ取得部
21 吸収剤スラリー製造設備
22 吸収剤スラリー供給用配管
23 吸収剤スラリー供給量制御弁
25 石膏分離器
26 石膏スラリー抜き出し用配管
27 石膏スラリー抜き出し用ポンプ
30 運転データ受信部
31 テーブル作成部
32 制御目標値決定部
33 循環ポンプ調節部
34 吸収剤スラリー供給制御部
35 学習モデル補正部
38 学習モデル構築部
39 運転データ中継部
40 遠隔監視システム
42 エッジサーバー
43 遠隔監視装置
44 情報処理装置
45 端末
46 情報処理システム
1 Combustion device 2 Pipe 3 Circulation pipe 5 Generator 10 Wet flue gas desulfurization device 11 Absorption tower 12 Circulation pump 13 Absorbent slurry supply unit 14 Gypsum recovery unit 15 Control device 16 Outflow pipe 17 Gas analyzer 20 Operation data acquisition unit 21 Absorbent slurry production equipment 22 Absorbent slurry supply pipe 23 Absorbent slurry supply amount control valve 25 Gypsum separator 26 Gypsum slurry extraction pipe 27 Gypsum slurry extraction pump 30 Operation data receiving unit 31 Table creation unit 32 Control target value determination Unit 33 Circulation pump adjustment unit 34 Absorbent slurry supply control unit 35 Learning model correction unit 38 Learning model construction unit 39 Operation data relay unit 40 Remote monitoring system 42 Edge server 43 Remote monitoring device 44 Information processing device 45 Terminal 46 Information processing system

Claims (13)

  1.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
     前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する工程と、
     前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成する工程と、
     前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する工程と
    を備える、湿式排煙脱硫装置の制御方法。
    A control method for a wet flue gas desulfurization apparatus for performing desulfurization by bringing exhaust gas generated in a combustion apparatus and an absorbing liquid into gas-liquid contact in an absorption tower, comprising:
    Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A step of building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
    calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A step of creating a table showing the input amount of and the circulation flow rate of the absorbent;
    A control method for a wet flue gas desulfurization system, comprising the step of determining control target values for the amount of absorbent to be supplied and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
  2.  前記テーブルを作成する工程では、予め設定された前記吸収剤の投入量及び前記吸収液の循環流量の許容範囲内において、前記吸収塔内に吸収液を循環させるための少なくとも1つの循環ポンプの運用コストが少なくなるように、前記予測値が前記基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を探索する、請求項1に記載の湿式排煙脱硫装置の制御方法。 In the step of creating the table, operation of at least one circulation pump for circulating the absorbent in the absorption tower within a preset permissible range for the input amount of the absorbent and the circulation flow rate of the absorbent. 2. The method of controlling a wet flue gas desulfurization apparatus according to claim 1, wherein the amount of absorbent to be supplied and the circulation flow rate of the absorbent for satisfying the reference value for the predicted value are searched so as to reduce the cost.
  3.  前記学習モデルによる前記吸収塔出口における前記排ガスの前記二酸化硫黄濃度の予測値と実測値との誤差に基づいて、前記学習モデルを補正する工程を更に備える、請求項1又は2に記載の湿式排煙脱硫装置の制御方法。 3. The wet exhaust system according to claim 1 or 2, further comprising a step of correcting the learning model based on an error between the predicted value of the sulfur dioxide concentration of the exhaust gas at the absorber outlet by the learning model and the measured value. Control method for flue desulfurization equipment.
  4.  前記少なくとも1つのパラメータは、前記出力の外部指令値、前記出力、前記燃焼装置の空気流量、吸収塔入口の二酸化硫黄濃度のうち少なくとも1つを含む、請求項1から3のいずれか一項に記載の湿式排煙脱硫装置の制御方法。 4. The at least one parameter includes at least one of an external command value of the output, the output, the air flow rate of the combustion device, and the sulfur dioxide concentration at the inlet of the absorption tower. A control method for the described wet flue gas desulfurization system.
  5.  前記少なくとも1つのパラメータは、前記燃焼装置の空気流量、及び、前記吸収塔入口の二酸化硫黄濃度を含む、請求項4に記載の湿式排煙脱硫装置の制御方法。 The method for controlling a wet flue gas desulfurization system according to claim 4, wherein said at least one parameter includes the air flow rate of said combustion device and the concentration of sulfur dioxide at said absorption tower inlet.
  6.  前記学習モデルは線形多項式で表される、請求項1から5のいずれか一項に記載の湿式排煙脱硫装置の制御方法。 The method for controlling a wet flue gas desulfurization apparatus according to any one of claims 1 to 5, wherein the learning model is represented by a linear polynomial.
  7.  前記基準テーブルは、予め特定された前記パラメータと前記出力との関係を示す関数として規定される、請求項1から6のいずれか一項に記載の湿式排煙脱硫装置の制御方法。 The control method for a wet flue gas desulfurization apparatus according to any one of claims 1 to 6, wherein said reference table is defined as a function indicating a relationship between said previously specified parameter and said output.
  8.  前記少なくとも1つの循環ポンプは固定容量式である、請求項2から7のいずれか一項に記載の湿式排煙脱硫装置の制御方法。 The method for controlling a wet flue gas desulfurization apparatus according to any one of claims 2 to 7, wherein said at least one circulation pump is of a fixed displacement type.
  9.  前記少なくとも1つの循環ポンプは可変容量式である、請求項2から7のいずれか一項に記載の湿式排煙脱硫装置の制御方法。 The method for controlling a wet flue gas desulfurization apparatus according to any one of claims 2 to 7, wherein said at least one circulation pump is of a variable displacement type.
  10.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
     前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
     前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成するためのテーブル作成部と、
     前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と
    を備える、湿式排煙脱硫装置の制御装置。
    A control device for a wet flue gas desulfurization device that performs gas-liquid contact between an exhaust gas generated in a combustion device and an absorbing liquid in an absorption tower to perform desulfurization,
    Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model building unit for building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
    calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
    A wet flue gas desulfurization system, comprising: a control target value determination unit for determining control target values of the absorbent input amount and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table. controller.
  11.  請求項10に記載の湿式排煙脱硫装置の制御装置と、
     前記湿式排煙脱硫装置の制御装置に電気的に接続された遠隔監視装置と
    を備える、遠隔監視システム。
    a control device for a wet flue gas desulfurization system according to claim 10;
    and a remote monitoring device electrically connected to the controller of the wet flue gas desulfurization system.
  12.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御に係る処理を実行する情報処理装置であって、
     前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
     前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成するためのテーブル作成部と、
     前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と
    を備える、情報処理装置。
    An information processing device that executes processing related to control of a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device and an absorbent into gas-liquid contact in an absorption tower,
    Explanatory variables including at least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower, and the output of a generator driven by the gas produced in the combustion device; A learning model building unit for building a learning model by machine learning about the relationship with the objective variable, which is the concentration of sulfur dioxide at the outlet of the absorption tower;
    calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
    an information processing apparatus comprising: a control target value determining unit for determining control target values of the absorbent injection amount and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
  13.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御に係る処理を実行する情報処理装置と通信可能な端末とからなる情報処理システムであって、
     前記情報処理装置は、
     前記端末からの要求により、前記吸収塔内における、前記吸収液の吸収剤濃度及び循環流量、並びに、前記燃焼装置で生成されたガスで駆動される発電機の出力と相関を有する少なくとも1つのパラメータを含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
     前記パラメータと前記出力との関係を規定する基準テーブルに基づいて、前記出力ごとに、前記学習モデルによる前記二酸化硫黄濃度の予測値を算出し、前記予測値が基準値を満たすための前記吸収剤の投入量及び前記吸収液の循環流量を示すテーブルを作成するためのテーブル作成部と、
     前記テーブルに基づいて、前記発電機の状態に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と
    を備える、情報処理システム。
    Information processing consisting of an information processing device that executes processing related to the control of a wet flue gas desulfurization device that performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbing liquid into gas-liquid contact with the absorption liquid in the absorption tower, and a terminal capable of communication. a system,
    The information processing device is
    At least one parameter correlated with the absorbent concentration and circulation flow rate of the absorbent in the absorption tower and the output of a generator driven by the gas generated in the combustion device, according to the request from the terminal and a learning model building unit for building a learning model by machine learning about the relationship between the explanatory variable including the future absorption tower outlet and the objective variable, which is the sulfur dioxide concentration;
    calculating the predicted value of the sulfur dioxide concentration by the learning model for each output based on a reference table that defines the relationship between the parameter and the output, and the absorbent for the predicted value to satisfy the reference value; A table creation unit for creating a table showing the input amount of and the circulation flow rate of the absorbent;
    an information processing system, comprising: a control target value determining unit for determining control target values of the absorbent input amount and the circulation flow rate of the absorbent corresponding to the state of the generator based on the table.
PCT/JP2022/015797 2021-03-31 2022-03-30 Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system WO2022210827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061440 2021-03-31
JP2021061440A JP2022157305A (en) 2021-03-31 2021-03-31 Method for controlling wet flue gas desulfurization equipment, control device of wet flue gas desulfurization equipment, remote control system with the control device of wet flue gas desulfurization equipment, information processing device, and information processing system

Publications (1)

Publication Number Publication Date
WO2022210827A1 true WO2022210827A1 (en) 2022-10-06

Family

ID=83456528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015797 WO2022210827A1 (en) 2021-03-31 2022-03-30 Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system

Country Status (3)

Country Link
JP (1) JP2022157305A (en)
TW (1) TW202306634A (en)
WO (1) WO2022210827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234103A1 (en) * 2022-05-30 2023-12-07 三菱重工業株式会社 Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290522A (en) * 1991-03-19 1992-10-15 Babcock Hitachi Kk Method and device for controlling circulation of liquid absorbent to absorption tower of wet type waste gas desulfurizer
JPH05317643A (en) * 1992-05-20 1993-12-03 Babcock Hitachi Kk Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor
JPH06319941A (en) * 1993-05-13 1994-11-22 Hitachi Ltd Apparatus and method for controlling flue gas desulfurization in wet process
CN110263988A (en) * 2019-06-06 2019-09-20 东南大学 A kind of data run optimization method based on power plant desulphurization system
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290522A (en) * 1991-03-19 1992-10-15 Babcock Hitachi Kk Method and device for controlling circulation of liquid absorbent to absorption tower of wet type waste gas desulfurizer
JPH05317643A (en) * 1992-05-20 1993-12-03 Babcock Hitachi Kk Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor
JPH06319941A (en) * 1993-05-13 1994-11-22 Hitachi Ltd Apparatus and method for controlling flue gas desulfurization in wet process
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment
CN110263988A (en) * 2019-06-06 2019-09-20 东南大学 A kind of data run optimization method based on power plant desulphurization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234103A1 (en) * 2022-05-30 2023-12-07 三菱重工業株式会社 Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus

Also Published As

Publication number Publication date
TW202306634A (en) 2023-02-16
JP2022157305A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
RU2759855C1 (en) Method for controlling device for wet desulfurization of flue gases, device for controlling device for wet desulfurization of flue gases and remote monitoring system containing device for controlling device for wet desulfurization of flue gases
Zhang et al. Development of model and model-predictive control of an MEA-based postcombustion CO2 capture process
Salvinder et al. An overview on control strategies for CO2 capture using absorption/stripping system
CA2715983C (en) Integrated controls design optimization
WO2022210866A1 (en) Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system
Sahraei et al. Controllability and optimal scheduling of a CO2 capture plant using model predictive control
Manaf et al. Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant
NO335836B1 (en) Cascade control of an average value of a process parameter to a desired value
WO2022210827A1 (en) Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system
Zhang et al. Nonlinear model predictive control and H∞ robust control for a post-combustion CO2 capture process
Dabadghao et al. Multiscale modeling and nonlinear model predictive control for flue gas desulfurization
Walters et al. Two-stage flash for CO2 regeneration: Dynamic modeling and pilot plant validation
JP7273202B2 (en) Method and system for performance optimization of flue gas desulfurization (FGD) units
US20230166211A1 (en) State quantity prediction device and state quantity prediction method
Yang et al. Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system
Taqvi et al. Investigation of control performance on an absorption/stripping system to remove CO2 achieving clean energy systems
Li et al. Absorption mechanism-based approach for synthesis of refinery desulfurization solvent network
WO2023234103A1 (en) Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus
JPS60110321A (en) Control of exhaust gas desulfurizing plant
WO2023228901A1 (en) State quantity prediction device, state quantity prediction method, state quantity prediction system, and method for controlling state quantity prediction system
JPH1066825A (en) Desulfurization control apparatus
Decardi-Nelson et al. A Comparison of Economic and Tracking Model Predictive Control in a Post Combustion CO 2 Capture Process
Durand et al. Enhancing practical tractability of Lyapunov-based economic model predictive control
Zhang Modeling and Control of Post-Combustion CO2 Capture Process Integrated with a 550MWe Supercritical Coal-fired Power Plant
Bardi et al. A Multivariable Approach for Control System Optimization of IGCC with CCS in DECAR Bit Project

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781038

Country of ref document: EP

Kind code of ref document: A1