WO2022210866A1 - Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system - Google Patents

Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system Download PDF

Info

Publication number
WO2022210866A1
WO2022210866A1 PCT/JP2022/015936 JP2022015936W WO2022210866A1 WO 2022210866 A1 WO2022210866 A1 WO 2022210866A1 JP 2022015936 W JP2022015936 W JP 2022015936W WO 2022210866 A1 WO2022210866 A1 WO 2022210866A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
learning model
learning
learning data
additional
Prior art date
Application number
PCT/JP2022/015936
Other languages
French (fr)
Japanese (ja)
Inventor
駿 郡司
仁 須藤
信弥 金森
一貴 吉田
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2022210866A1 publication Critical patent/WO2022210866A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to a device, a remote monitoring system, a control method for the device, and a control method for the remote monitoring system.
  • a wet flue gas desulfurization system which is an example of a plant
  • exhaust gas generated in a combustion device such as a boiler
  • an absorption tower of the desulfurization system is introduced into an absorption tower of the desulfurization system, and brought into gas-liquid contact with an absorption liquid circulating in the absorption tower.
  • the absorbent e.g., calcium carbonate
  • SO 2 sulfur dioxide
  • SO2 is removed ( exhaust gas is desulfurized).
  • the absorbent that has absorbed SO 2 drops and is stored in the storage tank below the absorption tower.
  • An absorbent is supplied to the storage tank, and the absorbent whose absorption performance has been restored by the supplied absorbent is supplied to the upper part of the absorption tower by a circulating pump, and is subjected to gas-liquid contact with exhaust gas ( SO2 absorption). be done.
  • a control target for the circulation amount of the absorbent is used using a first learning model that represents the relationship between the circulation amount of the absorbent and the SO 2 concentration in the exhaust gas.
  • the control target value for the absorbent concentration of the absorbent is obtained by using the second learning model representing the relationship between the absorbent concentration of the absorbent and the SO2 concentration in the exhaust gas. and methods of controlling absorbent concentration are disclosed.
  • a learning model is prepared in advance for predicting control target values.
  • the construction of such a learning model is performed by machine learning using learning data selected from plant operating data. sometimes you can't get it. Moreover, even if the prediction error of the learning model is sufficiently small at the beginning, the prediction error may increase later due to changes in plant operating conditions from the time the learning model was constructed.
  • the prediction error of the learning model is not sufficient, it will be necessary to reconstruct the learning model.
  • the learning model is reconstructed, for example, using learning data to which new data has been added. Sometimes it's gone.
  • the amount of driving data that is the basis of learning data is enormous, it is required to efficiently select data for reducing prediction errors by reconstructing the learning model.
  • At least one embodiment of the present disclosure has been made in view of the above circumstances, and a device capable of realizing good control accuracy by efficiently selecting learning data used to reconstruct a learning model, remote monitoring It is an object of the present invention to provide a system, a device control method, and a remote monitoring system control method.
  • a device for executing processing related to plant control based on prediction results using a learning model Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition.
  • a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model
  • the device comprises: In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data.
  • a device control method includes: A control method for a device for executing processing related to plant control based on prediction results using a learning model, Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition. a step; A learning model building step for reconstructing the learning model using learning data including the learning data and the additional learning data; Prepare.
  • a remote monitoring system control method includes: A control method for a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model, In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection step for a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data; Prepare.
  • a device capable of realizing good control accuracy a remote monitoring system, a device control method, and , can provide a control method for a remote monitoring system.
  • FIG. 1 is a configuration schematic diagram of a remote monitoring system according to one embodiment
  • FIG. 4 is a flow chart showing basic control of a wet flue gas desulfurization system according to one embodiment. 4 is a graph showing transitions of predicted values of SO 2 concentration in outflow gas, measured values of SO 2 concentration by a gas analyzer, and true values of predicted values of SO 2 concentration.
  • FIG. 4 is a diagram schematically showing an example of a first relationship table created in basic control of a wet flue gas desulfurization system according to one embodiment; FIG.
  • FIG. 4 is a diagram schematically showing an example of a second relationship table created in basic control of a wet flue gas desulfurization system according to one embodiment; It is a flow chart which shows a plant control method concerning one embodiment.
  • 8 is a flowchart showing a method of selecting additional learning data in step S104 of FIG. 7;
  • FIG. 9 is a diagram showing a process of selecting additional learning data in step S204 of FIG. 8;
  • FIG. 9 is a diagram showing a process of selecting additional learning data in step S204 of FIG. 8;
  • FIG. 10 is a diagram showing the distribution of learning data used for reconstruction of the first learning model for each number of times reconstruction is performed;
  • FIG. 11 is a diagram showing changes in predicted values of the first learning model reconstructed using the learning data shown in FIG. 10;
  • 1 is a configuration diagram of an information processing system according to an embodiment;
  • FIG. 13 is a diagram showing an internal configuration of the information processing apparatus of FIG. 12 together with a control device;
  • FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus 10 according to one embodiment.
  • control target is not limited to the wet-type flue gas desulfurization system 10.
  • Control parameters based on control target values predicted using a learning model can broadly include plants in which is controlled.
  • the wet flue gas desulfurization device 10 is plant equipment for desulfurizing the exhaust gas generated in the combustion device 1 .
  • the combustion device 1 is, for example, a boiler for generating steam, and is configured as part of a power plant capable of generating power by supplying the steam generated by the combustion device 1 to the power generator 5 .
  • the wet flue gas desulfurization apparatus 10 includes an absorption tower 11 communicating with a combustion apparatus 1 via a pipe 2, and a plurality of circulation pumps 12a, 12b provided in a circulation pipe 3 for absorbing liquid circulating in the absorption tower 11.
  • the absorber 11 is provided with an outflow pipe 16 through which the exhaust gas desulfurized by the operation described later flows out from the absorber 11 as an outflow gas. gas analyzer 17 is provided.
  • the absorbent slurry supply unit 13 includes an absorbent slurry production facility 21 for producing absorbent slurry, an absorbent slurry supply pipe 22 communicating between the absorbent slurry production facility 21 and the absorption tower 11, and an absorbent slurry.
  • An absorbent slurry supply amount control valve 23 for controlling the flow rate of the absorbent slurry flowing through the supply pipe 22 is provided.
  • the gypsum recovery unit 14 includes a gypsum separator 25, a gypsum slurry withdrawal pipe 26 communicating between the gypsum separator 25 and the absorption tower 11, and a gypsum slurry withdrawal pump 27 provided in the gypsum slurry withdrawal pipe 26. I have.
  • the wet flue gas desulfurization system 10 is provided with a control device 15 that is a device for controlling the plant of at least one embodiment of the present disclosure.
  • the control device 15 acquires operation data including various detectors for acquiring various operation data (e.g., temperature and pressure at various parts, flow rates of various fluids, etc.) of the combustion device 1 and the wet flue gas desulfurization device 10.
  • a driving data receiving unit 30 electrically connected to the unit 20 is provided.
  • the operating data acquisition unit 20 includes a gas analyzer 17 .
  • the control device 15 includes a first learning model constructing unit 38 electrically connected to the operation data receiving unit 30, a first relationship table constructing unit 31 electrically connected to the first learning model constructing unit 38, a first A circulation flow determination unit 32 electrically connected to the 1-relation table creation unit 31 and a circulation pump adjustment unit 33 electrically connected to the circulation flow determination unit 32 are provided.
  • the circulation pump adjustment unit 33 is electrically connected to each of the circulation pumps 12a, 12b, 12c.
  • the control device 15 further includes a second learning model constructing unit 39 electrically connected to the operation data receiving unit 30, a second relationship table generating unit 35 electrically connected to the second learning model constructing unit 39, An absorbent slurry supply amount determination unit 36 electrically connected to the second relationship table creation unit 35, and an absorbent slurry supply control unit 37 electrically connected to the absorbent slurry supply amount determination unit 36.
  • the absorbent slurry supply controller 37 is electrically connected to the absorbent slurry supply amount control valve 23 .
  • the control device 15 further includes a prediction error calculator 40 electrically connected to the first learning model construction unit 38 and the second learning model construction unit 39, and additional learning data electrically connected to the prediction error calculation unit 40.
  • a selection unit 42 is provided.
  • FIG. 2 shows the configuration of a remote monitoring system 44 for remotely monitoring the control state of the wet flue gas desulfurization equipment 10 (see FIG. 1).
  • the remote monitoring system 44 is electrically connected to a distributed control system (DCS) 46 of each device constituting the combustion device 1 (see FIG. 1) and the wet flue gas desulfurization device 10 (see FIG. 1), and to the DCS 46.
  • DCS distributed control system
  • an edge server 48 equipped with a control device 15 and a remote monitoring device 50 such as a desktop personal computer, tablet computer, etc. electrically connected to the edge server 48 via a cloud or virtual private network (VPN).
  • VPN virtual private network
  • the exhaust gas generated in the combustion device 1 flows through the pipe 2, flows into the absorption tower 11, and rises in the absorption tower 11.
  • the absorbent flows through the circulation pipe 3 and into the absorption tower 11 , where the absorption liquid flows down.
  • the absorbent flowing down in the absorption tower 11 accumulates in the absorption tower 11 , flows out from the absorption tower 11 by the circulation pump 12 , and flows through the circulation pipe 3 .
  • the absorbent circulates within the absorption tower 11 .
  • SO 2 contained in the exhaust gas is expressed by the following reaction formula: SO 2 +CaCO 3 +2H 2 O+1/2O 2 ⁇ CaSO 4.2H 2 O+CO 2 , reacts with CaCO 3 in the absorbent to precipitate gypsum (CaSO 4 .2H 2 O) in the absorbent.
  • the SO 2 concentration in the effluent gas tends to decrease as the circulation flow rate of the absorbent circulating in the absorption tower 11 increases, unless the CaCO 3 concentration in the absorbent fluctuates greatly.
  • the control device 15 controls the number of operating circulation pumps 12 by a control method described later to control the circulation flow rate, thereby controlling the concentration of SO 2 in the outflow gas, for example, below a preset value. So the SO2 concentration in the effluent gas can be controlled.
  • the gypsum precipitated in the absorbing liquid in the absorption tower 11 is extracted as gypsum slurry from the absorption tower 11 by the gypsum slurry extraction pump 27 , and the gypsum slurry flows through the gypsum slurry extraction pipe 26 to the gypsum separator 25 . flow into Gypsum and water are separated in the gypsum separator 25, the gypsum is recovered, and the water is sent to a drainage facility (not shown).
  • the control device 15 controls the opening degree of the absorbent slurry supply amount control valve 23 by a control method to be described later, and absorbs the absorbent slurry produced in the absorbent slurry production facility 21 through the absorbent slurry supply pipe 22. Feed into column 11 .
  • the CaCO 3 concentration in the absorbent falls within a preset range, and large fluctuations in the CaCO 3 concentration during desulfurization of the flue gas are suppressed.
  • FIG. 3 is a flow chart showing basic control of the wet flue gas desulfurization system 10 performed by the controller 15 of FIG.
  • step S1 After collecting various operational data of the combustion device 1 and the wet-type flue gas desulfurization device 10, in step S2, various operational data and future SO 2 in the effluent gas flowing out from the absorber 11
  • a first learning model is constructed by machine learning for the relationship with concentration.
  • step S3 a first relationship table, which will be described later, is created using the constructed first learning model.
  • step S4 based on the first relationship table, the circulation flow rate of the absorbent that makes the SO 2 concentration in the outflow gas equal to or lower than a preset value is determined, and in step S5, based on the determined circulation flow rate to adjust the operating conditions of the circulation pump 12. Thereby, the SO 2 concentration in the outflow gas is controlled so as to be equal to or lower than the preset value.
  • step S12 a second learning model is constructed by machine learning regarding the relationship between various operating data and the future CaCO 3 concentration in the absorbent.
  • step S13 a second relationship table, which will be described later, is created using the constructed second learning model.
  • step S14 based on the second relationship table, the supply amount of the absorbent slurry that brings the CaCO 3 concentration within a preset range is determined, and in step S15, the absorbent slurry supply unit 13 is controlled. That is, by controlling the opening degree of the absorbent slurry supply amount control valve 23, the absorbent slurry is supplied into the absorption tower 11 at the determined supply amount.
  • the CaCO 3 concentration in the absorbent falls within a preset range, and large fluctuations in the CaCO 3 concentration during desulfurization of the flue gas are suppressed.
  • step S1 as shown in FIG. 1, after the operation data acquisition unit 20 acquires various operation data of the combustion device 1 and the wet-type flue gas desulfurization device 10, the acquired various operation data are transmitted to the control device 15.
  • the control device 15 collects various types of operation data as the operation data receiving unit 30 receives the operation data.
  • various operating data include the SO2 concentration in the outflow gas.
  • step S2 the first learning model constructing unit 38 constructs a first model by machine learning regarding the relationship between the various operational data collected by the control device 15 and the future SO 2 concentration in the outflow gas.
  • step S3 using the constructed first learning model, the first relationship table creation unit 31 calculates the circulation flow rate of the absorbent at a first time and the outflow at a second time, which is a time later than the first time.
  • a first relationship table is created that is a correlation with the predicted SO2 concentration in the gas. Since the first relationship table is created using the first learning model constructed by machine learning, the first relationship table can be created quickly.
  • the circulation flow rate of the absorbent and the predicted value of the SO2 concentration in the outflow gas are different in time . is the predicted value of the SO2 concentration, for example, a few minutes from now.
  • various operational data include at least the concentration of SO2 in the outflow gas at an arbitrary time and the circulation flow rate of the absorbent at a time interval obtained by subtracting the first time from the second time. and are included. From actual operating data, including the SO2 concentration in the effluent gas at an arbitrary time and the circulation flow rate of the absorbent at a time earlier than the arbitrary time by the time interval of the second time minus the first time, the future Since the SO2 concentration is directly predicted, the prediction performance of future SO2 concentration can be improved.
  • the interval between the first time and the second time is the time required for the SO 2 concentration in the outflow gas to change due to changes in the circulation flow rate of the absorbent, and the time required for the gas analyzer 17 to change the SO 2 concentration. is preferably the sum of the time required to measure .
  • the interval between the first time and the second time is the time required for the SO 2 concentration in the outflow gas to change due to changes in the circulation flow rate of the absorbent, and the time required for the SO 2 concentration in the outflow gas to change.
  • transition (a) of the predicted value of the SO 2 concentration, transition ( b ) of the measured value of the SO 2 concentration by the gas analyzer 17, and SO 2 3 shows the transition (c) of the true value of the density.
  • the right side is the past value, and the leftmost side is the latest value.
  • the latest measured value of the SO 2 concentration by the gas analyzer 17 is the value at the first hour, and the latest value of the predicted SO 2 concentration is the value at the second hour.
  • the interval (i) between the latest measured value of the SO2 concentration by the gas analyzer 17 and the latest value of the true value of the SO2 concentration is the time required for the gas analyzer 17 to measure the SO2 concentration, i.e.
  • the interval ( ii ) between the latest true value of the SO2 concentration and the latest value of the predicted SO2 concentration is the amount of SO 2 corresponds to the time required for the concentration to change.
  • FIG. 5 shows an example of the first relationship table.
  • the first relationship table is represented as a graph in which the horizontal axis represents the predicted value of the SO 2 concentration in the outflow gas and the vertical axis represents the circulating flow rate of the absorbent. , and may be in the form of a matrix, formula, or the like.
  • the circulation flow rate determination unit 32 determines, based on the first relationship table, the absorption liquid circulation flow rate Q (control target value) at which the future SO 2 concentration in the outflow gas will be the preset set value SV. to decide.
  • step S5 the circulation pump adjustment unit 33 determines the number of operating circulation pumps 12a to 12c so that the determined circulation flow rate Q (control target value) or more is determined. Make sure that the number of circulation pumps in operation is in operation. For example, when the three circulating pumps 12a to 12c operate at the same supply rate, it is possible to adjust the circulating flow rate in three steps. By increasing the number of circulation pumps, finer adjustment of the circulation flow rate becomes possible. Further, for example, when the three circulation pumps 12a to 12c operate with different supply amounts, it is possible to adjust the circulation flow rate in a maximum of six stages by combining the operating circulation pumps. Further, for example, if each of the three circulation pumps 12a to 12c can adjust the supply amount, finer adjustment of the circulation flow rate becomes possible.
  • the adjustment of the circulation flow rate is not limited to being performed by controlling the number of circulation pumps.
  • a single circulation pump whose supply amount is adjustable may be used, and the supply amount of the circulation pump may be adjusted so as to achieve the circulation flow rate determined by the circulation flow rate determination unit 32 .
  • steps S12 to S15 are performed to control the CaCO 3 concentration in the absorbent so that it is within a preset range. .
  • steps S12 to S15 will be described in detail.
  • the second learning model construction unit 39 uses machine learning to create a second learning model for the relationship between the various operating data collected by the control device 15 and the future CaCO 3 concentration in the absorbent in the absorption tower 11. To construct.
  • the second relationship table creation unit 35 uses the constructed second learning model to determine the amount of absorbent slurry supplied to the absorption tower 11 at the third time and A second relationship table is created which is a correlation with the predicted value of CaCO 3 concentration at a certain fourth hour. Since the second relationship table is created using the second learning model constructed by machine learning, the second relationship table can be created quickly.
  • the various operation data include at least the CaCO 3 concentration at an arbitrary time and the supply amount of the absorbent slurry at a time interval obtained by subtracting the third hour from the fourth hour before the arbitrary time. include.
  • future CaCO 3 from actual operating data including the CaCO 3 concentration at a given time and the supply rate of absorbent slurry at a time prior to the given time by the time interval of the fourth hour minus the third hour; Since the concentration is predicted directly, the prediction performance of future CaCO 3 concentration can be improved.
  • the CaCO 3 concentration at an arbitrary time uses a value calculated using a simulation model based on mass balance calculation.
  • a sensor for detecting the CaCO 3 concentration is generally expensive.
  • an expensive sensor becomes unnecessary, and an increase in the cost of the wet flue gas desulfurization apparatus 10 can be suppressed.
  • the interval between the third time period and the fourth time period is preferably the time required for the CaCO 3 concentration to change due to the change in the supply amount of the absorbent slurry.
  • Transition of the predicted value and transition of the true value of the supply amount of the absorbent slurry have the same relationship as the transition (a) of the predicted value of the SO 2 concentration and the transition of the true value (c) of FIG. 4, respectively.
  • the CaCO 3 concentration is calculated using a simulation model based on mass balance calculation. The transition of the measured value and the transition of the true value have the same relationship as the various transitions (a) to (c) of the SO 2 concentration in FIG.
  • the number of steps required to change the SO2 concentration in the effluent gas flowing out of the absorber tower 11 is greater than the number of steps required to change the CaCO3 concentration.
  • the delay in controlling the SO 2 concentration is large compared to the conventional method. Therefore, by making the time from the third time to the fourth time shorter than the time from the first time to the second time, the influence of the control delay can be appropriately considered, so future CaCO 3 Concentration prediction performance can be further improved.
  • FIG. 6 shows an example of the second relationship table.
  • the second relationship table is represented as a graph in which the horizontal axis indicates the predicted value of the CaCO 3 concentration and the vertical axis indicates the supply amount of the absorbent slurry. Instead, it may be in the form of a matrix, formula, or the like.
  • the absorbent slurry supply amount determination unit 36 determines, based on the second relationship table, the absorbent slurry supply amount F (control target value ).
  • step S15 the absorbent slurry supply control unit 37 determines the amount of absorbent slurry to be supplied into the absorption tower 11 via the absorbent slurry supply pipe 22.
  • the opening degree of the absorbent slurry supply amount control valve 23 is controlled so as to approach the absorbent slurry supply amount F (control target value).
  • the circulation flow rate of the absorbent at the first time and the future time from the first time Since the future SO2 concentration is directly predicted from the actual operation data by creating the first relationship table between the SO2 concentration in the effluent gas flowing out of the absorber 11 at the second time, the future can obtain a first relationship table that improves the prediction performance of the SO2 concentration of , and based on this first relationship table, the SO2 concentration in the outflow gas at the second time is equal to or less than the preset value
  • the circulation flow rate of the absorbent at the first time is determined as described above, and the operating conditions of the circulation pumps 12a to 12c are adjusted based on the determined circulation flow rate at the first time. can be adjusted appropriately.
  • steps S12 to S15 are performed so that the CaCO 3 concentration in the absorbent falls within a preset range. If the amount of absorbent slurry supplied to the absorption tower 11 is adjusted as needed based on the value, steps S12 to S15 can be eliminated. In this case, the control device 15 does not have to include the second learning model construction section 39 , the second relationship table creation section 35 , the absorbent slurry supply amount determination section 36 , and the absorbent slurry supply control section 37 .
  • FIG. 7 is a flow chart showing a plant control method according to one embodiment.
  • step S101 the analysis result by the gas analyzer 17 is obtained.
  • step S102 the predicted value calculated in step S100 and the analysis result obtained in step S101 are compared to calculate the prediction result of the first learning model, that is, the prediction error.
  • step S103 when the prediction error calculated in step S102 satisfies a predetermined condition, for example, it is determined whether the prediction error is greater than a threshold. If the prediction error is greater than the threshold (step S103: YES), additional learning data is selected in subsequent step S104, and the first learning model is reconstructed in step S105 using the additional learning data selected in step S104.
  • step S106 a prediction error is calculated for the first learning model reconstructed in step S105, and in step S107, it is determined whether or not the prediction error is equal to or less than a threshold. If the prediction error calculated in step S106 is still larger than the threshold (step S107: NO), the process returns to step S104 to repeatedly select additional learning data and reconstruct the learning model. Such repeated processing is performed until the predicted value of the reconstructed first learning model becomes equal to or less than the threshold. If the prediction error is equal to or less than the threshold in step S103 (step S103: NO), the process ends, but the series of processes shown in FIG. 7 may be repeated at a predetermined timing.
  • step S100 the first learning model constructed by the first learning model construction unit 38 is used to calculate the predicted value of the SO 2 concentration in the outflow gas.
  • Calculation of the predicted value by the first learning model in step S100 is the same as the calculation of the predicted value of the SO 2 concentration in the outflow gas to create the first relationship table in step S3.
  • a predicted value of the SO 2 concentration in the outflow gas at a second time, which is a time later than the first time, is calculated for the circulating flow rate of the absorbent at the first time that is input to the first learning model. be.
  • step S101 based on the analysis result by the gas analyzer 17, a measured value of SO 2 concentration in the outflow gas is obtained.
  • This measured value is the actual SO2 concentration in the outflow gas at the second time corresponding to the predicted value of the SO2 concentration in the outflow gas calculated in step S100.
  • the prediction error calculation unit 40 calculates the difference between the predicted value of the SO2 concentration in the outflow gas calculated in step S100 and the measured value of the SO2 concentration in the outflow gas obtained in step S101. Calculate the prediction error.
  • This prediction error is an error corresponding to the prediction accuracy of the first learning model constructed by the first learning model construction unit 38, and includes various factors. For example, since the driving data received by the driving data receiving unit 30 has some variation, the first learning model constructed by machine learning using the driving data as learning data has a learning error caused by the variation. . In addition, the prediction error may increase later due to changes in plant operating conditions from the time the model was constructed.
  • step S103 it is determined whether or not such a prediction error is greater than a preset threshold value ⁇ .
  • the success/failure determination in step S103 may be made so as to be established when the prediction error continues to exceed the threshold value ⁇ for a predetermined period of time or longer.
  • the magnitude of the prediction error may also vary depending on the operating state of the wet-type flue gas desulfurization system 10. If it is determined in step S103 based on a short-term determination, the first learning model will be rebuilt frequently. There is a risk that the burden of model management will increase. Therefore, in step S103, when the state in which the prediction error is larger than the threshold value ⁇ continues for a predetermined time or longer, it is determined in step S103 that the first learning model is reconstructed appropriately and efficiently. model management becomes possible.
  • step S104 when the establishment determination is made in step S103, the additional learning data selection unit 42 selects additional learning data included in the learning data used for reconstructing the first learning model.
  • the operation data receiving unit 30 continuously receives operation data, and appropriate additional learning data is selected from the operation data received after the previous first learning model was constructed.
  • the selection of additional learning data in step S104 may be performed with respect to the operation data acquired during steady operation of the plant.
  • the operation data acquired during non-steady operation such as when an abnormality occurs in the plant, when the operation is started, when the operation is stopped, etc., are excluded from the selection targets of the additional learning data.
  • the operating data includes data acquired during unsteady operation, the operating data may be excluded by performing preprocessing.
  • FIG. 8 is a flow chart showing a method of selecting additional learning data in step S104 of FIG.
  • step S200 first, by analyzing the operating data received by the operating data receiving unit 30, at least one explanatory variable of the first learning model is selected from a plurality of parameters included in the operating data.
  • the selection of such explanatory variables contributes to the SO 2 concentration in the outflow gas, which is the objective variable of the first learning model, for each of the plurality of operating data included in the operating data, by a method such as multiple regression. may be calculated based on the contribution.
  • Z parameters may be selected as explanatory variables in descending order of contribution.
  • step S201 the explanatory variables selected in step S200 from among the learning data (operating data) used in the previous construction of the first learning model are selected as initial learning data.
  • an average value over W hours for V selected from the learning data (operating data) used in the previous construction of the first learning model may be used.
  • the average value of a specific parameter included in the operation data over a predetermined period of time as the learning data, it is possible to effectively reduce the amount of calculation during learning while suppressing a decrease in learning accuracy.
  • step S202 additional learning data candidates are selected from the driving data received by the driving data receiving unit 30 for the explanatory variables selected in step S200.
  • the additional learning data candidate is selected from new driving data received by the driving data receiving unit 30 from the previous construction of the first learning model to the present, and corresponds to the initial learning data selected in step S201.
  • step S203 the degree of divergence between the initial learning data selected in step S201 and the additional learning data candidates selected in step S202 is calculated.
  • various methods for evaluating the degree of deviation can be used, such as the k nearest neighbor method and the Mahalanobis distance.
  • step S204 additional learning data to be added to the learning data is selected based on the deviation calculated in step S203.
  • FIGS. 9A and 9B are diagrams showing the process of selecting additional learning data in step S204 of FIG.
  • a plurality of additional learning data candidates Dc1, Dc2, and Dc3 are obtained for certain initial learning data Ds. , . . . are shown, and the distances indicating the degrees of divergence between the initial learning data Ds and the additional learning data candidates Dc1, Dc2, Dc3, .
  • the additional learning data selection unit 42 selects the additional learning data candidate Dc5 having the largest distance among the plurality of additional learning data candidates as the additional learning data.
  • the plurality of additional learning data candidates Dc1, Dc2, Dc3, in the space defined by arbitrary variables 1 and 2 included in the explanatory variables of the first learning model, the plurality of additional learning data candidates Dc1, Dc2, Dc3, .
  • a plurality of initial learning data Ds1, Ds2, . . . selected in step S201 are shown for .
  • the distance to the closest initial learning data is calculated for each of the additional learning data candidates Dc1, Dc2, Dc3, .
  • the additional learning data selection unit 42 selects, as additional learning data, the one with the largest distance among the plurality of additional learning data candidates.
  • the number of variables used for determination of addition of learning data is two, but the scope of the present invention is not limited, and the number may be one or three or more in practice.
  • the additional learning data selection unit 42 calculates the degree of divergence between the initial learning data and the additional learning data candidates in this way, and based on the degree of divergence, should be added to the learning data for reconstructing the first learning model. Select learning data candidates.
  • the number of additional learning data to be newly added may be arbitrary. ) additional learning data can be selected.
  • the learning data used when constructing the first learning model last time is treated as the initial learning data.
  • one or more parameters arbitrarily selected from the operating data may be treated as initial learning data. In this case, even when the first learning model is constructed for the first time, it is possible to construct a learning model with less prediction error.
  • step S105 new learning data is created by adding the additional learning data selected in step S104 to the initial learning data, and the first learning model is reconstructed.
  • the first learning model is constructed using new learning data obtained by adding additional learning data selected from the subsequently obtained driving data to the initial learning data used in the previous construction of the first learning model. Reconstruction can be performed.
  • step S106 the prediction error is calculated using the first learning model reconstructed in step S105. Calculation of the prediction error in step S106 is the same as in step S102 described above.
  • step S107 similarly to step S103, it is determined whether or not the prediction error calculated in step S106 is equal to or less than the threshold ⁇ . That is, it is determined whether the prediction error of the first learning model has been sufficiently improved by reconstruction. As a result, when the prediction error of the first learning model is improved to be equal to or less than the threshold value ⁇ , the processing is terminated assuming that the prediction accuracy of the first learning model has been improved. On the other hand, if the prediction error of the first learning model is still larger than the threshold ⁇ (step S107: NO), the process returns to step S104.
  • step S104 additional learning data is selected again in step S104, and the learning data is reviewed, and then the first Construction of the learning model is performed repeatedly. Such reconstruction of the first learning model is repeated until the prediction error becomes equal to or less than the threshold value ⁇ in step S107.
  • FIG. 10 shows the distribution of the learning data used for reconstruction of the first learning model (the learning data of the SO 2 concentration in the outflow gas which is the objective variable and the explanatory variable X used for the learning model) for each number of times of reconstruction.
  • FIG. 11 is a diagram showing changes in predicted values of the first learning model reconstructed using the learning data shown in FIG. 10.
  • FIG. 10 shows how the number of data included in the learning data increases as the number of reconstruction implementations increases, as new additional learning data is selected in step S104.
  • the prediction error of the first learning model reconstructed using such learning data decreases as the number of times of reconstruction increases, as shown in FIG. This indicates that the prediction accuracy of the first learning model is improved by appropriately selecting additional learning data each time reconstruction is performed.
  • step S107 in addition to or instead of whether the predicted value of the first learning model is equal to or smaller than the threshold value, based on whether the prediction error has sufficiently converged, the iterative process after step S104 is terminated. A judgment may be made.
  • the additional learning data added to the learning data is appropriately selected based on the degree of divergence from the initial learning data conventionally included in the learning data, thereby effectively reducing the prediction error of the first learning model. can.
  • good prediction accuracy can be obtained by reconstructing the first learning model.
  • the control device 15 By reconstructing the first learning model with improved prediction accuracy in the first learning model construction unit 38, the control device 15 obtains the control target value for the circulation flow rate based on the predicted value of the first learning model. can be set with high precision. As a result, the circulation pump adjustment unit 33 can appropriately control the circulation flow rate by adjusting the number of circulation pumps 12 based on the control target value.
  • the additional learning data selection unit 42 adds the second learning model to the learning data for reconstructing the second learning model. Additional learning data to be added is selected, and the second learning model is reconstructed using new learning data including the additional learning data. At this time, the additional learning data added to the learning data is appropriately selected based on the degree of divergence from the initial learning data conventionally included in the learning data, thereby effectively reducing the prediction error of the second learning model. can. Thereby, even if the prediction error of the second learning model is reduced for some reason, good prediction accuracy can be obtained by reconstructing the second learning model.
  • the control device 15 can calculate the absorbent slurry supply amount based on the prediction value of the second learning model.
  • Control target values can be set with high accuracy.
  • the absorbent slurry supply controller 37 can suitably control the absorbent slurry supply amount by controlling the absorbent slurry supply amount control valve 23 based on the control target value.
  • CaCO 3 is used as the SO 2 absorbent in the above embodiment, it is not limited to CaCO 3 .
  • an SO 2 absorbent for example, magnesium hydroxide (Mg(OH) 2 ) or the like can be used.
  • the information processing device 52 shown in FIG. 12 as a device for executing each process in the control device 15 may be connected to the edge server 42 in a cloud environment or via a VPN so as to be electrically communicable. It is possible.
  • the information processing device 52 includes the operation data receiving unit 30, the first relationship table creation unit 31, the circulation flow rate determination unit 32, the second relationship table creation unit 35, the absorbent slurry supply amount determination unit 36, the first learning model A construction unit 38, a second learning model construction unit 39, a prediction error calculation unit 40, and an additional learning data selection unit 42 are provided, and the control target value determined by the circulation flow rate determination unit 32 and the absorbent slurry supply amount determination unit 36 is controlled.
  • the circulation pump and the supply amount of the absorbent may be controlled. Further, the operation data receiving unit 30 may receive various kinds of operation data via the operation data relay unit 43 of the control device 15, or may receive various kinds of operation data from the operation data acquisition unit 20 as described above. good too.
  • the information processing device 52 may also include a circulation pump control section 33 and an absorbent slurry supply control section 37 to remotely control the circulation pump and the supply amount of absorbent. Furthermore, the information processing device 52 may be configured to execute each process in the information processing device 52 in response to a request from the terminal 54 .
  • a device comprises: A device for executing processing related to plant control based on prediction results using a learning model, Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition.
  • Department and a learning model construction unit for reconstructing the learning model using new learning data including the learning data and the additional learning data; Prepare.
  • the additional learning data is selected and added to the learning data for building the learning model to create new learning data, and the learning model is reconstructed using the learning data. is done.
  • the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
  • the additional learning data selection unit selects data having a large divergence degree from the driving data not selected as the additional learning data. and the learning data constructing unit reconstructs the learning model using the new learning data including the additional learning data further selected by the additional learning data selecting unit to implement.
  • the additional learning data selection unit selects, as the additional learning data, average values of parameters included in the driving data over a predetermined period.
  • the learning model construction unit reconstructs the learning model when the prediction result continuously satisfies the predetermined condition for a predetermined time or longer.
  • the determination of whether or not the prediction result satisfies the predetermined condition is made based on whether or not the prediction result continuously satisfies the predetermined condition for a predetermined period of time.
  • the prediction results may also vary depending on the operating state of the plant, and if short-term judgments are made, the learning model will be rebuilt frequently, and there is a risk that the burden of model management will increase. Therefore, by performing continuous determination over a predetermined period of time as in this aspect, the learning model can be appropriately reconstructed, and efficient model management becomes possible.
  • the learning data is data before construction of the learning model or data used for the previous construction.
  • the new learning data created by adding the additional learning data to the data before building the learning model or the learning data used for the previous building of the learning model is used.
  • a reconstruction of the learning model is performed.
  • the additional learning data selection unit selects the additional learning data from the operation data acquired during steady operation of the plant.
  • the selection of the additional learning data is performed on the operation data acquired during the steady operation of the plant.
  • the operation data acquired during non-steady operation such as when an abnormality occurs in the plant, when the operation is started, when the operation is stopped, etc.
  • the operating data is excluded from the selection of additional learning data, so that the prediction results of the learning model can be obtained appropriately. can be done.
  • the operating data includes data obtained during unsteady operation, the operating data may be excluded by performing preprocessing.
  • the determination of whether or not the prediction result satisfies the predetermined condition is made based on whether or not the prediction error of the predicted value obtained using the learning model satisfies the threshold.
  • the learning model can be reconstructed using new learning data including the efficiently selected additional learning data, and good prediction accuracy can be achieved. can get.
  • Good control accuracy can be obtained by executing processing related to plant control based on the predicted values of the learning model whose prediction accuracy has been improved in this way.
  • the additional learning data selection unit selects a parameter to be included in the additional learning data from the driving data based on the degree of contribution to the predicted value.
  • the plant is a wet-type flue gas desulfurization apparatus that performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbent circulated in the absorption tower into gas-liquid contact,
  • the predicted value is the sulfur dioxide concentration of the flue gas at the outlet of the absorber tower.
  • the learning model for predicting the sulfur dioxide concentration of the flue gas at the outlet of the absorption tower of the wet flue gas desulfurization system is rebuilt when the prediction error becomes larger than a predetermined value.
  • a control target value for the circulation flow rate of the absorbent is determined based on the predicted value calculated by the learning model.
  • the prediction value is calculated using the learning model whose prediction error has been reduced by reconstruction, and the control target value for the circulation amount of the absorbent is determined based on the prediction value. , good control accuracy is obtained.
  • a control target value for the amount of absorbent supplied to the absorber is determined based on the predicted value calculated by the learning model.
  • a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
  • the device comprises: In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data.
  • new learning data is created by selecting and adding additional learning data to learning data for building a learning model, and the learning model is rebuilt using the learning data. is done.
  • additional learning data to be added to the new learning data so as to include data with a large degree of divergence from the learning data
  • the learning model can be reconstructed appropriately.
  • Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
  • a method of controlling a device includes: A control method for a device for executing processing related to plant control based on prediction results using a learning model, an additional learning data selection step of selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition; , a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data; Prepare.
  • the additional learning data is selected and added to the learning data for building the learning model to create new learning data, and the learning model is reconstructed using the learning data. is done.
  • the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
  • a method for controlling a remote monitoring system includes: A control method for a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model, In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection step for a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data; Prepare.
  • new learning data is created by selecting and adding additional learning data to learning data for building a learning model, and the learning model is rebuilt using the learning data. is done. At this time, by selecting additional learning data to be added to the new learning data so as to include data with a large degree of divergence from the learning data, the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.

Abstract

This device is for executing control of a plant on the basis of a prediction result obtained using a learning model. When a prediction result obtained using the learning model satisfies a prescribed condition, the device selects, from operational data as additional training data, data that is largely divergent from training data that was used to construct the learning model. Thereafter, new training data including the training data and the additional training data is used to reconstruct the learning model.

Description

装置、遠隔監視システム、装置の制御方法、及び、遠隔監視システムの制御方法Apparatus, remote monitoring system, apparatus control method, and remote monitoring system control method
 本開示は、装置、遠隔監視システム、装置の制御方法、及び、遠隔監視システムの制御方法に関する。
 本願は、2021年3月31日に日本国特許庁に出願された特願2021-061268号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a device, a remote monitoring system, a control method for the device, and a control method for the remote monitoring system.
This application claims priority based on Japanese Patent Application No. 2021-061268 filed with the Japan Patent Office on March 31, 2021, the content of which is incorporated herein.
 プラントの一例である湿式排煙脱硫装置では、ボイラ等の燃焼装置で発生した排ガスを脱硫装置の吸収塔内に導入し、吸収塔を循環する吸収液と気液接触させる。気液接触の過程で、吸収液中の吸収剤(例えば、炭酸カルシウム)と排ガス中の二酸化硫黄(SO)とが反応することにより、排ガス中のSOは吸収液に吸収され、排ガスからSOが除去(排ガスが脱硫)される。一方、SOを吸収した吸収液は落下して、吸収塔下方の貯留タンク内に溜められる。貯留タンクには吸収剤が供給され、供給された吸収剤で吸収性能を回復した吸収液は循環ポンプによって吸収塔の上方に供給され、排ガスとの気液接触(SOの吸収)に供せられる。 In a wet flue gas desulfurization system, which is an example of a plant, exhaust gas generated in a combustion device such as a boiler is introduced into an absorption tower of the desulfurization system, and brought into gas-liquid contact with an absorption liquid circulating in the absorption tower. During the gas-liquid contact process, the absorbent (e.g., calcium carbonate) in the absorbent reacts with the sulfur dioxide (SO 2 ) in the flue gas, so that the SO 2 in the flue gas is absorbed by the absorbent and removed from the flue gas. SO2 is removed ( exhaust gas is desulfurized). On the other hand, the absorbent that has absorbed SO 2 drops and is stored in the storage tank below the absorption tower. An absorbent is supplied to the storage tank, and the absorbent whose absorption performance has been restored by the supplied absorbent is supplied to the upper part of the absorption tower by a circulating pump, and is subjected to gas-liquid contact with exhaust gas ( SO2 absorption). be done.
 このような湿式排煙脱硫装置では、吸収液の循環流量や吸収剤濃度の変化が、排ガス中のSO濃度に反映されるまでに少なからず時間を要する。そのため、湿式排煙脱硫装置の制御では、吸収液の循環流量や吸収剤濃度のような制御パラメータと、排ガス中のSO濃度との関係を機械学習によって学習モデルとして構築しておき、当該学習モデルによって予測される排ガス中のSO濃度に基づいて、吸収液の循環流量や吸収剤濃度の制御目標値を決定することで、排ガス中のSO濃度を基準値以下にすることが可能となる。例えば特許文献1では、このような湿式排煙脱硫装置の制御において、吸収液の循環量と排ガス中のSO濃度との関係を表す第1学習モデルを用いて吸収液の循環量に関する制御目標値を求めるとともに、吸収液の吸収剤濃度と排ガス中のSO濃度との関係を表す第2学習モデルを用いて吸収液の吸収剤濃度に関する制御目標値を求めることによって、吸収液の循環流量や吸収剤濃度を制御する方法が開示されている。 In such a wet flue gas desulfurization apparatus, it takes a considerable amount of time until changes in the circulation flow rate of the absorbent and the concentration of the absorbent are reflected in the concentration of SO 2 in the flue gas. Therefore, in the control of wet flue gas desulfurization equipment, the relationship between the control parameters such as the circulation flow rate of the absorbent and the concentration of the absorbent and the SO 2 concentration in the exhaust gas is constructed as a learning model by machine learning. Based on the SO2 concentration in the exhaust gas predicted by the model, it is possible to reduce the SO2 concentration in the exhaust gas to below the standard value by determining the control target values for the circulation flow rate of the absorbent and the concentration of the absorbent. Become. For example, in Patent Document 1, in the control of such a wet flue gas desulfurization system, a control target for the circulation amount of the absorbent is used using a first learning model that represents the relationship between the circulation amount of the absorbent and the SO 2 concentration in the exhaust gas. In addition to obtaining the value, the control target value for the absorbent concentration of the absorbent is obtained by using the second learning model representing the relationship between the absorbent concentration of the absorbent and the SO2 concentration in the exhaust gas. and methods of controlling absorbent concentration are disclosed.
特開2020-11163号公報JP 2020-11163 A
 前述のようなプラント制御では、制御目標値を予測するための学習モデルが予め用意される。このような学習モデルの構築は、プラントの運転データから選定された学習データを用いた機械学習によって行われるが、運転データには少なからずバラつきがあるため、学習データの選び方によって十分な予測誤差を得ることができないことがある。また当初は学習モデルの予測誤差が十分小さくとも、プラントの運転条件が学習モデルの構築時から変化することにより、後発的に予測誤差が大きくなってしまうこともある。 In plant control as described above, a learning model is prepared in advance for predicting control target values. The construction of such a learning model is performed by machine learning using learning data selected from plant operating data. sometimes you can't get it. Moreover, even if the prediction error of the learning model is sufficiently small at the beginning, the prediction error may increase later due to changes in plant operating conditions from the time the learning model was constructed.
 このように学習モデルの予測誤差が十分でない場合には、学習モデルの再構築が必要となる。学習モデルの再構築は、例えば、新たなデータが追加された学習データを用いて行われるが、運転データには少なからずばらつきが含まれるため、追加するデータの選び方によっては予測誤差が大きくなってしまう場合もある。また学習データのもととなる運転データは膨大であるため、学習モデルの再構築によって予測誤差を低減するためのデータを効率的に選定することが求められる。 In this way, if the prediction error of the learning model is not sufficient, it will be necessary to reconstruct the learning model. The learning model is reconstructed, for example, using learning data to which new data has been added. Sometimes it's gone. In addition, since the amount of driving data that is the basis of learning data is enormous, it is required to efficiently select data for reducing prediction errors by reconstructing the learning model.
 本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、学習モデルの再構築に用いられる学習データを効率的に選定することで、良好な制御精度を実現可能な装置、遠隔監視システム、装置の制御方法、及び、遠隔監視システムの制御方法を提供することを目的とする。 At least one embodiment of the present disclosure has been made in view of the above circumstances, and a device capable of realizing good control accuracy by efficiently selecting learning data used to reconstruct a learning model, remote monitoring It is an object of the present invention to provide a system, a device control method, and a remote monitoring system control method.
 本開示の少なくとも一実施形態に係る装置は、上記課題を解決するために、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置であって、
 前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定部と、
 前記学習データ及び前記追加学習データを含む新たな学習データを用いて、前記学習モデルを再構築するための学習モデル構築部と、
を備える。
In order to solve the above problems, the device according to at least one embodiment of the present disclosure,
A device for executing processing related to plant control based on prediction results using a learning model,
Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition. Department and
a learning model construction unit for reconstructing the learning model using new learning data including the learning data and the additional learning data;
Prepare.
 本開示の少なくとも一実施形態に係る遠隔監視システムは、上記課題を解決するために、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置と通信可能な端末からなる遠隔監視システムであって、
 前記装置は、
 前記端末からの要求により、前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定部と、
 前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築するための学習モデル構築部と、
を備える。
In order to solve the above problems, the remote monitoring system according to at least one embodiment of the present disclosure,
A remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
The device comprises:
In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection unit for
a learning model construction unit for reconstructing the learning model using learning data including the learning data and the additional learning data;
Prepare.
 本開示の少なくとも一実施形態に係る装置の制御方法は、上記課題を解決するために、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置の制御方法であって、
 前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定ステップと、
 前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築するための学習モデル構築ステップと、
を備える。
In order to solve the above problems, a device control method according to at least one embodiment of the present disclosure includes:
A control method for a device for executing processing related to plant control based on prediction results using a learning model,
Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition. a step;
A learning model building step for reconstructing the learning model using learning data including the learning data and the additional learning data;
Prepare.
 本開示の少なくとも一実施形態に係る遠隔監視システムの制御方法は、上記課題を解決するために、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置と通信可能な端末からなる遠隔監視システムの制御方法であって、
 前記端末からの要求により、前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定する追加学習データ選定ステップと、
 前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築する学習モデル構築ステップと、
を備える。
In order to solve the above problems, a remote monitoring system control method according to at least one embodiment of the present disclosure includes:
A control method for a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection step for
a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data;
Prepare.
 本開示の少なくとも一実施形態によれば、学習モデルの再構築に用いられる学習データを効率的に選定することで、良好な制御精度を実現可能な装置、遠隔監視システム、装置の制御方法、及び、遠隔監視システムの制御方法を提供できる。 According to at least one embodiment of the present disclosure, by efficiently selecting learning data used to reconstruct a learning model, a device capable of realizing good control accuracy, a remote monitoring system, a device control method, and , can provide a control method for a remote monitoring system.
一実施形態に係る排煙脱硫装置の構成図である。It is a lineblock diagram of the flue gas desulfurization equipment concerning one embodiment. 一実施形態に係る遠隔監視システムの構成模式図である。1 is a configuration schematic diagram of a remote monitoring system according to one embodiment; FIG. 一実施形態に係る湿式排煙脱硫装置の基本制御を示すフローチャートである。4 is a flow chart showing basic control of a wet flue gas desulfurization system according to one embodiment. 流出ガス中のSO濃度の予測値と、ガス分析計によるSO濃度の測定値と、SO濃度の予測値の真値とのそれぞれの推移を示すグラフである。4 is a graph showing transitions of predicted values of SO 2 concentration in outflow gas, measured values of SO 2 concentration by a gas analyzer, and true values of predicted values of SO 2 concentration. 一実施形態に係る湿式排煙脱硫装置の基本制御において作成される第1関係テーブルの一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a first relationship table created in basic control of a wet flue gas desulfurization system according to one embodiment; 一実施形態に係る湿式排煙脱硫装置の基本制御において作成される第2関係テーブルの一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a second relationship table created in basic control of a wet flue gas desulfurization system according to one embodiment; 一実施形態に係るプラント制御方法を示すフローチャートである。It is a flow chart which shows a plant control method concerning one embodiment. 図7のステップS104における追加学習データの選定方法を示すフローチャートである。8 is a flowchart showing a method of selecting additional learning data in step S104 of FIG. 7; 図8のステップS204における追加学習データを選定する過程を示す図である。FIG. 9 is a diagram showing a process of selecting additional learning data in step S204 of FIG. 8; 図8のステップS204における追加学習データを選定する過程を示す図である。FIG. 9 is a diagram showing a process of selecting additional learning data in step S204 of FIG. 8; 第1学習モデルの再構築に用いられる学習データの分布を再構築の実施回数ごとに示す図である。FIG. 10 is a diagram showing the distribution of learning data used for reconstruction of the first learning model for each number of times reconstruction is performed; 図10に示す各学習データを用いて再構築された第1学習モデルの予測値の推移を示す図である。FIG. 11 is a diagram showing changes in predicted values of the first learning model reconstructed using the learning data shown in FIG. 10; 一実施形態に係る情報処理システムの構成図である。1 is a configuration diagram of an information processing system according to an embodiment; FIG. 図12の情報処理装置の内部構成を制御装置とともに示す図である。13 is a diagram showing an internal configuration of the information processing apparatus of FIG. 12 together with a control device; FIG.
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Several embodiments of the present invention will be described below with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative positions, and the like of components described in the following embodiments are not intended to limit the scope of the present invention, but merely illustrative examples.
 まず図1を参照して、本開示の少なくとも一実施形態に係るプラント制御装置の制御対象であるプラントの一例である湿式排煙脱硫装置10の構成について説明する。図1は一実施形態に係る湿式排煙脱硫装置10の構成図である。 First, referring to FIG. 1, the configuration of a wet flue gas desulfurization system 10, which is an example of a plant controlled by a plant control device according to at least one embodiment of the present disclosure, will be described. FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus 10 according to one embodiment.
 尚、以下の説明ではプラントの一例として湿式排煙脱硫装置10について述べるが、制御対象は湿式排煙脱硫装置10に限定されず、学習モデルを用いて予測される制御目標値に基づいて制御パラメータが制御されるプラントを広く含むことができる。 In the following description, the wet-type flue gas desulfurization system 10 will be described as an example of a plant, but the control target is not limited to the wet-type flue gas desulfurization system 10. Control parameters based on control target values predicted using a learning model can broadly include plants in which is controlled.
 湿式排煙脱硫装置10は、燃焼装置1で発生した排ガスを脱硫するためのプラント設備である。燃焼装置1は例えば蒸気を生成するためのボイラであり、燃焼装置1で生成された蒸気を発電機5に供給することにより発電可能な発電プラントの一部として構成されている。湿式排煙脱硫装置10は、燃焼装置1と配管2を介して連通する吸収塔11と、吸収塔11内を循環する吸収液の循環用配管3に設けられた複数の循環ポンプ12a,12b,12c(これらを総称する場合には適宜「循環ポンプ12」と称する)と、吸収液に含まれる吸収剤である炭酸カルシウム(CaCO)のスラリー(吸収剤スラリー)を吸収塔11内に供給するための吸収剤スラリー供給部13と、吸収液中の石膏を回収するための石膏回収部14とを備えている。吸収塔11には、後述する動作で脱硫された排ガスが吸収塔11から流出ガスとして流出するための流出配管16が設けられ、流出配管16には、流出ガス中のSO濃度を測定するためのガス分析計17が設けられている。 The wet flue gas desulfurization device 10 is plant equipment for desulfurizing the exhaust gas generated in the combustion device 1 . The combustion device 1 is, for example, a boiler for generating steam, and is configured as part of a power plant capable of generating power by supplying the steam generated by the combustion device 1 to the power generator 5 . The wet flue gas desulfurization apparatus 10 includes an absorption tower 11 communicating with a combustion apparatus 1 via a pipe 2, and a plurality of circulation pumps 12a, 12b provided in a circulation pipe 3 for absorbing liquid circulating in the absorption tower 11. 12c (when these are collectively referred to as a “circulation pump 12” as appropriate), and a slurry (absorbent slurry) of calcium carbonate (CaCO 3 ), which is an absorbent contained in the absorbent, is supplied into the absorption tower 11. and a gypsum recovery unit 14 for recovering gypsum in the absorbent. The absorber 11 is provided with an outflow pipe 16 through which the exhaust gas desulfurized by the operation described later flows out from the absorber 11 as an outflow gas. gas analyzer 17 is provided.
 吸収剤スラリー供給部13は、吸収剤スラリーを製造するための吸収剤スラリー製造設備21と、吸収剤スラリー製造設備21と吸収塔11とを連通する吸収剤スラリー供給用配管22と、吸収剤スラリー供給用配管22を流通する吸収剤スラリーの流量を制御するための吸収剤スラリー供給量制御弁23とを備えている。石膏回収部14は、石膏分離器25と、石膏分離器25と吸収塔11とを連通する石膏スラリー抜き出し用配管26と、石膏スラリー抜き出し用配管26に設けられた石膏スラリー抜き出し用ポンプ27とを備えている。 The absorbent slurry supply unit 13 includes an absorbent slurry production facility 21 for producing absorbent slurry, an absorbent slurry supply pipe 22 communicating between the absorbent slurry production facility 21 and the absorption tower 11, and an absorbent slurry. An absorbent slurry supply amount control valve 23 for controlling the flow rate of the absorbent slurry flowing through the supply pipe 22 is provided. The gypsum recovery unit 14 includes a gypsum separator 25, a gypsum slurry withdrawal pipe 26 communicating between the gypsum separator 25 and the absorption tower 11, and a gypsum slurry withdrawal pump 27 provided in the gypsum slurry withdrawal pipe 26. I have.
 湿式排煙脱硫装置10には、本開示の少なくとも一実施形態のプラントを制御する装置である制御装置15が設けられている。制御装置15は、燃焼装置1及び湿式排煙脱硫装置10の各種運転データ(例えば、様々な部位における温度や圧力、各種流体の流量等)を取得するための種々の検出器を含む運転データ取得部20と電気的に接続された運転データ受信部30を備えている。運転データ取得部20には、ガス分析計17が含まれている。 The wet flue gas desulfurization system 10 is provided with a control device 15 that is a device for controlling the plant of at least one embodiment of the present disclosure. The control device 15 acquires operation data including various detectors for acquiring various operation data (e.g., temperature and pressure at various parts, flow rates of various fluids, etc.) of the combustion device 1 and the wet flue gas desulfurization device 10. A driving data receiving unit 30 electrically connected to the unit 20 is provided. The operating data acquisition unit 20 includes a gas analyzer 17 .
 制御装置15は、運転データ受信部30に電気的に接続された第1学習モデル構築部38と、第1学習モデル構築部38に電気的に接続された第1関係テーブル作成部31と、第1関係テーブル作成部31に電気的に接続された循環流量決定部32と、循環流量決定部32に電気的に接続された循環ポンプ調節部33とを備えている。循環ポンプ調節部33は、循環ポンプ12a,12b,12cのそれぞれに電気的に接続されている。 The control device 15 includes a first learning model constructing unit 38 electrically connected to the operation data receiving unit 30, a first relationship table constructing unit 31 electrically connected to the first learning model constructing unit 38, a first A circulation flow determination unit 32 electrically connected to the 1-relation table creation unit 31 and a circulation pump adjustment unit 33 electrically connected to the circulation flow determination unit 32 are provided. The circulation pump adjustment unit 33 is electrically connected to each of the circulation pumps 12a, 12b, 12c.
 制御装置15は更に、運転データ受信部30に電気的に接続された第2学習モデル構築部39と、第2学習モデル構築部39に電気的に接続された第2関係テーブル作成部35と、第2関係テーブル作成部35に電気的に接続された吸収剤スラリー供給量決定部36と、吸収剤スラリー供給量決定部36に電気的に接続された吸収剤スラリー供給制御部37とを備えている。吸収剤スラリー供給制御部37は、吸収剤スラリー供給量制御弁23に電気的に接続されている。 The control device 15 further includes a second learning model constructing unit 39 electrically connected to the operation data receiving unit 30, a second relationship table generating unit 35 electrically connected to the second learning model constructing unit 39, An absorbent slurry supply amount determination unit 36 electrically connected to the second relationship table creation unit 35, and an absorbent slurry supply control unit 37 electrically connected to the absorbent slurry supply amount determination unit 36. there is The absorbent slurry supply controller 37 is electrically connected to the absorbent slurry supply amount control valve 23 .
 制御装置15は更に、第1学習モデル構築部38及び第2学習モデル構築部39に電気的に接続された予測誤差算出部40と、予測誤差算出部40に電気的に接続された追加学習データ選定部42と、を備えている。 The control device 15 further includes a prediction error calculator 40 electrically connected to the first learning model construction unit 38 and the second learning model construction unit 39, and additional learning data electrically connected to the prediction error calculation unit 40. A selection unit 42 is provided.
 図2には、湿式排煙脱硫装置10(図1参照)の制御状態を遠隔監視するための遠隔監視システム44の構成が示されている。遠隔監視システム44は、燃焼装置1(図1参照)及び湿式排煙脱硫装置10(図1参照)を構成する各機器の分散制御システム(DCS)46と、DCS46に電気的に接続されるとともに制御装置15を搭載したエッジサーバー48と、クラウド又はバーチャルプライベートネットワーク(VPN)を介してエッジサーバー48に電気的に接続されたデスクトップパソコンやタブレット型コンピュータ等のような遠隔監視装置50とを備えている。通常はエッジサーバー48から離れた場所に存在する遠隔監視装置50によって、湿式排煙脱硫装置10の制御状態を遠隔監視することができる。 FIG. 2 shows the configuration of a remote monitoring system 44 for remotely monitoring the control state of the wet flue gas desulfurization equipment 10 (see FIG. 1). The remote monitoring system 44 is electrically connected to a distributed control system (DCS) 46 of each device constituting the combustion device 1 (see FIG. 1) and the wet flue gas desulfurization device 10 (see FIG. 1), and to the DCS 46. Equipped with an edge server 48 equipped with a control device 15 and a remote monitoring device 50 such as a desktop personal computer, tablet computer, etc. electrically connected to the edge server 48 via a cloud or virtual private network (VPN). there is A control state of the wet flue gas desulfurization apparatus 10 can be remotely monitored by a remote monitoring device 50 which is normally located at a location remote from the edge server 48 .
 次に、燃焼装置1で発生した排ガスを湿式排煙脱硫装置10が脱硫する動作について説明する。
 図1に示されるように、燃焼装置1で発生した排ガスは、配管2を流通して吸収塔11に流入し、吸収塔11内を上昇する。循環ポンプ12の少なくとも1台が稼働することによって吸収液が循環用配管3を流通して吸収塔11に流入し、吸収塔11内において吸収液が流下する。吸収塔11内で流下した吸収液は、吸収塔11内に溜まり、循環ポンプ12によって吸収塔11から流出し、循環用配管3を流通する。このようにして、吸収液は吸収塔11内を循環する。
Next, the operation of desulfurizing the exhaust gas generated in the combustion device 1 by the wet flue gas desulfurization device 10 will be described.
As shown in FIG. 1, the exhaust gas generated in the combustion device 1 flows through the pipe 2, flows into the absorption tower 11, and rises in the absorption tower 11. As shown in FIG. By operating at least one of the circulation pumps 12 , the absorbent flows through the circulation pipe 3 and into the absorption tower 11 , where the absorption liquid flows down. The absorbent flowing down in the absorption tower 11 accumulates in the absorption tower 11 , flows out from the absorption tower 11 by the circulation pump 12 , and flows through the circulation pipe 3 . Thus, the absorbent circulates within the absorption tower 11 .
 吸収塔11内では、上昇する排ガスと流下する吸収液とが気液接触する。排ガスに含まれるSOは、以下の反応式
  SO+CaCO+2HO+1/2O→CaSO・2HO+CO
のように、吸収液中のCaCOと反応して、石膏(CaSO・2HO)が吸収液中に析出する。
In the absorption tower 11, the rising exhaust gas and the flowing absorbing liquid come into gas-liquid contact. SO 2 contained in the exhaust gas is expressed by the following reaction formula: SO 2 +CaCO 3 +2H 2 O+1/2O 2 →CaSO 4.2H 2 O+CO 2
, reacts with CaCO 3 in the absorbent to precipitate gypsum (CaSO 4 .2H 2 O) in the absorbent.
 このようにして、排ガス中のSOの一部が吸収液中に石膏として除去されるので、すなわち排ガスが脱硫されるので、流出配管16を介して吸収塔11から流出する流出ガス中のSO濃度は、配管2を介して吸収塔11に流入する排ガス中のSO濃度よりも低くなっている。吸収塔11から流出した流出ガスは、流出配管16を流通して大気中に放出されるが、その途中でガス分析計17によってSO濃度が測定され、その測定結果が制御装置15の運転データ受信部30に伝送される。 In this way, since part of the SO 2 in the flue gas is removed as gypsum in the absorbent, that is, the flue gas is desulfurized, SO 2 concentration is lower than the SO 2 concentration in the flue gas flowing into the absorption tower 11 via the pipe 2 . The effluent gas that has flowed out of the absorption tower 11 flows through the outflow pipe 16 and is released into the atmosphere. It is transmitted to the receiver 30 .
 流出ガス中のSO濃度は、吸収液中のCaCO濃度に大きな変動がなければ、吸収塔11内を循環する吸収液の循環流量が増加するほど低下する傾向がある。後述する制御方法によって制御装置15が循環ポンプ12の稼働台数を制御することで循環流量を制御することにより、流出ガス中のSO濃度を制御すること、例えば予め設定された設定値以下となるように流出ガス中のSO濃度を制御することができる。 The SO 2 concentration in the effluent gas tends to decrease as the circulation flow rate of the absorbent circulating in the absorption tower 11 increases, unless the CaCO 3 concentration in the absorbent fluctuates greatly. The control device 15 controls the number of operating circulation pumps 12 by a control method described later to control the circulation flow rate, thereby controlling the concentration of SO 2 in the outflow gas, for example, below a preset value. So the SO2 concentration in the effluent gas can be controlled.
 吸収塔11内で吸収液中に析出した石膏は、石膏スラリーとして石膏スラリー抜き出し用ポンプ27によって吸収塔11から抜き出され、石膏スラリーは、石膏スラリー抜き出し用配管26を流通して石膏分離器25に流入する。石膏分離器25において石膏と水とが分離されて、石膏は回収され、水は、図示しない排水設備に送られる。 The gypsum precipitated in the absorbing liquid in the absorption tower 11 is extracted as gypsum slurry from the absorption tower 11 by the gypsum slurry extraction pump 27 , and the gypsum slurry flows through the gypsum slurry extraction pipe 26 to the gypsum separator 25 . flow into Gypsum and water are separated in the gypsum separator 25, the gypsum is recovered, and the water is sent to a drainage facility (not shown).
 吸収液中のCaCOは、SOと反応して石膏となるので、排ガスの脱硫が行われるに従い、吸収液中のCaCO濃度は低下する。後述する制御方法によって制御装置15は吸収剤スラリー供給量制御弁23の開度を制御し、吸収剤スラリー製造設備21で製造された吸収剤スラリーを、吸収剤スラリー供給用配管22を介して吸収塔11内に供給する。これにより、吸収液中のCaCO濃度が予め設定された設定範囲内となり、排ガスの脱硫中におけるCaCO濃度の大きな変動が抑制される。 Since CaCO 3 in the absorbing liquid reacts with SO 2 to form gypsum, the concentration of CaCO 3 in the absorbing liquid decreases as the exhaust gas is desulfurized. The control device 15 controls the opening degree of the absorbent slurry supply amount control valve 23 by a control method to be described later, and absorbs the absorbent slurry produced in the absorbent slurry production facility 21 through the absorbent slurry supply pipe 22. Feed into column 11 . As a result, the CaCO 3 concentration in the absorbent falls within a preset range, and large fluctuations in the CaCO 3 concentration during desulfurization of the flue gas are suppressed.
 次に、制御装置15による湿式排煙脱硫装置10の基本制御について説明する。図3は、図1の制御装置15によって実施される湿式排煙脱硫装置10の基本制御を示すフローチャートである。 Next, basic control of the wet flue gas desulfurization system 10 by the control device 15 will be described. FIG. 3 is a flow chart showing basic control of the wet flue gas desulfurization system 10 performed by the controller 15 of FIG.
 基本制御では、まずステップS1において燃焼装置1及び湿式排煙脱硫装置10の各種運転データを収集した後、ステップS2において、各種運転データと、吸収塔11から流出する流出ガス中の将来のSO濃度との関係について機械学習により第1学習モデルを構築する。次に、ステップS3において、構築された第1学習モデルを用いて、後述する第1関係テーブルを作成する。続くステップS4において、第1関係テーブルに基づいて、流出ガス中のSO濃度が予め設定された設定値以下となる吸収液の循環流量を決定し、ステップS5において、決定された循環流量に基づいて循環ポンプ12の運転条件を調節する。これにより、予め設定された設定値以下となるように流出ガス中のSO濃度が制御される。 In the basic control, first, in step S1, after collecting various operational data of the combustion device 1 and the wet-type flue gas desulfurization device 10, in step S2, various operational data and future SO 2 in the effluent gas flowing out from the absorber 11 A first learning model is constructed by machine learning for the relationship with concentration. Next, in step S3, a first relationship table, which will be described later, is created using the constructed first learning model. In the following step S4, based on the first relationship table, the circulation flow rate of the absorbent that makes the SO 2 concentration in the outflow gas equal to or lower than a preset value is determined, and in step S5, based on the determined circulation flow rate to adjust the operating conditions of the circulation pump 12. Thereby, the SO 2 concentration in the outflow gas is controlled so as to be equal to or lower than the preset value.
 また、ステップS1の後、ステップS2~S5とは別に、ステップS12において、各種運転データと、吸収液中の将来のCaCO濃度との関係について機械学習により第2学習モデルを構築する。次に、ステップS13において、構築された第2学習モデルを用いて、後述する第2関係テーブルを作成する。続くステップS14において、第2関係テーブルに基づいて、CaCO濃度が予め設定された設定範囲内となる吸収剤スラリーの供給量を決定し、ステップS15において、吸収剤スラリー供給部13を制御すること、すなわち吸収剤スラリー供給量制御弁23の開度を制御することにより、決定された供給量で吸収剤スラリーを吸収塔11内に供給する。これにより、吸収液中のCaCO濃度が予め設定された設定範囲内となり、排ガスの脱硫中におけるCaCO濃度の大きな変動が抑制される。 After step S1, aside from steps S2 to S5, in step S12, a second learning model is constructed by machine learning regarding the relationship between various operating data and the future CaCO 3 concentration in the absorbent. Next, in step S13, a second relationship table, which will be described later, is created using the constructed second learning model. In subsequent step S14, based on the second relationship table, the supply amount of the absorbent slurry that brings the CaCO 3 concentration within a preset range is determined, and in step S15, the absorbent slurry supply unit 13 is controlled. That is, by controlling the opening degree of the absorbent slurry supply amount control valve 23, the absorbent slurry is supplied into the absorption tower 11 at the determined supply amount. As a result, the CaCO 3 concentration in the absorbent falls within a preset range, and large fluctuations in the CaCO 3 concentration during desulfurization of the flue gas are suppressed.
 次に、制御装置15による湿式排煙脱硫装置10の制御方法の各ステップについて詳細に説明する。
 ステップS1では、図1に示されるように、燃焼装置1及び湿式排煙脱硫装置10の各種運転データを運転データ取得部20が取得した後、取得された各種運転データが制御装置15に伝送されて運転データ受信部30が受信することで、制御装置15が各種運転データを収集する。前述したように、運転データ取得部20はガス分析計17を含んでいるので、各種運転データは流出ガス中のSO濃度を含んでいる。
Next, each step of the method of controlling the wet flue gas desulfurization apparatus 10 by the control device 15 will be described in detail.
In step S1, as shown in FIG. 1, after the operation data acquisition unit 20 acquires various operation data of the combustion device 1 and the wet-type flue gas desulfurization device 10, the acquired various operation data are transmitted to the control device 15. The control device 15 collects various types of operation data as the operation data receiving unit 30 receives the operation data. As described above, since the operating data acquisition section 20 includes the gas analyzer 17, various operating data include the SO2 concentration in the outflow gas.
 ステップS2では、第1学習モデル構築部38は、制御装置15が収集した各種運転データと、流出ガス中の将来のSO濃度との関係について機械学習により第1モデルを構築する。ステップS3では、構築された第1学習モデルを用いて、第1関係テーブル作成部31は、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において流出ガス中のSO濃度の予測値との相関である第1関係テーブルを作成する。機械学習により構築された第1学習モデルを用いて第1関係テーブルを作成するので、迅速に第1関係テーブルを作成することができる。 In step S2, the first learning model constructing unit 38 constructs a first model by machine learning regarding the relationship between the various operational data collected by the control device 15 and the future SO 2 concentration in the outflow gas. In step S3, using the constructed first learning model, the first relationship table creation unit 31 calculates the circulation flow rate of the absorbent at a first time and the outflow at a second time, which is a time later than the first time. A first relationship table is created that is a correlation with the predicted SO2 concentration in the gas. Since the first relationship table is created using the first learning model constructed by machine learning, the first relationship table can be created quickly.
 第1関係テーブルにおいて、吸収液の循環流量と流出ガス中のSO濃度の予測値とは時間が異なり、吸収液の循環流量を現在の値とすると、流出ガス中のSO濃度の予測値は、例えば現在から数分後のSO濃度の予測値となる。このため、各種運転データには少なくとも、任意の時間における流出ガス中のSO濃度と、第2時間から第1時間を差し引いた時間間隔だけ任意の時間よりも過去の時間における吸収液の循環流量とが含まれている。任意の時間における流出ガス中のSO濃度と、第2時間から第1時間を差し引いた時間間隔だけ任意の時間よりも過去の時間における吸収液の循環流量とを含む実際の運転データから将来のSO濃度を直接予測しているので、将来のSO濃度の予測性能を向上することができる。尚、第1時間と第2時間との間隔が短いほど、将来のSO濃度の予測性能は向上する。このため、第1時間と第2時間との間隔は、吸収液の循環流量の変化に起因して流出ガス中のSO濃度が変化するまでに要する時間と、ガス分析計17がSO濃度を測定するのに要する時間との和とすることが好ましい。 In the first relationship table, the circulation flow rate of the absorbent and the predicted value of the SO2 concentration in the outflow gas are different in time . is the predicted value of the SO2 concentration, for example, a few minutes from now. For this reason, various operational data include at least the concentration of SO2 in the outflow gas at an arbitrary time and the circulation flow rate of the absorbent at a time interval obtained by subtracting the first time from the second time. and are included. From actual operating data, including the SO2 concentration in the effluent gas at an arbitrary time and the circulation flow rate of the absorbent at a time earlier than the arbitrary time by the time interval of the second time minus the first time, the future Since the SO2 concentration is directly predicted, the prediction performance of future SO2 concentration can be improved. Note that the shorter the interval between the first time and the second time, the better the performance of predicting the future SO 2 concentration. Therefore, the interval between the first time and the second time is the time required for the SO 2 concentration in the outflow gas to change due to changes in the circulation flow rate of the absorbent, and the time required for the gas analyzer 17 to change the SO 2 concentration. is preferably the sum of the time required to measure .
 図4には、第1時間と第2時間との間隔を、吸収液の循環流量の変化に起因して流出ガス中のSO濃度が変化するまでに要する時間と、ガス分析計17がSO濃度を測定するのに要する時間との和とした場合における、SO濃度の予測値の推移(a)と、ガス分析計17によるSO濃度の測定値の推移(b)と、SO濃度の真値の推移(c)とを示している。それぞれのグラフにおいて、右側ほど過去の値であり、一番左側が最新値である。ガス分析計17によるSO濃度の測定値の最新値は第1時間における値であり、SO濃度の予測値の最新値は第2時間における値である。ガス分析計17によるSO濃度の測定値の最新値と、SO濃度の真値の最新値との間隔(i)が、ガス分析計17がSO濃度を測定するのに要する時間、すなわち計測遅れに相当し、SO濃度の真値の最新値と、SO濃度の予測値の最新値との間隔(ii)が、吸収液の循環流量の変化に起因して流出ガス中のSO濃度が変化するまでに要する時間に相当する。 In FIG. 4, the interval between the first time and the second time is the time required for the SO 2 concentration in the outflow gas to change due to changes in the circulation flow rate of the absorbent, and the time required for the SO 2 concentration in the outflow gas to change. transition (a) of the predicted value of the SO 2 concentration, transition ( b ) of the measured value of the SO 2 concentration by the gas analyzer 17, and SO 2 3 shows the transition (c) of the true value of the density. In each graph, the right side is the past value, and the leftmost side is the latest value. The latest measured value of the SO 2 concentration by the gas analyzer 17 is the value at the first hour, and the latest value of the predicted SO 2 concentration is the value at the second hour. The interval (i) between the latest measured value of the SO2 concentration by the gas analyzer 17 and the latest value of the true value of the SO2 concentration is the time required for the gas analyzer 17 to measure the SO2 concentration, i.e. Corresponding to the measurement lag, the interval ( ii ) between the latest true value of the SO2 concentration and the latest value of the predicted SO2 concentration is the amount of SO 2 corresponds to the time required for the concentration to change.
 図5に、第1関係テーブルの一例を示す。この実施形態では第1関係テーブルは、横軸に流出ガス中のSO濃度の予測値をとるとともに縦軸に吸収液の循環流量をとったグラフとして表されているが、必ずしもこのような形態である必要はなく、マトリックスや数式等の形態であってもよい。ステップS4では、循環流量決定部32は、この第1関係テーブルに基づいて、将来における流出ガス中のSO濃度が予め設定された設定値SVとなる吸収液の循環流量Q(制御目標値)を決定する。 FIG. 5 shows an example of the first relationship table. In this embodiment, the first relationship table is represented as a graph in which the horizontal axis represents the predicted value of the SO 2 concentration in the outflow gas and the vertical axis represents the circulating flow rate of the absorbent. , and may be in the form of a matrix, formula, or the like. In step S4, the circulation flow rate determination unit 32 determines, based on the first relationship table, the absorption liquid circulation flow rate Q (control target value) at which the future SO 2 concentration in the outflow gas will be the preset set value SV. to decide.
 ステップS5では、図1に示されるように、循環ポンプ調節部33は、決定された循環流量Q(制御目標値)以上になるように循環ポンプ12a~12cの稼働台数を決定し、決定された稼働台数の循環ポンプが稼働するようにする。例えば、3台の循環ポンプ12a~12cそれぞれの稼働時の供給量が同じ場合には、3段階の循環流量の調節が可能である。循環ポンプの台数を増やせば、より細かな循環流量の調節が可能となる。また、例えば、3台の循環ポンプ12a~12cそれぞれの稼働時の供給量が互いに異なる場合には、稼働させる循環ポンプの組み合わせによって最大6段階の循環流量の調節が可能である。さらに、例えば、3台の循環ポンプ12a~12cそれぞれが供給量を調節可能であれば、より細かな循環流量の調節が可能となる。 In step S5, as shown in FIG. 1, the circulation pump adjustment unit 33 determines the number of operating circulation pumps 12a to 12c so that the determined circulation flow rate Q (control target value) or more is determined. Make sure that the number of circulation pumps in operation is in operation. For example, when the three circulating pumps 12a to 12c operate at the same supply rate, it is possible to adjust the circulating flow rate in three steps. By increasing the number of circulation pumps, finer adjustment of the circulation flow rate becomes possible. Further, for example, when the three circulation pumps 12a to 12c operate with different supply amounts, it is possible to adjust the circulation flow rate in a maximum of six stages by combining the operating circulation pumps. Further, for example, if each of the three circulation pumps 12a to 12c can adjust the supply amount, finer adjustment of the circulation flow rate becomes possible.
 尚、循環流量の調節は、循環ポンプの台数制御によって行うことに限定するものではない。供給量を調節可能な1台の循環ポンプを用いて、循環流量決定部32によって決定された循環流量となるように循環ポンプの供給量を調節するようにしてもよい。 It should be noted that the adjustment of the circulation flow rate is not limited to being performed by controlling the number of circulation pumps. A single circulation pump whose supply amount is adjustable may be used, and the supply amount of the circulation pump may be adjusted so as to achieve the circulation flow rate determined by the circulation flow rate determination unit 32 .
 このように、吸収塔11内を循環する吸収液の循環流量を調節することにより、将来における流出ガス中のSO濃度が予め設定された設定値以下となるように制御することができるが、このためには、吸収液中のCaCO濃度に大きな変動がないことが必要である。このため、この実施形態では、前述したように、ステップS2~S5とは別に、ステップS12~S15によって、吸収液中のCaCO濃度が予め設定された設定範囲内となるように制御している。次に、ステップS12~S15それぞれを詳細に説明する。 In this way, by adjusting the circulation flow rate of the absorbent circulating in the absorption tower 11, it is possible to control the future SO 2 concentration in the outflow gas to a preset value or less. For this, it is necessary that the CaCO 3 concentration in the absorbing liquid does not fluctuate greatly. Therefore, in this embodiment, as described above, in addition to steps S2 to S5, steps S12 to S15 are performed to control the CaCO 3 concentration in the absorbent so that it is within a preset range. . Next, each of steps S12 to S15 will be described in detail.
 ステップS12では、第2学習モデル構築部39は、制御装置15が収集した各種運転データと、吸収塔11内の吸収液中の将来のCaCO濃度との関係について機械学習により第2学習モデルを構築する。ステップS13では、構築された第2学習モデルを用いて、第2関係テーブル作成部35は、第3時間における吸収塔11への吸収剤スラリーの供給量と、第3時間よりも将来の時間である第4時間におけるCaCO濃度の予測値との相関である第2関係テーブルを作成する。機械学習により構築された第2学習モデルを用いて第2関係テーブルを作成するので、迅速に第2関係テーブルを作成することができる。 In step S12, the second learning model construction unit 39 uses machine learning to create a second learning model for the relationship between the various operating data collected by the control device 15 and the future CaCO 3 concentration in the absorbent in the absorption tower 11. To construct. In step S13, using the constructed second learning model, the second relationship table creation unit 35 determines the amount of absorbent slurry supplied to the absorption tower 11 at the third time and A second relationship table is created which is a correlation with the predicted value of CaCO 3 concentration at a certain fourth hour. Since the second relationship table is created using the second learning model constructed by machine learning, the second relationship table can be created quickly.
 第2関係テーブルにおいて、吸収塔11への吸収剤スラリーの供給量とCaCO濃度の予測値とは時間が異なり、吸収剤スラリーの供給量を現在の値とすると、CaCO濃度の予測値は、例えば現在から数分後のCaCO濃度の予測値となる。このため、各種運転データには少なくとも、任意の時間におけるCaCO濃度と、第4時間から第3時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における吸収剤スラリーの供給量とが含まれている。任意の時間におけるCaCO濃度と、第4時間から第3時間を差し引いた時間間隔だけ前記任意の時間よりも過去の時間における吸収剤スラリーの供給量とを含む実際の運転データから将来のCaCO濃度を直接予測しているので、将来のCaCO濃度の予測性能を向上することができる。 In the second relationship table, the amount of absorbent slurry supplied to the absorption tower 11 and the predicted value of CaCO 3 concentration differ in time, and if the amount of absorbent slurry supplied is the current value, the predicted value of CaCO 3 concentration , for example, the predicted value of the CaCO 3 concentration a few minutes from now. For this reason, the various operation data include at least the CaCO 3 concentration at an arbitrary time and the supply amount of the absorbent slurry at a time interval obtained by subtracting the third hour from the fourth hour before the arbitrary time. include. future CaCO 3 from actual operating data including the CaCO 3 concentration at a given time and the supply rate of absorbent slurry at a time prior to the given time by the time interval of the fourth hour minus the third hour; Since the concentration is predicted directly, the prediction performance of future CaCO 3 concentration can be improved.
 この実施形態では、任意の時間におけるCaCO濃度は、マスバランス計算によるシミュレーションモデルを用いて算出された値を用いている。CaCO濃度を検出するためのセンサーは一般的に高価であるため、このようなセンサーを設けると湿式排煙脱硫装置10のコストが上昇してしまう。しかし、マスバランス計算によるシミュレーションモデルを用いてCaCO濃度を算出するようにすれば、高価なセンサーが不要になり、湿式排煙脱硫装置10のコストの上昇を抑制することができる。 In this embodiment, the CaCO 3 concentration at an arbitrary time uses a value calculated using a simulation model based on mass balance calculation. A sensor for detecting the CaCO 3 concentration is generally expensive. However, if the CaCO 3 concentration is calculated using a simulation model based on mass balance calculation, an expensive sensor becomes unnecessary, and an increase in the cost of the wet flue gas desulfurization apparatus 10 can be suppressed.
 尚、第3時間と第4時間との間隔が短いほど、将来のCaCO濃度の予測性能は向上する。このため、第3時間と第4時間との間隔は、吸収剤スラリーの供給量の変化に起因してCaCO濃度が変化するまでに要する時間とすることが好ましい。吸収剤スラリーの供給量の予測値の推移及び真値の推移はそれぞれ、図4のSO濃度の予測値の推移(a)及び真値の推移(c)と同様の関係になる。この実施形態では、CaCO濃度はマスバランス計算によるシミュレーションモデルを用いて算出しているが、CaCO濃度をセンサーによって測定する場合には、吸収剤スラリーの供給量の予測値の推移とセンサーによる測定値の推移と真値の推移とはそれぞれ、図4のSO濃度の各種推移(a)~(c)と同様の関係になる。 It should be noted that the shorter the interval between the third time and the fourth time, the better the prediction performance of the future CaCO 3 concentration. Therefore, the interval between the third time period and the fourth time period is preferably the time required for the CaCO 3 concentration to change due to the change in the supply amount of the absorbent slurry. Transition of the predicted value and transition of the true value of the supply amount of the absorbent slurry have the same relationship as the transition (a) of the predicted value of the SO 2 concentration and the transition of the true value (c) of FIG. 4, respectively. In this embodiment, the CaCO 3 concentration is calculated using a simulation model based on mass balance calculation. The transition of the measured value and the transition of the true value have the same relationship as the various transitions (a) to (c) of the SO 2 concentration in FIG.
 一般に、吸収塔11から流出する流出ガス中のSO濃度が変化するのに必要なステップ数は、CaCO濃度が変化するのに必要なステップ数に比べて多いため、CaCO濃度の制御に比べてSO濃度の制御の遅れが大きい。このため、第3時間から第4時間までの時間を、第1時間から第2時間までの時間よりも短くすることで、制御遅れの影響を適切に考慮することができるので、将来のCaCO濃度の予測性能をさらに向上することができる。 In general, the number of steps required to change the SO2 concentration in the effluent gas flowing out of the absorber tower 11 is greater than the number of steps required to change the CaCO3 concentration. The delay in controlling the SO 2 concentration is large compared to the conventional method. Therefore, by making the time from the third time to the fourth time shorter than the time from the first time to the second time, the influence of the control delay can be appropriately considered, so future CaCO 3 Concentration prediction performance can be further improved.
 図6に、第2関係テーブルの一例を示す。この実施形態では第2関係テーブルは、横軸にCaCO濃度の予測値をとるとともに縦軸に吸収剤スラリーの供給量をとったグラフとして表されているが、必ずしもこのような形態である必要はなく、マトリックスや数式等の形態であってもよい。ステップS14では、吸収剤スラリー供給量決定部36は、この第2関係テーブルに基づいて、将来におけるCaCO濃度が予め設定された設定範囲R内となる吸収剤スラリーの供給量F(制御目標値)を決定する。 FIG. 6 shows an example of the second relationship table. In this embodiment, the second relationship table is represented as a graph in which the horizontal axis indicates the predicted value of the CaCO 3 concentration and the vertical axis indicates the supply amount of the absorbent slurry. Instead, it may be in the form of a matrix, formula, or the like. In step S14, the absorbent slurry supply amount determination unit 36 determines, based on the second relationship table, the absorbent slurry supply amount F (control target value ).
 ステップS15では、図1に示されるように、吸収剤スラリー供給制御部37は、吸収剤スラリー供給用配管22を介して吸収塔11内に供給される吸収剤スラリーの供給量が、決定された吸収剤スラリーの供給量F(制御目標値)に近くなるように、吸収剤スラリー供給量制御弁23の開度を制御する。このように、吸収塔11への吸収剤スラリーの供給量を調節することにより、将来におけるCaCO濃度が予め設定された設定範囲内となるように制御することができる。 In step S15, as shown in FIG. 1, the absorbent slurry supply control unit 37 determines the amount of absorbent slurry to be supplied into the absorption tower 11 via the absorbent slurry supply pipe 22. The opening degree of the absorbent slurry supply amount control valve 23 is controlled so as to approach the absorbent slurry supply amount F (control target value). By adjusting the supply amount of the absorbent slurry to the absorption tower 11 in this way, it is possible to control the CaCO 3 concentration in the future to be within a preset range.
 このように、燃焼装置1の運転データ及び湿式排煙脱硫装置10の吸収液の循環流量を含む運転データから、第1時間における吸収液の循環流量と、第1時間よりも将来の時間である第2時間において吸収塔11から流出する流出ガス中のSO濃度との間の第1関係テーブルを作成することにより、実際の運転データから将来のSO濃度を直接予測しているので、将来のSO濃度の予測性能を向上した第1関係テーブルを得ることができ、この第1関係テーブルに基づいて、第2時間における流出ガス中のSO濃度が予め設定された設定値以下となるような第1時間における吸収液の循環流量を決定して、第1時間において、決定された循環流量に基づいて循環ポンプ12a~12cの運転条件を調節するので、循環ポンプ12a~12cの運転条件を適切に調節することができる。 In this way, from the operation data of the combustion device 1 and the operation data including the circulation flow rate of the absorbent of the wet-type flue gas desulfurization device 10, the circulation flow rate of the absorbent at the first time and the future time from the first time Since the future SO2 concentration is directly predicted from the actual operation data by creating the first relationship table between the SO2 concentration in the effluent gas flowing out of the absorber 11 at the second time, the future can obtain a first relationship table that improves the prediction performance of the SO2 concentration of , and based on this first relationship table, the SO2 concentration in the outflow gas at the second time is equal to or less than the preset value The circulation flow rate of the absorbent at the first time is determined as described above, and the operating conditions of the circulation pumps 12a to 12c are adjusted based on the determined circulation flow rate at the first time. can be adjusted appropriately.
 この実施形態では、ステップS12~S15によって吸収液中のCaCO濃度が予め設定された設定範囲内となるようにしているが、例えば、吸収液中のCaCO濃度をセンサーによって実測し、この実測値に基づいて吸収塔11への吸収剤スラリーの供給量を随時調節するようにしておけば、ステップS12~S15の各ステップを不要にすることができる。この場合、制御装置15は、第2学習モデル構築部39と第2関係テーブル作成部35と吸収剤スラリー供給量決定部36と吸収剤スラリー供給制御部37とを備えていなくてもよい。 In this embodiment, steps S12 to S15 are performed so that the CaCO 3 concentration in the absorbent falls within a preset range. If the amount of absorbent slurry supplied to the absorption tower 11 is adjusted as needed based on the value, steps S12 to S15 can be eliminated. In this case, the control device 15 does not have to include the second learning model construction section 39 , the second relationship table creation section 35 , the absorbent slurry supply amount determination section 36 , and the absorbent slurry supply control section 37 .
 続いて図3に示す基本制御に加えて制御装置15で実施される一実施形態に係るプラント制御方法について説明する。図7は一実施形態に係るプラント制御方法を示すフローチャートである。 Next, in addition to the basic control shown in FIG. 3, a plant control method according to one embodiment implemented by the control device 15 will be described. FIG. 7 is a flow chart showing a plant control method according to one embodiment.
 本プラント制御では、図3に示すステップS2~S5とは別に、ステップS100において第1学習モデルの予測値を算出する。次に、ステップS101において、ガス分析計17による分析結果を取得する。続くステップS102において、ステップS100で算出した予測値とステップS101で取得した分析結果とを比較することにより第1学習モデルの予測結果、つまり予測誤差を算出する。続くステップS103において、ステップS102で算出した予測誤差が所定の条件を満たすとき、例えば、予測誤差が閾値より大きいか判定する。予測誤差が閾値より大きい場合(ステップS103:YES)、続くステップS104において追加学習データを選定し、ステップS105においてステップS104で選定された追加学習データを用いて第1学習モデルの再構築を行う。そしてステップS106では、ステップS105で再構築された第1学習モデルについて予測誤差を算出し、ステップS107において当該予測誤差が閾値以下であるかを判定する。ステップS106で算出した予測誤差が依然として閾値より大きい場合(ステップS107:NO)、処理をステップS104に戻して追加学習データの選定と学習モデルの再構築が繰り返し実施される。このような繰り返し処理は、再構築された第1学習モデルの予測値が閾値以下になるまで実施される。
 尚、ステップS103で予測誤差が閾値以下である場合(ステップS103:NO)、処理は終了するが、図7に示す一連の処理は所定のタイミングで繰り返し実施されてもよい。
In this plant control, the predicted value of the first learning model is calculated in step S100, apart from steps S2 to S5 shown in FIG. Next, in step S101, the analysis result by the gas analyzer 17 is obtained. In subsequent step S102, the predicted value calculated in step S100 and the analysis result obtained in step S101 are compared to calculate the prediction result of the first learning model, that is, the prediction error. In subsequent step S103, when the prediction error calculated in step S102 satisfies a predetermined condition, for example, it is determined whether the prediction error is greater than a threshold. If the prediction error is greater than the threshold (step S103: YES), additional learning data is selected in subsequent step S104, and the first learning model is reconstructed in step S105 using the additional learning data selected in step S104. Then, in step S106, a prediction error is calculated for the first learning model reconstructed in step S105, and in step S107, it is determined whether or not the prediction error is equal to or less than a threshold. If the prediction error calculated in step S106 is still larger than the threshold (step S107: NO), the process returns to step S104 to repeatedly select additional learning data and reconstruct the learning model. Such repeated processing is performed until the predicted value of the reconstructed first learning model becomes equal to or less than the threshold.
If the prediction error is equal to or less than the threshold in step S103 (step S103: NO), the process ends, but the series of processes shown in FIG. 7 may be repeated at a predetermined timing.
 次に、図7の各ステップについて詳細に説明する。
 ステップS100では、第1学習モデル構築部38で構築された第1学習モデルを用いて流出ガス中のSO濃度の予測値を算出する。ステップS100における第1学習モデルによる予測値の算出は、前述のステップS3において第1関係テーブルを作成するために流出ガス中のSO濃度の予測値を算出した場合と同様であり。第1学習モデルに対して入力される第1時間における吸収液の循環流量に対して、第1時間よりも将来の時間である第2時間における流出ガス中のSO濃度の予測値が算出される。
Next, each step in FIG. 7 will be described in detail.
In step S100, the first learning model constructed by the first learning model construction unit 38 is used to calculate the predicted value of the SO 2 concentration in the outflow gas. Calculation of the predicted value by the first learning model in step S100 is the same as the calculation of the predicted value of the SO 2 concentration in the outflow gas to create the first relationship table in step S3. A predicted value of the SO 2 concentration in the outflow gas at a second time, which is a time later than the first time, is calculated for the circulating flow rate of the absorbent at the first time that is input to the first learning model. be.
 ステップS101では、ガス分析計17による分析結果に基づいて流出ガス中のSO濃度の実測値を取得する。この実測値は、ステップS100で算出された流出ガス中のSO濃度の予測値に対応する第2時間における実際の流出ガス中のSO濃度である。 In step S101, based on the analysis result by the gas analyzer 17, a measured value of SO 2 concentration in the outflow gas is obtained. This measured value is the actual SO2 concentration in the outflow gas at the second time corresponding to the predicted value of the SO2 concentration in the outflow gas calculated in step S100.
 ステップS102では、予測誤差算出部40は、ステップS100で算出された流出ガス中のSO濃度の予測値と、ステップS101で取得された流出ガス中のSO濃度の実測値との差として、予測誤差を算出する。この予測誤差は、第1学習モデル構築部38で構築された第1学習モデルの予測精度に対応する誤差であり、様々な要因が含まれる。例えば、運転データ受信部30によって受信される運転データには少なからずバラつきを有するため、当該運転データを学習データとして機械学習によって構築された第1学習モデルは、当該バラつきに起因する学習誤差がある。またプラントの運転条件がモデル構築時から変化することにより、後発的に予測誤差が大きくなってしまうこともある。 In step S102, the prediction error calculation unit 40 calculates the difference between the predicted value of the SO2 concentration in the outflow gas calculated in step S100 and the measured value of the SO2 concentration in the outflow gas obtained in step S101. Calculate the prediction error. This prediction error is an error corresponding to the prediction accuracy of the first learning model constructed by the first learning model construction unit 38, and includes various factors. For example, since the driving data received by the driving data receiving unit 30 has some variation, the first learning model constructed by machine learning using the driving data as learning data has a learning error caused by the variation. . In addition, the prediction error may increase later due to changes in plant operating conditions from the time the model was constructed.
 ステップS103では、このような予測誤差が、予め設定された閾値εより大きいか否かが判定される。ステップS103における成否判定は、予測誤差が所定時間以上、継続して閾値εより大きくなった場合に成立するように行われてもよい。予測誤差の大きさは湿式排煙脱硫装置10の運転状態によっても変動することがあり、仮に短期的な判定によってステップS103において成立判定を行うと、第1学習モデルの再構築が頻繁に実施されてしまい、モデル管理の負担が増えてしまうおそれがある。そのため、ステップS103では、予測誤差が閾値εより大きくなる状態が所定時間以上にわたって継続した場合に、ステップS103において成立判定を行うことで、第1学習モデルの再構築を適切に実施し、効率的なモデル管理が可能となる。 At step S103, it is determined whether or not such a prediction error is greater than a preset threshold value ε. The success/failure determination in step S103 may be made so as to be established when the prediction error continues to exceed the threshold value ε for a predetermined period of time or longer. The magnitude of the prediction error may also vary depending on the operating state of the wet-type flue gas desulfurization system 10. If it is determined in step S103 based on a short-term determination, the first learning model will be rebuilt frequently. There is a risk that the burden of model management will increase. Therefore, in step S103, when the state in which the prediction error is larger than the threshold value ε continues for a predetermined time or longer, it is determined in step S103 that the first learning model is reconstructed appropriately and efficiently. model management becomes possible.
 ステップS104では、ステップS103で成立判定がなされた場合に、追加学習データ選定部42によって、第1学習モデルの再構築のために用いられる学習データに含まれる追加学習データが選定される。再構築に用いられる学習データは、前回の第1学習モデルの構築時に用いられた古い初期学習データに対して、新たな追加学習データが含まれる(すなわち、再構築に用いられる学習データ=初期学習データ+追加学習データ)。運転データ受信部30では継続的に運転データの受信が行われており、前回の第1学習モデルが構築された後に受信された運転データから、適切な追加学習データが選定される。 In step S104, when the establishment determination is made in step S103, the additional learning data selection unit 42 selects additional learning data included in the learning data used for reconstructing the first learning model. The learning data used for reconstruction includes new additional learning data in addition to the old initial learning data used when building the first learning model last time (that is, learning data used for reconstruction = initial learning data + additional training data). The operation data receiving unit 30 continuously receives operation data, and appropriate additional learning data is selected from the operation data received after the previous first learning model was constructed.
 またステップS104における追加学習データの選定は、プラントの定常運転時に取得された運転データを対象に実施されてもよい。例えばプラントの異常発生時、運転起動時、運転停止時などの非定常運転時に取得された運転データは、追加学習データの選定対象から除外される。また運転データに、これらの非定常運転時に取得されたデータが含まれる場合には、運転データに対して前処理を実施することで除外してもよい。 In addition, the selection of additional learning data in step S104 may be performed with respect to the operation data acquired during steady operation of the plant. For example, the operation data acquired during non-steady operation such as when an abnormality occurs in the plant, when the operation is started, when the operation is stopped, etc., are excluded from the selection targets of the additional learning data. If the operating data includes data acquired during unsteady operation, the operating data may be excluded by performing preprocessing.
 ここで図8を参照して、追加学習データ選定部42による追加学習データの選定方法について具体的に説明する。図8は図7のステップS104における追加学習データの選定方法を示すフローチャートである。 Here, a method for selecting additional learning data by the additional learning data selection unit 42 will be specifically described with reference to FIG. FIG. 8 is a flow chart showing a method of selecting additional learning data in step S104 of FIG.
 ステップS200では、まず運転データ受信部30で受信された運転データを解析することにより、運転データに含まれる複数のパラメータから、第1学習モデルの説明変数を少なくとも1つ選択する。このような説明変数の選択は、例えば、運転データに含まれる複数の運転データの各々について、第1学習モデルの目的変数である流出ガス中のSO濃度に対して重回帰等の手法によって寄与度をそれぞれ算出し、当該寄与度に基づいて行われてもよい。例えば、寄与度が大きな順にZ個のパラメータが説明変数として選択されてもよい。このように運転データに含まれる複数のパラメータの一部を、第1学習モデルの説明変数として選択することで、運転データに含まれる全パラメータを学習対象にする場合に比べて、学習精度の低下を抑えながら、学習時の演算量を効果的に低減できる。 In step S200, first, by analyzing the operating data received by the operating data receiving unit 30, at least one explanatory variable of the first learning model is selected from a plurality of parameters included in the operating data. For example, the selection of such explanatory variables contributes to the SO 2 concentration in the outflow gas, which is the objective variable of the first learning model, for each of the plurality of operating data included in the operating data, by a method such as multiple regression. may be calculated based on the contribution. For example, Z parameters may be selected as explanatory variables in descending order of contribution. By selecting some of the parameters included in the driving data as explanatory variables for the first learning model in this way, the learning accuracy is lower than when all the parameters included in the driving data are subject to learning. can be effectively reduced while suppressing
 ステップS201では、初期学習データとして、第1学習モデルの前回構築に用いられた学習データ(運転データ)のうちステップS200で選択された説明変数を選定する。このとき、初期学習データとして、第1学習モデルの前回構築に用いられた学習データ(運転データ)から選定されたV個についてW時間にわたった平均値を用いてもよい。この場合、運転データに含まれる特定のパラメータについて所定時間にわたった平均値を学習データとすることで、学習精度の低下を抑えながら、学習時の演算量を効果的に低減できる。 In step S201, the explanatory variables selected in step S200 from among the learning data (operating data) used in the previous construction of the first learning model are selected as initial learning data. At this time, as the initial learning data, an average value over W hours for V selected from the learning data (operating data) used in the previous construction of the first learning model may be used. In this case, by using the average value of a specific parameter included in the operation data over a predetermined period of time as the learning data, it is possible to effectively reduce the amount of calculation during learning while suppressing a decrease in learning accuracy.
 ステップS202では、ステップS200で選定された説明変数について、運転データ受信部30で受信された運転データから追加学習データ候補が選定される。追加学習データ候補は、第1学習モデルの前回構築時から現在に至るまでの間に、運転データ受信部30で受信した新たな運転データから選定され、ステップS201で選定される初期学習データに対応するパラメータを含む。例えば、初期学習データとして上述のようにW時間にわたった平均値が用いられる場合、追加学習データ候補もまたW時間にわたった平均値が用いられる。 In step S202, additional learning data candidates are selected from the driving data received by the driving data receiving unit 30 for the explanatory variables selected in step S200. The additional learning data candidate is selected from new driving data received by the driving data receiving unit 30 from the previous construction of the first learning model to the present, and corresponds to the initial learning data selected in step S201. Contains parameters to For example, when the average value over W hours is used as the initial learning data as described above, the average value over W hours is also used as the additional learning data candidate.
 ステップS203では、ステップS201で選定された初期学習データと、ステップS202で選定された追加学習データ候補について乖離度を算出する。乖離度の算出には、例えばk近傍法、マハラノビス距離など、乖離度を評価するための各種手法を用いることができる。そしてステップS204では、ステップS203で算出された乖離度に基づいて、学習データに追加すべき追加学習データを選定する。 In step S203, the degree of divergence between the initial learning data selected in step S201 and the additional learning data candidates selected in step S202 is calculated. For calculating the degree of deviation, various methods for evaluating the degree of deviation can be used, such as the k nearest neighbor method and the Mahalanobis distance. In step S204, additional learning data to be added to the learning data is selected based on the deviation calculated in step S203.
 ここで図9A及び図9Bは図8のステップS204における追加学習データを選定する過程を示す図である。 Here, FIGS. 9A and 9B are diagrams showing the process of selecting additional learning data in step S204 of FIG.
 図9Aの態様では、第1学習モデルの説明変数に含まれる任意の変数1、変数2で規定される空間において、ある初期学習データDsに対して、複数の追加学習データ候補Dc1、Dc2、Dc3、、・・・が示されており、初期学習データDsと各追加学習データ候補Dc1、Dc2、Dc3、、・・・との乖離度を示す距離がそれぞれ算出されている。この例では、追加学習データ選定部42は、複数の追加学習データ候補のうち当該距離が最大である追加学習データ候補Dc5を追加学習データとして選定する。 In the embodiment of FIG. 9A, in a space defined by arbitrary variables 1 and 2 included in the explanatory variables of the first learning model, a plurality of additional learning data candidates Dc1, Dc2, and Dc3 are obtained for certain initial learning data Ds. , . . . are shown, and the distances indicating the degrees of divergence between the initial learning data Ds and the additional learning data candidates Dc1, Dc2, Dc3, . In this example, the additional learning data selection unit 42 selects the additional learning data candidate Dc5 having the largest distance among the plurality of additional learning data candidates as the additional learning data.
 また図9Bの態様では、第1学習モデルの説明変数に含まれる任意の変数1、変数2で規定される空間において、ステップS202で選定された複数の追加学習データ候補Dc1、Dc2、Dc3、、・・・に対して、ステップS201で選定された複数の初期学習データDs1、Ds2、・・・が示されている。そして、各追加学習データ候補Dc1、Dc2、Dc3、、・・・に対して、最も近い初期学習データまでの距離が算出されている。追加学習データ選定部42は、複数の追加学習データ候補のうち当該距離が最大であるものを追加学習データとして選定する。図9A及び図9Bにおいて、学習データの追加判定に用いる変数の数は2個としたが、本発明の範囲を限定するものではなく、実施時には1個あるいは3個以上としても良い。 9B, in the space defined by arbitrary variables 1 and 2 included in the explanatory variables of the first learning model, the plurality of additional learning data candidates Dc1, Dc2, Dc3, . A plurality of initial learning data Ds1, Ds2, . . . selected in step S201 are shown for . Then, the distance to the closest initial learning data is calculated for each of the additional learning data candidates Dc1, Dc2, Dc3, . The additional learning data selection unit 42 selects, as additional learning data, the one with the largest distance among the plurality of additional learning data candidates. In FIGS. 9A and 9B, the number of variables used for determination of addition of learning data is two, but the scope of the present invention is not limited, and the number may be one or three or more in practice.
 追加学習データ選定部42は、このように初期学習データと追加学習データ候補との乖離度を算出し、当該乖離度に基づいて、第1学習モデルを再構築するための学習データに追加すべき学習データ候補を選定する。新たに追加される追加学習データの数は任意でよく、例えば、乖離度が所定値以上となる追加学習データを運転データから選定することにより、乖離度が大きいものから決められた個数(A個)の追加学習データを選定することができる。 The additional learning data selection unit 42 calculates the degree of divergence between the initial learning data and the additional learning data candidates in this way, and based on the degree of divergence, should be added to the learning data for reconstructing the first learning model. Select learning data candidates. The number of additional learning data to be newly added may be arbitrary. ) additional learning data can be selected.
 尚、本実施形態では、第1学習モデル構築部38によって第1学習モデルが既に構築されていることを前提に、第1学習モデルの前回構築時に用いられた学習データを初期学習データとして取り扱っているが、第1学習モデルの構築履歴が無い場合(例えば第1学習モデルの初回構築時)には、運転データから任意に選定された1個以上のパラメータを初期学習データとして取り扱ってもよい。この場合、第1学習モデルの初回構築時においても、予測誤差が少ない学習モデルの構築が可能となる。 In the present embodiment, on the premise that the first learning model has already been constructed by the first learning model constructing unit 38, the learning data used when constructing the first learning model last time is treated as the initial learning data. However, if there is no construction history of the first learning model (for example, when the first learning model is constructed for the first time), one or more parameters arbitrarily selected from the operating data may be treated as initial learning data. In this case, even when the first learning model is constructed for the first time, it is possible to construct a learning model with less prediction error.
 図7に戻って、ステップS105では、ステップS104で選定された追加学習データを初期学習データに追加することで新たな学習データを作成し、第1学習モデルを再構築する。これにより、第1学習モデルの前回構築時に用いられた初期学習データに対して、その後得られた運転データから選定された追加学習データを加えた新たな学習データを用いて、第1学習モデルの再構築を行うことができる。 Returning to FIG. 7, in step S105, new learning data is created by adding the additional learning data selected in step S104 to the initial learning data, and the first learning model is reconstructed. As a result, the first learning model is constructed using new learning data obtained by adding additional learning data selected from the subsequently obtained driving data to the initial learning data used in the previous construction of the first learning model. Reconstruction can be performed.
 そしてステップS106では、ステップS105で再構築された第1学習モデルを用いて予測誤差を算出する。ステップS106における予測誤差の算出は、前述のステップS102と同様である。 Then, in step S106, the prediction error is calculated using the first learning model reconstructed in step S105. Calculation of the prediction error in step S106 is the same as in step S102 described above.
 ステップS107では、ステップS103と同様に、ステップS106で算出された予測誤差が閾値ε以下であるか否かが判定される。すなわち、第1学習モデルの予測誤差が、再構築によって十分に改善されたかが判定される。その結果、第1学習モデルの予測誤差が閾値ε以下に改善された場合には、第1学習モデルの予測精度を改善できたとして処理を終了する。一方、第1学習モデルの予測誤差が依然として閾値εより大きい場合(ステップS107:NO)、処理がステップS104に戻される。つまり、再構築によっても第1学習モデルの予測誤差の改善が十分でない場合には、再びステップS104で追加学習データの選定が行われることによって、学習データの見直しが行われた上で、第1学習モデルの構築が繰り返し実施される。このような第1学習モデルの再構築は、ステップS107で予測誤差が閾値ε以下になるまで繰り返し実施される。 In step S107, similarly to step S103, it is determined whether or not the prediction error calculated in step S106 is equal to or less than the threshold ε. That is, it is determined whether the prediction error of the first learning model has been sufficiently improved by reconstruction. As a result, when the prediction error of the first learning model is improved to be equal to or less than the threshold value ε, the processing is terminated assuming that the prediction accuracy of the first learning model has been improved. On the other hand, if the prediction error of the first learning model is still larger than the threshold ε (step S107: NO), the process returns to step S104. That is, if the prediction error of the first learning model is not sufficiently improved even by reconstruction, additional learning data is selected again in step S104, and the learning data is reviewed, and then the first Construction of the learning model is performed repeatedly. Such reconstruction of the first learning model is repeated until the prediction error becomes equal to or less than the threshold value ε in step S107.
 ここで再構築の実施回数に伴う第1学習モデルの予測値の変化について具体的に説明する。図10は第1学習モデルの再構築に用いられる学習データ(目的変数である流出ガス中のSO濃度と学習モデルに用いる説明変数Xとの学習データ)の分布を再構築の実施回数ごとに示す図であり、図11は図10に示す各学習データを用いて再構築された第1学習モデルの予測値の推移を示す図である。 Here, the change in the predicted value of the first learning model due to the number of times the reconstruction is performed will be specifically described. FIG. 10 shows the distribution of the learning data used for reconstruction of the first learning model (the learning data of the SO 2 concentration in the outflow gas which is the objective variable and the explanatory variable X used for the learning model) for each number of times of reconstruction. FIG. 11 is a diagram showing changes in predicted values of the first learning model reconstructed using the learning data shown in FIG. 10. FIG.
 図10では、再構築の実施回数が増えるに従って、ステップS104で新たな追加学習データが選定されることで、学習データに含まれるデータ数が増加している様子が示されている。このような学習データを用いて再構築される第1学習モデルの予測誤差は、図11に示されるように、再構築の実施回数が増えるに従って減少する。これは、再構築のたびに追加学習データが適切に選定されることで、第1学習モデルの予測精度が改善されていることを示している。 FIG. 10 shows how the number of data included in the learning data increases as the number of reconstruction implementations increases, as new additional learning data is selected in step S104. The prediction error of the first learning model reconstructed using such learning data decreases as the number of times of reconstruction increases, as shown in FIG. This indicates that the prediction accuracy of the first learning model is improved by appropriately selecting additional learning data each time reconstruction is performed.
 尚、再構築の実施回数が多くなると、第1学習モデルの予測誤差は所定値(図11の例では、0.7近傍)に収束する。そのため、ステップS107では、第1学習モデルの予測値について閾値以下になることに加えて、又は、代えて、予測誤差が十分に収束したか否かに基づいて、ステップS104以降の繰り返し処理の終了判定を行ってもよい。 Note that as the number of reconstruction operations increases, the prediction error of the first learning model converges to a predetermined value (near 0.7 in the example of FIG. 11). Therefore, in step S107, in addition to or instead of whether the predicted value of the first learning model is equal to or smaller than the threshold value, based on whether the prediction error has sufficiently converged, the iterative process after step S104 is terminated. A judgment may be made.
 このように、第1学習モデルを構築するための学習データに追加学習データを選定して追加することで新たな学習データを作成し、当該学習データを用いて第1学習モデルの再構築が行われる。この際、学習データに追加される追加学習データを、従来から学習データに含まれる初期学習データとの乖離度に基づいて適切に選定することで、第1学習モデルの予測誤差を効果的に低減できる。これにより、第1学習モデルの予測誤差が何らかの要因により低下した場合であっても、第1学習モデルの再構築によって良好な予測精度を得ることができる。 In this way, by selecting and adding the additional learning data to the learning data for building the first learning model, new learning data is created, and the first learning model is reconstructed using the learning data. will be At this time, the additional learning data added to the learning data is appropriately selected based on the degree of divergence from the initial learning data conventionally included in the learning data, thereby effectively reducing the prediction error of the first learning model. can. As a result, even if the prediction error of the first learning model is reduced for some reason, good prediction accuracy can be obtained by reconstructing the first learning model.
 制御装置15は、第1学習モデル構築部38において、このように予測精度が改善された第1学習モデルを再構築することで、第1学習モデルの予測値に基づいて循環流量に関する制御目標値を精度よく設定できる。その結果、循環ポンプ調節部33は、当該制御目標値に基づいて循環ポンプ12の台数を調整することで循環流量を好適に制御することができる。 By reconstructing the first learning model with improved prediction accuracy in the first learning model construction unit 38, the control device 15 obtains the control target value for the circulation flow rate based on the predicted value of the first learning model. can be set with high precision. As a result, the circulation pump adjustment unit 33 can appropriately control the circulation flow rate by adjusting the number of circulation pumps 12 based on the control target value.
 このような学習モデルの再構築による予測誤差の低減は、第2学習モデル構築部39で取り扱われる第2学習モデルについても同様に行うことができる。すなわち、予測誤差算出部40によって算出される第2学習モデルの予測誤差が閾値以下となった場合には、追加学習データ選定部42によって、第2学習モデルを再構築するための学習データに追加される追加学習データの選定が行われ、当該追加学習データを含む新たな学習データを用いた第2学習モデルの再構築が行われる。この際、学習データに追加される追加学習データを、従来から学習データに含まれる初期学習データとの乖離度に基づいて適切に選定することで、第2学習モデルの予測誤差を効果的に低減できる。これにより、第2学習モデルの予測誤差が何らかの要因により低下した場合であっても、第2学習モデルの再構築によって良好な予測精度を得ることができる。 Reducing the prediction error by reconstructing such a learning model can be similarly performed for the second learning model handled by the second learning model construction unit 39. That is, when the prediction error of the second learning model calculated by the prediction error calculation unit 40 is equal to or less than the threshold, the additional learning data selection unit 42 adds the second learning model to the learning data for reconstructing the second learning model. Additional learning data to be added is selected, and the second learning model is reconstructed using new learning data including the additional learning data. At this time, the additional learning data added to the learning data is appropriately selected based on the degree of divergence from the initial learning data conventionally included in the learning data, thereby effectively reducing the prediction error of the second learning model. can. Thereby, even if the prediction error of the second learning model is reduced for some reason, good prediction accuracy can be obtained by reconstructing the second learning model.
 制御装置15は、第2学習モデル構築部39において、このように予測精度が改善された第2学習モデルを再構築することで、第2学習モデルの予測値に基づいて吸収剤スラリー供給量に関する制御目標値を精度よく設定できる。その結果、吸収剤スラリー供給制御部37は、当該制御目標値に基づいて吸収剤スラリー供給量制御弁23を制御することで吸収剤スラリーの供給量を好適に制御することができる。 By reconstructing the second learning model with improved prediction accuracy in the second learning model construction unit 39, the control device 15 can calculate the absorbent slurry supply amount based on the prediction value of the second learning model. Control target values can be set with high accuracy. As a result, the absorbent slurry supply controller 37 can suitably control the absorbent slurry supply amount by controlling the absorbent slurry supply amount control valve 23 based on the control target value.
 尚、上記実施形態では、SOの吸収剤としてCaCOを用いているが、CaCOに限定するものではない。SOの吸収剤として、例えば水酸化マグネシウム(Mg(OH))等を用いることもできる。 Although CaCO 3 is used as the SO 2 absorbent in the above embodiment, it is not limited to CaCO 3 . As an SO 2 absorbent, for example, magnesium hydroxide (Mg(OH) 2 ) or the like can be used.
 尚、制御装置15における各処理を実行する装置として図12に示す情報処理装置52を、クラウド環境上あるいはVPNを介してエッジサーバー42に電気的に通信可能なように接続する構成をとることが可能である。この場合、情報処理装置52は、運転データ受信部30、第1関係テーブル作成部31、循環流量決定部32、第2関係テーブル作成部35、吸収剤スラリー供給量決定部36、第1学習モデル構築部38、第2学習モデル構築部39、予測誤差算出部40、及び追加学習データ選定部42を備え、循環流量決定部32及び吸収剤スラリー供給量決定部36で決定した制御目標値を制御装置15における循環ポンプ調節部33及び吸収剤スラリー供給制御部37に対して通信することで、循環ポンプや吸収剤の供給量を制御してもよい。
 また、運転データ受信部30は、制御装置15の運転データ中継部43を介して、各種運転データを受信しても良いし、前述したように運転データ取得部20から各種運転データを受信してもよい。
The information processing device 52 shown in FIG. 12 as a device for executing each process in the control device 15 may be connected to the edge server 42 in a cloud environment or via a VPN so as to be electrically communicable. It is possible. In this case, the information processing device 52 includes the operation data receiving unit 30, the first relationship table creation unit 31, the circulation flow rate determination unit 32, the second relationship table creation unit 35, the absorbent slurry supply amount determination unit 36, the first learning model A construction unit 38, a second learning model construction unit 39, a prediction error calculation unit 40, and an additional learning data selection unit 42 are provided, and the control target value determined by the circulation flow rate determination unit 32 and the absorbent slurry supply amount determination unit 36 is controlled. By communicating with the circulation pump adjustment unit 33 and the absorbent slurry supply control unit 37 in the apparatus 15, the circulation pump and the supply amount of the absorbent may be controlled.
Further, the operation data receiving unit 30 may receive various kinds of operation data via the operation data relay unit 43 of the control device 15, or may receive various kinds of operation data from the operation data acquisition unit 20 as described above. good too.
 とりわけ、クラウド環境上で演算する場合、セキュリティの観点から、循環ポンプや吸収剤の制御目標値を直接制御せず、表示のみとする場合がある。例えば、クラウド環境上で生成した運転指標図を、お客様所有のデバイス(端末54)に専用アプリを通して送信・図示し,現地の運転指標図の更新はお客様の手によって行われる場合がある。
 一方、情報処理装置52は、循環ポンプ調節部33及び吸収剤スラリー供給制御部37をも備え、遠隔で循環ポンプや吸収剤の供給量を制御してもよい。
 更に、情報処理装置52は、端末54からの要求により、情報処理装置52において各処理を実行する構成を備えてもよい。
In particular, when calculating in a cloud environment, from the viewpoint of security, there are cases where the control target values of the circulating pump and absorbent are not directly controlled, but only displayed. For example, there is a case where a driving index map generated in a cloud environment is transmitted and illustrated to a device (terminal 54) owned by the customer through a dedicated application, and the local driving index map is updated by the customer.
On the other hand, the information processing device 52 may also include a circulation pump control section 33 and an absorbent slurry supply control section 37 to remotely control the circulation pump and the supply amount of absorbent.
Furthermore, the information processing device 52 may be configured to execute each process in the information processing device 52 in response to a request from the terminal 54 .
  その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components within the scope of the present disclosure, and the above-described embodiments may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood, for example, as follows.
(1)一実施形態に係る装置は、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置であって、
 前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定部と、
 前記学習データ及び前記追加学習データを含む新たな学習データを用いて、前記学習モデルを再構築するための学習モデル構築部と、
を備える。
(1) A device according to one embodiment comprises:
A device for executing processing related to plant control based on prediction results using a learning model,
Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition. Department and
a learning model construction unit for reconstructing the learning model using new learning data including the learning data and the additional learning data;
Prepare.
 上記(1)の態様によれば、学習モデルを構築するための学習データに追加学習データを選定して追加することで新たな学習データを作成し、当該学習データを用いて学習モデルの再構築が行われる。この際、新たな学習データに追加される追加学習データを、学習データとの乖離度が大きなものを含むように選定することで、学習モデルの再構築を適切に実施できる。そして、このように適切に再構築された学習モデルの予測結果に基づいてプラントの制御に係る処理を実行することで、良好な制御精度が得られる。 According to the aspect (1) above, the additional learning data is selected and added to the learning data for building the learning model to create new learning data, and the learning model is reconstructed using the learning data. is done. At this time, by selecting additional learning data to be added to the new learning data so as to include data with a large degree of divergence from the learning data, the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
(2)他の態様では、上記(1)の態様において、
 再構築された前記新たな学習モデルを用いた予測結果が所定の条件を満たすとき、前記追加学習データ選定部は、前記追加学習データとして選定されていない前記運転データから、前記乖離度が大きなデータを含む前記追加学習データとして更に選定し、前記学習データ構築部は、前記追加学習データ選定部で更に選定された前記追加学習データを含む前記新たな学習データを用いて、前記学習モデルの再構築を実施する。
(2) In another aspect, in the aspect of (1) above,
When a prediction result using the reconstructed new learning model satisfies a predetermined condition, the additional learning data selection unit selects data having a large divergence degree from the driving data not selected as the additional learning data. and the learning data constructing unit reconstructs the learning model using the new learning data including the additional learning data further selected by the additional learning data selecting unit to implement.
 上記(2)の態様によれば、再構築された新たな学習モデルを用いた予測結果が所定の条件を満たすとき、新たな追加学習データを学習データに更に追加して新たな学習データを作成し、当該新たな学習データを用いて学習モデルの再構築を再び実施する。このような追加学習データの選定と学習モデルの再構築とを繰り返し実施することで、学習モデルの予測誤差を十分に低減できる。 According to the aspect (2) above, when the prediction result using the reconstructed new learning model satisfies a predetermined condition, new additional learning data is added to the learning data to create new learning data. Then, the learning model is reconstructed again using the new learning data. By repeating the selection of additional learning data and the reconstruction of the learning model, the prediction error of the learning model can be sufficiently reduced.
(3)他の態様では、上記(1)又は(2)の態様において、
 前記追加学習データ選定部は、前記追加学習データとして、前記運転データに含まれるパラメータの所定期間における平均値を選定する。
(3) In another aspect, in the above aspect (1) or (2),
The additional learning data selection unit selects, as the additional learning data, average values of parameters included in the driving data over a predetermined period.
 上記(3)の態様によれば、追加学習パラメータとして所定期間における平均値を用いることで、学習精度を確保しながら、学習モデルの再構築時における演算量を効果的に低減できる。 According to the aspect (3) above, by using the average value for the predetermined period as the additional learning parameter, it is possible to effectively reduce the amount of calculation when reconstructing the learning model while ensuring the learning accuracy.
(4)他の態様では、上記(1)から(3)のいずれか一態様において、
 前記学習モデル構築部は、前記予測結果が所定時間以上、継続して前記所定条件を満たすとき、前記学習モデルの再構築を行う。
(4) In another aspect, in any one aspect of (1) to (3) above,
The learning model construction unit reconstructs the learning model when the prediction result continuously satisfies the predetermined condition for a predetermined time or longer.
 上記(4)の態様によれば、予測結果が所定条件を満たすか否かの判定は、予測結果が所定時間にわたって継続的に所定条件を満たすか否かに基づいて行われる。予測結果はプラントの運転状態によっても変動することがあり、仮に短期的な判定を行うと学習モデルの再構築が頻繁に実施されてしまい、モデル管理の負担が増えてしまうおそれがある。そのため本態様のように所定時間にわたる継続的な判定を行うことで、学習モデルの再構築を適切に実施し、効率的なモデル管理が可能となる。 According to the aspect (4) above, the determination of whether or not the prediction result satisfies the predetermined condition is made based on whether or not the prediction result continuously satisfies the predetermined condition for a predetermined period of time. The prediction results may also vary depending on the operating state of the plant, and if short-term judgments are made, the learning model will be rebuilt frequently, and there is a risk that the burden of model management will increase. Therefore, by performing continuous determination over a predetermined period of time as in this aspect, the learning model can be appropriately reconstructed, and efficient model management becomes possible.
(5)他の態様では、上記(1)から(4)のいずれか一態様において、
 前記学習データは、前記学習モデルの構築前のデータあるいは前回構築に用いられたデータである。
(5) In another aspect, in any one aspect of (1) to (4) above,
The learning data is data before construction of the learning model or data used for the previous construction.
 上記(5)の態様によれば、学習モデルの構築前のデータあるいは学習モデルの前回構築に用いられた学習データに対して、追加学習データを追加して作成された新たな学習データを用いて、学習モデルの再構築が実施される。 According to the above aspect (5), the new learning data created by adding the additional learning data to the data before building the learning model or the learning data used for the previous building of the learning model is used. , a reconstruction of the learning model is performed.
(6)他の態様では、上記(1)から(5)のいずれか一態様において、
 前記追加学習データ選定部は、前記プラントの定常運転時に取得された前記運転データから前記追加学習データを選定する。
(6) In another aspect, in any one aspect of (1) to (5) above,
The additional learning data selection unit selects the additional learning data from the operation data acquired during steady operation of the plant.
 上記(6)の態様によれば、追加学習データの選定は、プラントの定常運転時に取得された運転データを対象に実施される。例えばプラントの異常発生時、運転起動時、運転停止時などの非定常運転時に取得された運転データは、追加学習データの選定対象から除外されることによって、学習モデルの予測結果を適切に求めることができる。また運転データに、これらの非定常運転時に取得されたデータが含まれる場合には、運転データに対して前処理を実施することにより除外してもよい。 According to the aspect (6) above, the selection of the additional learning data is performed on the operation data acquired during the steady operation of the plant. For example, the operation data acquired during non-steady operation such as when an abnormality occurs in the plant, when the operation is started, when the operation is stopped, etc., is excluded from the selection of additional learning data, so that the prediction results of the learning model can be obtained appropriately. can be done. If the operating data includes data obtained during unsteady operation, the operating data may be excluded by performing preprocessing.
(7)他の態様では、上記(1)から(6)のいずれか一態様において、
 前記学習モデルを用いた予測結果が所定条件を満たすときは、前記学習モデルを用いて得られた予測値による予測誤差が閾値を満たすときを示す。
(7) In another aspect, in any one aspect of (1) to (6) above,
When the prediction result using the learning model satisfies a predetermined condition, it indicates when the prediction error of the predicted value obtained using the learning model satisfies the threshold.
 上記(7)の態様によれば、予測結果が所定条件を満たすか否かの判定が、学習モデルを用いて得られた予測値による予測誤差が閾値を満たすか否かに基づいて行われる。これにより、学習モデルの予測誤差が何らかの要因により低下した場合であっても、効率的に選定された追加学習データを含む新たな学習データを用いて学習モデルを再構築し、良好な予測精度が得られる。そして、このように予測精度が改善された学習モデルの予測値に基づいてプラントの制御に係る処理を実行することで、良好な制御精度が得られる。 According to the aspect (7) above, the determination of whether or not the prediction result satisfies the predetermined condition is made based on whether or not the prediction error of the predicted value obtained using the learning model satisfies the threshold. As a result, even if the prediction error of the learning model decreases for some reason, the learning model can be reconstructed using new learning data including the efficiently selected additional learning data, and good prediction accuracy can be achieved. can get. Good control accuracy can be obtained by executing processing related to plant control based on the predicted values of the learning model whose prediction accuracy has been improved in this way.
(8)他の態様では、上記(7)の態様において、
 前記追加学習データ選定部は、前記予測値に対する寄与度に基づいて、前記運転データから前記追加学習データに含めるパラメータを選定する。
(8) In another aspect, in the aspect of (7) above,
The additional learning data selection unit selects a parameter to be included in the additional learning data from the driving data based on the degree of contribution to the predicted value.
 上記(8)の態様によれば、運転データから選定された一部のパラメータを追加学習データに含めることで、学習精度を確保しながら、学習モデルの再構築時における演算量を効果的に低減できる。 According to the above aspect (8), by including some parameters selected from the operation data in the additional learning data, while ensuring the learning accuracy, the amount of calculation when reconstructing the learning model is effectively reduced. can.
(9)他の態様では、上記(7)又は(8)の態様において、
 前記プラントは、燃焼装置で発生した排ガスと吸収塔内に循環される吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置であり、
 前記予測値は、前記吸収塔の出口部における前記排ガスの二酸化硫黄濃度である。
(9) In another aspect, in the aspect of (7) or (8) above,
The plant is a wet-type flue gas desulfurization apparatus that performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbent circulated in the absorption tower into gas-liquid contact,
The predicted value is the sulfur dioxide concentration of the flue gas at the outlet of the absorber tower.
 上記(9)の態様によれば、湿式排煙脱硫装置の吸収塔出口部における排ガスの二酸化硫黄濃度を予測するため学習モデルについて、予測誤差が所定値より大きくなった場合に再構築を実施することで、学習モデルによる予測精度を好適に確保できる。 According to the above aspect (9), the learning model for predicting the sulfur dioxide concentration of the flue gas at the outlet of the absorption tower of the wet flue gas desulfurization system is rebuilt when the prediction error becomes larger than a predetermined value. By doing so, it is possible to suitably ensure the prediction accuracy of the learning model.
(10)他の態様では、上記(9)の態様において、
 前記学習モデルで算出される前記予測値に基づいて前記吸収液の循環流量の制御目標値を決定する。
(10) In another aspect, in the aspect of (9) above,
A control target value for the circulation flow rate of the absorbent is determined based on the predicted value calculated by the learning model.
 上記(10)の態様によれば、再構築によって予測誤差が低減された学習モデルを用いて予測値を算出し、当該予測値に基づいて吸収液の循環量の制御目標値を決定することで、良好な制御精度が得られる。 According to the above aspect (10), the prediction value is calculated using the learning model whose prediction error has been reduced by reconstruction, and the control target value for the circulation amount of the absorbent is determined based on the prediction value. , good control accuracy is obtained.
(11)他の態様では、上記(9)又は(10)の態様において、
 前記学習モデルで算出される前記予測値に基づいて前記吸収塔に対する吸収剤供給量の制御目標値を決定する。
(11) In another aspect, in the above aspect (9) or (10),
A control target value for the amount of absorbent supplied to the absorber is determined based on the predicted value calculated by the learning model.
 上記(11)の態様によれば、再構築によって予測誤差が低減された学習モデルを用いて予測値を算出し、当該予測値に基づいて吸収剤供給量の制御目標値を決定することで、良好な制御精度が得られる。 According to the above aspect (11), by calculating a predicted value using a learning model whose prediction error has been reduced by reconstruction, and determining the control target value of the absorbent supply amount based on the predicted value, Good control accuracy is obtained.
(12)一態様に係る遠隔監視システムは、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置と通信可能な端末からなる遠隔監視システムであって、
 前記装置は、
 前記端末からの要求により、前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定部と、
 前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築するための学習モデル構築部と、
を備える。
(12) A remote monitoring system according to one aspect,
A remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
The device comprises:
In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection unit for
a learning model construction unit for reconstructing the learning model using learning data including the learning data and the additional learning data;
Prepare.
 上記(12)の態様によれば、学習モデルを構築するための学習データに追加学習データを選定して追加することで新たな学習データを作成し、当該学習データを用いて学習モデルの再構築が行われる。この際、新たな学習データに追加される追加学習データを、学習データとの乖離度が大きなものを含むように選定することで、学習モデルの再構築を適切に実施できる。そして、このように適切に再構築された学習モデルの予測結果に基づいてプラントの制御に係る処理を実行することで、良好な制御精度が得られる。 According to the above aspect (12), new learning data is created by selecting and adding additional learning data to learning data for building a learning model, and the learning model is rebuilt using the learning data. is done. At this time, by selecting additional learning data to be added to the new learning data so as to include data with a large degree of divergence from the learning data, the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
(13)一態様に係る装置の制御方法は、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置の制御方法であって、
 前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定する追加学習データ選定ステップと、
 前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築する学習モデル構築ステップと、
を備える。
(13) A method of controlling a device according to one aspect includes:
A control method for a device for executing processing related to plant control based on prediction results using a learning model,
an additional learning data selection step of selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition; ,
a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data;
Prepare.
 上記(13)の態様によれば、学習モデルを構築するための学習データに追加学習データを選定して追加することで新たな学習データを作成し、当該学習データを用いて学習モデルの再構築が行われる。この際、新たな学習データに追加される追加学習データを、学習データとの乖離度が大きなものを含むように選定することで、学習モデルの再構築を適切に実施できる。そして、このように適切に再構築された学習モデルの予測結果に基づいてプラントの制御に係る処理を実行することで、良好な制御精度が得られる。 According to the aspect (13) above, the additional learning data is selected and added to the learning data for building the learning model to create new learning data, and the learning model is reconstructed using the learning data. is done. At this time, by selecting additional learning data to be added to the new learning data so as to include data with a large degree of divergence from the learning data, the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
(14)一態様に係る遠隔監視システムの制御方法は、
 学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置と通信可能な端末からなる遠隔監視システムの制御方法であって、
 前記端末からの要求により、前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定する追加学習データ選定ステップと、
 前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築する学習モデル構築ステップと、
を備える。
(14) A method for controlling a remote monitoring system according to one aspect includes:
A control method for a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection step for
a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data;
Prepare.
 上記(14)の態様によれば、学習モデルを構築するための学習データに追加学習データを選定して追加することで新たな学習データを作成し、当該学習データを用いて学習モデルの再構築が行われる。この際、新たな学習データに追加される追加学習データを、学習データとの乖離度が大きなものを含むように選定することで、学習モデルの再構築を適切に実施できる。そして、このように適切に再構築された学習モデルの予測結果に基づいてプラントの制御に係る処理を実行することで、良好な制御精度が得られる。 According to the above aspect (14), new learning data is created by selecting and adding additional learning data to learning data for building a learning model, and the learning model is rebuilt using the learning data. is done. At this time, by selecting additional learning data to be added to the new learning data so as to include data with a large degree of divergence from the learning data, the learning model can be reconstructed appropriately. Good control accuracy can be obtained by executing processing related to plant control based on the prediction result of the learning model appropriately reconstructed in this way.
1 燃焼装置
2 配管
3 循環用配管
5 発電機
10 湿式排煙脱硫装置
11 吸収塔
12 循環ポンプ
13 吸収剤スラリー供給部
14 石膏回収部
15 制御装置
16 流出配管
17 ガス分析計
20 運転データ取得部
21 吸収剤スラリー製造設備
22 吸収剤スラリー供給用配管
23 吸収剤スラリー供給量制御弁
25 石膏分離器
26 石膏スラリー抜き出し用配管
27 石膏スラリー抜き出し用ポンプ
30 運転データ受信部
31 第1関係テーブル作成部
32 循環流量決定部
33 循環ポンプ調節部
35 第2関係テーブル作成部
36 吸収剤スラリー供給量決定部
37 吸収剤スラリー供給制御部
38 第1学習モデル構築部
39 第2学習モデル構築部
40 予測誤差算出部
42 追加学習データ選定部
43 運転データ中継部
44 遠隔監視システム
48 エッジサーバー
50 遠隔監視装置
52 情報処理装置
54 端末
55 情報処理システム
1 Combustion device 2 Pipe 3 Circulation pipe 5 Generator 10 Wet flue gas desulfurization device 11 Absorption tower 12 Circulation pump 13 Absorbent slurry supply unit 14 Gypsum recovery unit 15 Control device 16 Outflow pipe 17 Gas analyzer 20 Operation data acquisition unit 21 Absorbent slurry production facility 22 Absorbent slurry supply pipe 23 Absorbent slurry supply amount control valve 25 Gypsum separator 26 Gypsum slurry extraction pipe 27 Gypsum slurry extraction pump 30 Operation data receiving unit 31 First relationship table creation unit 32 Circulation Flow rate determination unit 33 Circulation pump adjustment unit 35 Second relationship table creation unit 36 Absorbent slurry supply amount determination unit 37 Absorbent slurry supply control unit 38 First learning model construction unit 39 Second learning model construction unit 40 Prediction error calculation unit 42 Additional learning data selection unit 43 Operation data relay unit 44 Remote monitoring system 48 Edge server 50 Remote monitoring device 52 Information processing device 54 Terminal 55 Information processing system

Claims (14)

  1.  学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置であって、
     前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定部と、
     前記学習データ及び前記追加学習データを含む新たな学習データを用いて、前記学習モデルを再構築するための学習モデル構築部と、
    を備える、装置。
    A device for executing processing related to plant control based on prediction results using a learning model,
    Additional learning data selection for selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition. Department and
    a learning model construction unit for reconstructing the learning model using new learning data including the learning data and the additional learning data;
    A device comprising:
  2.  再構築された前記新たな学習モデルを用いた予測結果が所定の条件を満たすとき、前記追加学習データ選定部は、前記追加学習データとして選定されていない前記運転データから、前記乖離度が大きなデータを含む前記追加学習データとして更に選定し、前記学習データ構築部は、前記追加学習データ選定部で更に選定された前記追加学習データを含む前記新たな学習データを用いて、前記学習モデルの再構築を実施する、請求項1に記載の装置。 When a prediction result using the reconstructed new learning model satisfies a predetermined condition, the additional learning data selection unit selects data having a large divergence degree from the driving data not selected as the additional learning data. and the learning data constructing unit reconstructs the learning model using the new learning data including the additional learning data further selected by the additional learning data selecting unit 11. The apparatus of claim 1, wherein the apparatus performs
  3.  前記追加学習データ選定部は、前記追加学習データとして、前記運転データに含まれるパラメータの所定期間における平均値を選定する、請求項1又は2に記載の装置。 The device according to claim 1 or 2, wherein the additional learning data selection unit selects, as the additional learning data, an average value of parameters included in the operation data over a predetermined period.
  4.  前記学習モデル構築部は、前記予測結果が所定時間以上、継続して前記所定条件を満たすとき、前記学習モデルの再構築を行う、請求項1から3のいずれか一項に記載の装置。 The apparatus according to any one of claims 1 to 3, wherein the learning model construction unit reconstructs the learning model when the prediction result continuously satisfies the predetermined condition for a predetermined time or longer.
  5.  前記学習データは、前記学習モデルの構築前のデータあるいは前回構築に用いられたデータである、請求項1から4のいずれか一項に記載の装置。 5. The apparatus according to any one of claims 1 to 4, wherein the learning data is data before building the learning model or data used for building the learning model last time.
  6.  前記追加学習データ選定部は、前記プラントの定常運転時に取得された前記運転データから前記追加学習データを選定する、請求項1から5のいずれか一項に記載の装置。 The apparatus according to any one of claims 1 to 5, wherein the additional learning data selection unit selects the additional learning data from the operation data acquired during steady operation of the plant.
  7.  前記学習モデルを用いた予測結果が所定条件を満たすときは、前記学習モデルを用いて得られた予測値による予測誤差が閾値を満たすときを示す、請求項1から6のいずれか一項に記載の装置。 7. The method according to any one of claims 1 to 6, wherein when a prediction result using said learning model satisfies a predetermined condition indicates when a prediction error of a predicted value obtained using said learning model satisfies a threshold. device.
  8.  前記追加学習データ選定部は、前記予測値に対する寄与度に基づいて、前記運転データから前記追加学習データに含めるパラメータを選定する、請求項7に記載の装置。 The apparatus according to claim 7, wherein the additional learning data selection unit selects parameters to be included in the additional learning data from the driving data based on the degree of contribution to the predicted value.
  9.  前記プラントは、燃焼装置で発生した排ガスと吸収塔内に循環される吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置であり、
     前記予測値は、前記吸収塔の出口部における前記排ガスの二酸化硫黄濃度である、請求項7又は8に記載の装置。
    The plant is a wet-type flue gas desulfurization apparatus that performs desulfurization by bringing the exhaust gas generated in the combustion device and the absorbent circulated in the absorption tower into gas-liquid contact,
    9. Apparatus according to claim 7 or 8, wherein the predicted value is the sulfur dioxide concentration of the flue gas at the outlet of the absorber tower.
  10.  前記学習モデルで算出される前記予測値に基づいて前記吸収液の循環流量の制御目標値を決定する、請求項9に記載の装置。 The device according to claim 9, wherein a control target value for the circulation flow rate of the absorbent is determined based on the predicted value calculated by the learning model.
  11.  前記学習モデルで算出される前記予測値に基づいて前記吸収塔に対する吸収剤供給量の制御目標値を決定する、請求項9又は10に記載の装置。 11. The apparatus according to claim 9 or 10, wherein a control target value for the amount of absorbent supplied to said absorption tower is determined based on said predicted value calculated by said learning model.
  12.  学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置と通信可能な端末からなる遠隔監視システムであって、
     前記装置は、
     前記端末からの要求により、前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定するための追加学習データ選定部と、
     前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築するための学習モデル構築部と、
    を備える、遠隔監視システム。
    A remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
    The device comprises:
    In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection unit for
    a learning model construction unit for reconstructing the learning model using learning data including the learning data and the additional learning data;
    A remote monitoring system.
  13.  学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置の制御方法であって、
     前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定する追加学習データ選定ステップと、
     前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築する学習モデル構築ステップと、
    を備える、装置の制御方法。
    A control method for a device for executing processing related to plant control based on prediction results using a learning model,
    an additional learning data selection step of selecting, as additional learning data, data having a large deviation from the learning data used to construct the learning model from the driving data when the prediction result using the learning model satisfies a predetermined condition; ,
    a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data;
    A device control method comprising:
  14.  学習モデルを用いた予測結果に基づいてプラントの制御にかかる処理を実行するための装置と通信可能な端末からなる遠隔監視システムの制御方法であって、
     前記端末からの要求により、前記学習モデルを用いた予測結果が所定条件を満たすとき、前記運転データから前記学習モデルの構築に用いられた学習データからの乖離度が大きなデータを追加学習データとして選定する追加学習データ選定ステップと、
     前記学習データ及び前記追加学習データを含む学習データを用いて、前記学習モデルを再構築する学習モデル構築ステップと、
    を備える、遠隔監視システムの制御方法。
    A control method for a remote monitoring system comprising a terminal capable of communicating with a device for executing processing related to plant control based on prediction results using a learning model,
    In response to a request from the terminal, when the prediction result using the learning model satisfies a predetermined condition, data with a large deviation from the learning data used to construct the learning model from the driving data is selected as additional learning data. an additional learning data selection step for
    a learning model building step of reconstructing the learning model using learning data including the learning data and the additional learning data;
    A method of controlling a remote monitoring system, comprising:
PCT/JP2022/015936 2021-03-31 2022-03-30 Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system WO2022210866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061268A JP2022157180A (en) 2021-03-31 2021-03-31 Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system
JP2021-061268 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210866A1 true WO2022210866A1 (en) 2022-10-06

Family

ID=83456489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015936 WO2022210866A1 (en) 2021-03-31 2022-03-30 Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system

Country Status (3)

Country Link
JP (1) JP2022157180A (en)
TW (1) TWI805296B (en)
WO (1) WO2022210866A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907764A (en) * 2023-09-14 2023-10-20 国能龙源环保有限公司 Method, device, equipment and storage medium for detecting air tightness of desulfurization equipment
CN117228972A (en) * 2023-11-10 2023-12-15 一夫科技股份有限公司 Preparation monitoring method and system of alpha-type semi-hydrated gypsum
JP7428288B1 (en) 2023-04-25 2024-02-06 富士電機株式会社 Plant response estimation device, plant response estimation method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205001A (en) * 2006-02-01 2007-08-16 Fuji Electric Systems Co Ltd Discharge forecasting apparatus
JP2019028565A (en) * 2017-07-26 2019-02-21 安川情報システム株式会社 Failure prediction method, failure prediction apparatus and failure prediction program
WO2019208773A1 (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179444B2 (en) * 2017-03-29 2022-11-29 三菱重工業株式会社 Sign detection system and sign detection method
CN112703457A (en) * 2018-05-07 2021-04-23 强力物联网投资组合2016有限公司 Method and system for data collection, learning and machine signal streaming for analysis and maintenance using industrial internet of things
US20200150643A1 (en) * 2018-05-07 2020-05-14 Strong Force Iot Portfolio 2016, Llc Methods and systems for data collection, learning, and streaming of machine signals for analytics and maintenance using the industrial internet of things

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205001A (en) * 2006-02-01 2007-08-16 Fuji Electric Systems Co Ltd Discharge forecasting apparatus
JP2019028565A (en) * 2017-07-26 2019-02-21 安川情報システム株式会社 Failure prediction method, failure prediction apparatus and failure prediction program
WO2019208773A1 (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428288B1 (en) 2023-04-25 2024-02-06 富士電機株式会社 Plant response estimation device, plant response estimation method, and program
CN116907764A (en) * 2023-09-14 2023-10-20 国能龙源环保有限公司 Method, device, equipment and storage medium for detecting air tightness of desulfurization equipment
CN116907764B (en) * 2023-09-14 2023-12-26 国能龙源环保有限公司 Method, device, equipment and storage medium for detecting air tightness of desulfurization equipment
CN117228972A (en) * 2023-11-10 2023-12-15 一夫科技股份有限公司 Preparation monitoring method and system of alpha-type semi-hydrated gypsum
CN117228972B (en) * 2023-11-10 2024-01-23 一夫科技股份有限公司 Preparation monitoring method and system of alpha-type semi-hydrated gypsum

Also Published As

Publication number Publication date
TW202247889A (en) 2022-12-16
TWI805296B (en) 2023-06-11
JP2022157180A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2022210866A1 (en) Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system
JP7193261B2 (en) Wet type flue gas desulfurization equipment control method, wet type flue gas desulfurization equipment control device, and remote monitoring system provided with this wet type flue gas desulfurization equipment control device
US20200050178A1 (en) Integrating machine learning into control systems for industrial facilities
AU2017202965B2 (en) Intelligent management system for balance of plant
RU2607326C1 (en) Method of optimising process mode of operation of gas and gas condensate wells
KR20070061453A (en) Methods and systems for predictive modeling using a committee of models
WO2022210827A1 (en) Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system
CN111008735B (en) Predictive emissions management system and method
CN117348439A (en) Dynamic simulation test method and system for working condition of pumped storage unit
US10953377B2 (en) Delta temperature control of catalytic dehydrogenation process reactors
US20220246248A1 (en) Method and system for performance optimization of flue gas desulphurization (fgd) unit
CN113485111A (en) Optimizing control method and system for pulping system
CA3026694C (en) Advanced control of steam injection network
US20230212030A1 (en) Device and method for selecting optimal water treatment model for chemical dosing optimization
US20240077860A1 (en) Method for controlling a plant of separation and treatment industrial processes without chemical reaction
WO2023234103A1 (en) Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus
Ghetti et al. Advanced Process Control (APC): A Real Application on an Upstream Giant Brown Oilfield
Ims Risk-based health-aware control of Åsgard subsea gas compression station
JP2005078477A (en) Driving operation retrieval method and driving operation retrieval device
CN113994287A (en) Method for operating a processing device
Zakwan Mohd Sahak et al. Transforming Water Injection Process With Real Time Automation
TW202403484A (en) State quantity prediction device, state quantity prediction method, state quantity prediction system, and method for controlling state quantity prediction system
CN114967468A (en) Dynamic double-index control method and device for desulfurization system
CN117514582A (en) Water turbine speed regulation management method and system
CN117669381A (en) Long-distance heat supply pipeline safe operation method integrating dynamic simulation and real-time monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781076

Country of ref document: EP

Kind code of ref document: A1