WO2023234103A1 - Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus - Google Patents

Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus Download PDF

Info

Publication number
WO2023234103A1
WO2023234103A1 PCT/JP2023/018968 JP2023018968W WO2023234103A1 WO 2023234103 A1 WO2023234103 A1 WO 2023234103A1 JP 2023018968 W JP2023018968 W JP 2023018968W WO 2023234103 A1 WO2023234103 A1 WO 2023234103A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
absorbent
value
target value
control device
Prior art date
Application number
PCT/JP2023/018968
Other languages
French (fr)
Japanese (ja)
Inventor
駿 郡司
信弥 金森
仁 須藤
壮宏 齋藤
未砂季 立花
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023234103A1 publication Critical patent/WO2023234103A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to a control device for a wet flue gas desulfurization device, a remote monitoring system, a method for controlling the remote monitoring system, and a method for controlling a wet flue gas desulfurization device.
  • exhaust gas generated in a combustion device such as a boiler is introduced into an absorption tower of the desulfurization device, and brought into gas-liquid contact with an absorption liquid circulating through the absorption tower.
  • the absorbent e.g., calcium carbonate
  • SO 2 sulfur dioxide
  • the absorption liquid that has absorbed SO 2 falls and is stored in a storage tank below the absorption tower.
  • An absorbent is supplied to the storage tank, and the absorbent whose absorption performance has been restored by the supplied absorbent is supplied to the upper part of the absorption tower by a circulation pump, where it is brought into gas-liquid contact with the exhaust gas (absorption of SO 2 ). It will be done. Since the circulation pump that circulates the absorption liquid consumes a large amount of power, conventionally, in order to reduce power consumption, the amount of absorption liquid required is determined based on the flow rate of the exhaust gas flowing into the absorption tower, the SO 2 concentration in the exhaust gas, etc. The circulation flow rate is calculated and the number of operating circulation pumps is controlled.
  • Patent Document 1 discloses a technique for appropriately adjusting the operating conditions of a circulation pump for circulating an absorption liquid in an absorption tower of such a wet flue gas desulfurization apparatus.
  • This document uses operational data obtained from combustion equipment such as boilers and wet flue gas desulfurization equipment to examine the correlation between the operational data and the SO 2 concentration at the outlet of the absorption tower, and the correlation between the operational data and the SO 2 concentration contained in the absorption liquid.
  • the correlation with the absorbent concentration is modeled by machine learning, and the circulation flow rate of the absorbent and the absorbent concentration are controlled to be optimized based on the tables obtained by these two learning models.
  • control target values for the circulating flow rate of the absorption liquid and the concentration of the absorbent are calculated based on the table determined by the learning model, so if the prediction accuracy of the learning model decreases due to some factor (the learning model If the predicted value deviates from the actual measured value), the control target value calculated based on the table will deviate from the optimal value, and there is a risk that control accuracy will decrease.
  • the prediction accuracy of the learning model decreases, it may be possible to improve the learning model by rebuilding it through relearning.
  • relearning of a learning model requires high processing power from a processing device such as a computer that performs calculations, and the cost to realize it becomes high.
  • Another method to improve the prediction accuracy of the learning model is to perform correction processing on the predicted values of the learning model without retraining the learning model.
  • the accuracy of the predicted value depends on the condition of the wet flue gas desulfurization equipment. Therefore, even when improving prediction accuracy by correcting the predicted value of the learning model, the problem is how to perform the correction process.
  • At least one embodiment of the present disclosure has been made in view of the above circumstances, and provides a wet flue gas desulfurization device that can improve the accuracy of a table for determining control target values by correcting predicted values of a learning model.
  • the purpose of the present invention is to provide a control device, a remote monitoring system, and a control method.
  • a control device for a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower.
  • a learning model construction unit for constructing a learning model using machine learning regarding the relationship with the objective variable; Predicted value correction for correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower.
  • Department and A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value.
  • a control target value determination unit for determining a control target value of the input amount and the circulating flow rate of the absorption liquid; Equipped with The predicted value correction unit includes a first correction unit that corrects the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
  • a method for controlling a wet flue gas desulfurization device includes: A method for controlling a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, the method comprising: At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower.
  • a table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value.
  • the process of creating The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated.
  • a control device and a remote monitoring system for a wet flue gas desulfurization device that can improve the accuracy of a table for determining a control target value by correcting a predicted value of a learning model; Also, a control method can be provided.
  • FIG. 1 is a configuration diagram of a wet flue gas desulfurization device according to an embodiment.
  • FIG. 2 is a block configuration diagram of the control device in FIG. 1.
  • FIG. FIG. 3 is a processing flow diagram of the necessary condition determination unit in FIG. 2;
  • FIG. 3 is a processing flow diagram of the first correction condition determining section in FIG. 2;
  • FIG. 3 is a processing flow diagram of the load-specific correction signal generation section of FIG. 2;
  • FIG. 3 is a processing flow diagram of a first load-specific correction coefficient calculation unit among the load-specific correction coefficient calculation units in FIG. 2;
  • FIG. 3 is a processing flow diagram of a first correction coefficient calculation unit in FIG. 2;
  • FIG. 3 is a processing flow diagram of a second correction condition determining section in FIG. 2;
  • FIG. 3 is a processing flow diagram of a second correction coefficient calculation unit in FIG. 2;
  • FIG. 3 is a processing flow diagram of a table creation unit in FIG. 2;
  • FIG. 3 is a process flow diagram regarding correction of the control target value by the control target value determination unit of FIG. 2;
  • FIG. 3 is a processing flow diagram of the circulation pump adjustment section of FIG. 2.
  • FIG. 3 is a block configuration diagram showing another aspect of FIG. 2.
  • FIG. 3 is a block configuration diagram showing another aspect of FIG. 2.
  • FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus 10 according to an embodiment.
  • the wet flue gas desulfurization device 10 is a device for desulfurizing the exhaust gas generated by the combustion device 1.
  • the combustion device 1 is, for example, a boiler for generating steam.
  • the steam generated by the combustion device 1 is supplied to, for example, a steam turbine (not shown), and when the steam turbine is driven by the steam, electric power is generated by the generator 5 connected to the output shaft of the steam turbine.
  • the wet flue gas desulfurization device 10 includes an absorption tower 11 that communicates with the combustion device 1 via a pipe 2, and a plurality of circulation pumps 12a, 12b, which are provided in a pipe 3 for circulating an absorption liquid circulating inside the absorption tower 11. 12c,... (In FIG. 1, three circulation pumps are representatively illustrated, and the number is not limited. In addition, when these are collectively referred to as "circulation pump 12"), An absorbent slurry supply section 13 for supplying slurry (absorbent slurry) of calcium carbonate (CaCO 3 ), which is an absorbent contained in the liquid, into the absorption tower 11, and a gypsum for recovering gypsum in the absorption liquid. The recovery section 14 is also provided.
  • the absorption tower 11 is provided with an outflow pipe 16 for the exhaust gas desulfurized in the operation described below to flow out from the absorption tower 11 as an outflow gas, and the outflow pipe 16 is provided with a pipe for measuring the SO 2 concentration in the outflow gas.
  • a gas analyzer 17 is provided.
  • the absorbent slurry supply unit 13 includes an absorbent slurry production facility 21 for producing absorbent slurry, an absorbent slurry supply pipe 22 that communicates the absorbent slurry production facility 21 and the absorption tower 11, and an absorbent slurry supply pipe 22 for communicating the absorbent slurry production facility 21 with the absorption tower 11. It includes an absorbent slurry supply amount control valve 23 for controlling the flow rate of the absorbent slurry flowing through the supply piping 22.
  • the gypsum recovery unit 14 includes a gypsum separator 25, a gypsum slurry extraction pipe 26 that communicates the gypsum separator 25 and the absorption tower 11, and a gypsum slurry extraction pump 27 provided in the gypsum slurry extraction pipe 26. We are prepared.
  • the wet type flue gas desulfurization device 10 is provided with a control device 15 for controlling the wet type flue gas desulfurization device 10.
  • the control device 15 acquires various operational data (for example, temperatures and pressures at various parts, flow rates of various fluids, etc.) of the combustion device 1 and the wet flue gas desulfurization device 10, and performs various controls.
  • the hardware configuration of the control device 15 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions is stored in a storage medium, etc. in the form of a program, for example, and the CPU reads this program into a RAM, etc., and executes information processing and arithmetic processing. By doing so, various functions are realized.
  • the program may be pre-installed in a ROM or other storage medium, provided as being stored in a computer-readable storage medium, or distributed via wired or wireless communication means. etc. may also be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • FIG. 2 is a block diagram of the control device 15 in FIG. 1.
  • the control device 15 is configured to include an upper control device 15A and a lower control device 15B.
  • the upper control device 15A is a main device that constitutes the control device 15, and is realized by having each functional block described by a program.
  • the lower control device 15B is a control device placed under the control of the upper control device 15A, and is, for example, a distributed control system (DCS) of each device that constitutes the wet flue gas desulfurization device 10 (see FIG. 1). This is achieved by describing each functional block using control logic.
  • DCS distributed control system
  • These upper control device 15A and lower control device 15B can communicate with each other and control the wet flue gas desulfurization device 10 in cooperation with each other.
  • the control device 15 includes an operation data reception section 30, a learning model construction section 38, a table creation section 31, a predicted value correction section 36, a control target value determination section 32, a circulation pump adjustment section 33, and an absorbent slurry supply control section 34. Equipped with.
  • Each of the functional blocks of the control device 15 is capable of transmitting and receiving data to and from each other, and can cooperate to realize the control method described below.
  • the driving data receiving section 30, the learning model constructing section 38, and the table creating section 31 are arranged in the upper control device 15A, while the predicted value correcting section 36, the control target value determining section 32, the circulation pump adjustment section 33, and the absorbent slurry supply control section 34 are arranged in the lower control device 15B.
  • control device 15 includes a relearning device 15C in addition to the upper control device 15A and the lower control device 15B.
  • the relearning device 15C improves the prediction accuracy of the learning model M by relearning the learning model M based on a relearning algorithm when the prediction accuracy of the learning model M constructed by the learning model construction unit 38 decreases. This is a configuration for improving. If the prediction accuracy of the learning model M decreases, it can be corrected by correcting the predicted value Vp by the predicted value correction unit 36 as described later, but if the prediction accuracy cannot be corrected by correcting the predicted value Vp by the predicted value correction unit 36, as described later. In this case, the learning model M can be relearned by the relearning device 15C. Since such relearning is not performed frequently, the processing load on the upper controller 15A and lower controller 15B can be reduced by providing the relearning device 15C as a separate configuration from the upper controller 15A and lower controller 15B. can be effectively reduced.
  • the driving data receiving section 30 is configured to receive the driving data acquired by the driving data acquiring section 20.
  • This operation data includes various parameters acquired by the combustion device 1 and the wet flue gas desulfurization device 10, and in particular, the load of the combustion device 1 and the SO 2 at the outlet of the absorption tower measured by the gas analyzer 17. Concentration is included at least.
  • the learning model constructing unit 38 is configured to construct a learning model M by machine learning regarding the relationship between various operating data received by the operating data receiving unit 30 and future SO 2 concentration at the outlet of the absorption tower.
  • the learning model M is constructed as a regression model using a regression method such as multiple regression, ridge regression, lasso regression, or elastic net.
  • n is an arbitrary natural number
  • k1 to kn are coefficients
  • b is an arbitrary intercept.
  • the learning model M obtained by machine learning uses an explanatory variable consisting of a plurality of parameters included in the operation data received by the operation data receiving unit 30 and the future SO 2 concentration at the absorption tower outlet as an objective variable, and calculates the correlation between the two. It is constructed as a model to show the following.
  • the combination of a plurality of parameters included in the explanatory variables of the learning model M can be arbitrarily selected from the following candidates.
  • the explanatory variables of the learning model M are selected from among the above candidates: i) output command value for the generator 5 (output command value from the outside), iii) supply air flow rate for the combustion device 1 or It is selected to include at least one of the exhaust gas flow rate, or iv) the SO 2 concentration at the absorption tower 11 inlet or the SO 2 concentration at the combustion device 1 outlet. More preferably, the explanatory variables of the learning model are, from among the above candidates, iii) the supply air flow rate to the combustion device 1 or the exhaust gas flow rate from the combustion device 1, and iv) the SO 2 concentration at the inlet of the absorption tower 11 or the combustion device 1 chosen to include the SO2 concentration at the outlet.
  • the table creation unit 31 uses the learning model M constructed by the learning model construction unit 38 to calculate the output of the generator 5 (load of the combustion device 1) and the predicted value Vp of the future SO 2 concentration at the absorption tower outlet. This configuration is for creating a table Tb that defines the relationship between the absorption liquid and the absorbent concentration target value to satisfy the reference value.
  • the specific method for creating the table Tb by the table creation unit 31 will be described later, but the accuracy of the table Tb created by the table creation unit 31 depends on the accuracy of the predicted value Vp calculated based on the learning model M. do.
  • the predicted value correction unit 36 corrects the predicted value Vp of the learning model M.
  • the table creation unit 31 can improve the calculation accuracy of the control target value by creating the table Tb using the predicted value Vp corrected in this way (hereinafter appropriately referred to as "corrected predicted value Vp'"). .
  • the control target value determination unit 32 determines the absorbent concentration target value corresponding to the load included in the operation data received by the operation data reception unit 30 based on the table Tb created by the table creation unit 31, and This configuration is for determining respective control target values of the amount of absorbent input and the circulating flow rate of the absorbent liquid corresponding to the target agent concentration value.
  • the circulation pump adjustment section 33 is configured to control the circulation pumps 12a to 12c based on the control target value regarding the circulation flow rate of the absorption liquid determined by the control target value determination section 32.
  • the absorbent slurry supply control section 34 is configured to control the supply amount of the absorbent based on the control target value regarding the input amount of the absorbent determined by the control target value determination section 32.
  • the predicted value correction unit 36 includes a necessary condition determination unit 39 for determining whether correction processing for the predicted value Vp of the learning model M is necessary.
  • the necessary condition determining unit 39 is configured to determine whether or not the predicted value Vp of the learning model M constructed by the learning model constructing unit 38 requires correction.
  • the learning model M includes a considerable amount of prediction error, and if the difference ⁇ V between the predicted value Vp and the actual measurement value Vm becomes large, the learning model M will be corrected by at least one of the first correction unit 40 and the second correction unit 50, which will be described later.
  • the predicted value Vp by the model M is corrected.
  • the necessary conditions are defined as conditions for determining whether correction processing is necessary for the predicted value Vp of such learning model M.
  • FIG. 3 is a processing flow diagram of the necessary condition determination unit 39 in FIG. 2.
  • FIG. 3 shows, as an example of the configuration of the necessary condition determination unit 39, a processing flow when determination is made based on necessary conditions consisting of the following seven conditions.
  • the necessary condition determining unit 39 determines that the necessary condition is satisfied when all of the following seven conditions (conditions 1 to 7) are satisfied.
  • the measured value Vm (SO 2 concentration at the absorption tower outlet) corresponding to the predicted value Vp of the learning model M is larger than a preset reference value Vmref.
  • the load L of the combustion device 1 is greater than a preset reference value Lref.
  • Condition 1 is whether or not it is necessary to correct the predicted value Vp of the learning model M based on whether the actual measured value Vm of the SO 2 concentration at the absorption tower outlet, which is the prediction target of the learning model M, is greater than the reference value Vref. This is the condition for determining.
  • Condition 2 is a condition for determining whether it is necessary to correct the predicted value Vp of the learning model M based on whether the load L of the combustion device 1 is larger than the reference load value Lref. Note that since Condition 1 and Condition 2 are conditions for determining whether or not correction is necessary from a similar viewpoint, either one may be omitted.
  • Condition 3 is a condition for determining whether the vehicle is in a driving state suitable for correcting the predicted value Vp of the learning model M.
  • the "parameters that are correlated with the explanatory variables of the learning model M" may be, for example, parameters included in the explanatory variables (SO 2 concentration at the outlet of the absorption tower, exhaust gas flow rate of the combustion device 1, absorbent concentration, etc.). , or may be a parameter for monitoring abnormalities in a measuring device for measuring these parameters.
  • Condition 4 is a condition for determining whether the bypass damper included in the wet flue gas desulfurization device 10 is in the closed state.
  • a bypass damper is a damper valve that bypasses the boiler exhaust gas directly to the chimney without passing it through the desulfurization equipment.It is closed when the power plant is in normal operation, but it is closed when some abnormality occurs, for example.
  • the structure is designed to protect the desulfurization equipment by fully opening it in case of an emergency. Incidentally, in recent years, some plants are not equipped with a bypass damper, but in that case, condition 4 can be omitted from the necessary conditions.
  • Condition 5 is a condition for determining whether or not the wet type flue gas desulfurization device 10 is in a smoking state, for example, whether or not the desulfurization fan included in the wet type flue gas desulfurization device 10 is in operation, or The determination is made based on whether or not the IDF is activated.
  • Condition 6 is a condition for determining whether there is any abnormality in the upper control device 15A of the control device 15, and condition 7 is a condition for determining whether initialization of the control device 15 has been completed. This is the condition.
  • the necessary condition determining unit 39 determines that the necessary conditions are satisfied and turns on the necessary condition fulfillment flag.
  • the necessary condition fulfillment flag is turned ON, the predicted value Vp can be corrected by the first correction unit 40 and the second correction unit 50.
  • the first correction unit 40 is configured to correct the predicted value Vp based on the learning model M in accordance with the load L of the combustion device 1.
  • the first correction section 40 includes a first correction condition determination section 41 , a load-specific correction signal generation section 42 , a load-specific correction coefficient calculation section 43 , and a first correction coefficient calculation section 44 . Each component included in the first correction section 40 will be described in order below with reference to FIGS. 4 to 7.
  • FIG. 4 is a processing flow diagram of the first correction condition determination unit 41 in FIG. 2.
  • the first correction condition determination unit 41 is a configuration for determining whether the first correction condition is satisfied or not.
  • the first correction condition is a condition for determining whether or not to perform the first correction by the first correction unit 40 on the predicted value Vp of the learning model M.
  • FIG. 4 an example of the first correction condition is shown. Judgments are made based on the following four conditions.
  • Condition 8 The difference ⁇ V between the corrected predicted value Vp′ (predicted value Vp before the first correction) and the actual measured value Vm is larger than the reference value ⁇ Vref.
  • the necessary condition fulfillment flag is ON.
  • the first corrected frequency signal Sa1 is input.
  • the first correction permission flag is ON.
  • the absolute value (ABS) is calculated for the difference ⁇ V between the corrected predicted value Vp' (predicted value Vp of the learning model M itself before the first correction) and the actual measured value Vm, and the absolute value is calculated from the reference value ⁇ Vref. It is determined whether or not it is large.
  • the measured value Vm that is compared with the corrected predicted value Vp' of the learning model M is corrected for the measurement delay.
  • the measurement delay correction is performed to correct the time lag (measurement delay) of the actual measurement value Vm by the gas analyzer 17 with respect to the corrected predicted value Vp', since acquisition of the actual measurement value Vm by the gas analyzer 17 requires a considerable amount of measurement time. It is processing.
  • Condition 9 is a condition for determining whether the necessary condition fulfillment flag, which can be switched by the output of the above-mentioned necessary condition determination unit 39, is ON. By including condition 9 in the first correction conditions in this way, the first correction by the first correction unit 40 is performed on the premise that the above-mentioned necessary conditions are satisfied.
  • Condition 10 is a condition for adjusting the frequency of implementation by the first correction unit 40 based on the input first correction frequency signal Sa1.
  • the first correction frequency signal Sa1 is a rectangular wave pulse signal that repeats an ON time for validating the first correction and an OFF time for invalidating the first correction.
  • condition 10 is determined to be satisfied during the ON time, and determined not to be satisfied during the OFF time.
  • the frequency of performing the first correction can be adjusted by changing the ratio between the ON time and the OFF time of the input first correction frequency signal Sa1.
  • the ON time and OFF time of the first corrected frequency signal Sa1 can be set by the user.
  • Condition 11 is a condition for determining whether the first correction permission flag for determining permission to implement the first correction is ON.
  • the control device 15 includes an operation button (not shown) that allows the user to select whether or not to perform the first correction, and when the operation button is turned on, the first correction permission flag is turned on. This allows the user to select whether or not to perform the first correction.
  • the first correction condition determination unit 41 determines that the first correction condition is satisfied when all of these conditions 8 to 11 are satisfied, and outputs the first correction signal S1.
  • the first correction frequency signal Sa1 which is a rectangular wave pulse signal
  • the first correction signal S1 is adjusted so as to correspond to the first correction frequency signal Sa1. It is output as a rectangular wave pulse signal (flicker signal) in which ON time and OFF time are repeated.
  • the load-specific correction signal generation unit 42 is configured to generate a load-specific correction signal Sl according to the load L of the combustion device 1.
  • FIG. 5 is a processing flow diagram of the load-specific correction signal generation section 42 of FIG. 2. In FIG.
  • the load range that the combustion device 1 can take is divided into a first load range Lr1 to a fourth load range Lr4 (Lr1 ⁇ Lr2 ⁇ Lr3 ⁇ Lr4), and the load-specific correction signal generation unit 42
  • the first load range determining section 42a1 to the fourth load range determining section 42a4 corresponding to the load range determining section 42a4 are provided.
  • the first load range determination unit 42a1 is a logic circuit that outputs an ON signal when the input load L is included in the first load range Lr1, and outputs an OFF signal when it is not included in the first load range Lr1. be.
  • the second load range determination unit 42a2 is a logic circuit that outputs an ON signal when the input load L is included in the second load range Lr2, and outputs an OFF signal when it is not included in the second load range Lr2. be.
  • the third load range determination unit 42a3 is a logic circuit that outputs an ON signal when the input load L is included in the third load range Lr3, and outputs an OFF signal when it is not included in the third load range Lr3.
  • the fourth load range determination unit 42a4 is a logic circuit that outputs an ON signal when the input load L is included in the fourth load range Lr4, and outputs an OFF signal when it is not included in the fourth load range Lr4. be.
  • the first load-specific correction signal output section 42b1 is configured to output an ON signal from the first load range determination section 42a1, and to which the first correction signal S1 (flicker signal) from the first correction condition determination section 41 described above is in an ON state.
  • a first load-specific correction signal Sl1 is output for instructing to perform correction corresponding to the first load range Lr1.
  • the second load-based correction signal output unit 42b2 is configured to output an ON signal from the second load range determination unit 42a2, and to which the first correction signal S1 (flicker signal) from the first correction condition determination unit 41 is in the ON state.
  • a second load-specific correction signal Sl2 is output for instructing to perform correction corresponding to the second load range Lr2.
  • the third load-specific correction signal output unit 42b3 is configured to output an ON signal from the third load range determination unit 42a3, and to which the first correction signal S1 (flicker signal) from the first correction condition determination unit 41 is in the ON state. In this case, a third load-specific correction signal Sl3 is output for instructing to perform correction corresponding to the third load range Lr3.
  • the fourth load-based correction signal output unit 42b4 is configured to output an ON signal from the fourth load range determination unit 41a4, and to which the first correction signal S1 (flicker signal) from the first correction condition determination unit 41 is in the ON state. In this case, a fourth load-specific correction signal Sl4 is output for instructing to perform correction corresponding to the fourth load range Lr4.
  • the load-specific correction coefficient calculation unit 43 is configured to calculate load-specific correction coefficients Y1 to Y4 corresponding to the load-specific correction signals Sl1 to Sl4 generated by the load-specific correction signal generation unit 42.
  • FIG. 6 is a processing flow diagram of the first load-based correction coefficient calculation unit 43a of the load-based correction coefficient calculation unit 43 in FIG.
  • the first load-specific correction coefficient calculation section 43a is a configuration of the load-specific correction coefficient calculation section 43 for calculating the first load-specific correction coefficient Y1 based on the first load-specific correction signal Sl1.
  • the load-specific correction coefficient calculation unit 43 includes a second load-specific correction coefficient calculation unit 43 for calculating the second load-specific correction coefficient Y2 based on the second load-specific correction signal Sl2.
  • a fourth load-specific correction coefficient calculation unit 43d is provided for calculating the fourth load-specific correction coefficient Y4.
  • the second load-specific correction coefficient calculation unit 43b, the third load-specific correction coefficient calculation unit 43c, and the fourth load-specific correction coefficient calculation unit 43d are described below unless otherwise specified. This is the same as the per-load correction coefficient calculation unit 43a.
  • the first load-specific correction coefficient calculation unit 43a when the difference ⁇ V between the corrected predicted value Vp' (the predicted value Vp of the learning model M before the first correction) and the actual measured value Vm is input, the difference ⁇ V is negative. In some cases (that is, when the predicted value Vp is smaller than the actual value Vm), the first switch T1 is switched to select the upward correction value A1.
  • the upward correction value A1 is set as a coefficient of 1 or more obtained by adding the upward correction width to the reference value "1", and is, for example, "1.01".
  • the upward correction value A1 output from the first switch T1 is multiplied by a correction gain K (typically set to "1.0", but can be changed as appropriate) set in advance by the correction gain adjustment section P.
  • the first correction signal S1 output from the first correction condition determining section 41 described above is output to the second switch T2 at the timing when the first correction signal S1 is turned on (note that the first correction signal S1 input to the second switch T2 At the timing when the correction signal S1 is in the OFF state, the second switch T2 outputs the default value "1").
  • the output of the second switch T2 is multiplied by the previous value (first load-specific correction coefficient) stored in advance, and is output as the first load-specific correction coefficient Y1.
  • the first load-based correction coefficient Y1 output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
  • the first load-specific correction coefficient Y1 increases every calculation cycle by the upward correction width set in the upward correction value A1.
  • the first load-specific correction coefficient Y1 is calculated so that the corrected predicted value Vp' is corrected in the direction of increasing and approaches the actual measured value Vm. Ru.
  • the first switch T1 is switched to select the downward correction value A2.
  • the downward correction value A2 can be set as a coefficient less than 1 obtained by adding a downward correction width (negative value) to the reference value "1", and is, for example, "0.99".
  • the downward correction value A2 output from the first switch T1 is multiplied by the correction gain K (typically set to "1", but can be changed as appropriate) set in advance by the correction gain adjustment section P.
  • the second switch T2 is outputted to the second switch T2 at the timing when the first correction signal S1 outputted from the first correction condition determining section 41 described above turns ON (the first correction signal inputted to the second switch T2 At the timing when T2 becomes OFF, the second switch T2 outputs the default value "1").
  • the output of the second switch T2 is multiplied by the previous value (first load-specific correction coefficient) stored in advance, and is output as the first load-specific correction coefficient Y1.
  • the first load-based correction coefficient Y1 output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
  • the first load-specific correction coefficient Y1 decreases every calculation cycle by the downward correction width set in the downward correction value A2.
  • the first load-specific correction coefficient Y1 is calculated so that the corrected predicted value Vp' is corrected in a decreasing direction and approaches the actual measured value Vm.
  • the first correction coefficient calculation unit 44 is configured to correct the predicted value Vp by the learning model M using the first correction coefficient Y corresponding to the load L.
  • FIG. 7 is a processing flow diagram of the first correction coefficient calculation unit 44 of FIG. 2.
  • the first correction coefficient calculation unit 44 receives the first load correction coefficient Y1 to fourth load correction coefficient Y4 for each load range calculated by the load correction coefficient calculation unit 43. Then, when the load L included in the operation data is input, one of the first load correction coefficient Y1 to the fourth load correction coefficient Y4 corresponding to the load range to which the load L belongs is set as the first correction coefficient Y. Calculated.
  • the first correction coefficient Y calculated in this way has a value corresponding to the magnitude of the load L.
  • the first correction coefficient Y calculated by the first correction coefficient calculation unit 44 is output from the third switch T3 and multiplied by the predicted value Vp of the learning model M when the first correction permission flag is turned ON. By doing so, a corrected predicted value Vp' that has been subjected to the first correction is obtained.
  • Such a first correction is performed by multiplying the predicted value Vp by a first correction coefficient Y calculated according to which of the first load range Lr1 to fourth load range Lr4 the load L belongs to. be exposed. Therefore, the amount of correction for the predicted value Vp can be finely set depending on the value of the load L, and the prediction accuracy can be effectively improved without reconstructing the learning model M.
  • the second correction unit 50 corrects the predicted value Vp by the learning model M according to the total load L of the combustion device 1 (that is, unlike the first correction that depends on the load L, This is a configuration for performing corrections that do not depend on
  • the second correction section 50 includes a second correction condition determination section 51 and a second correction coefficient calculation section 52.
  • FIG. 8 is a processing flow diagram of the second correction condition determining section 51 of FIG. 2.
  • the second correction condition determination unit 51 is configured to determine whether the second correction condition is satisfied.
  • the second correction condition is a condition for determining whether or not to perform the second correction by the second correction unit 50 on the predicted value Vp of the learning model M.
  • an example of the second correction condition is Judgments are made based on the following four conditions.
  • Condition 12 The difference ⁇ V between the result of multiplying the corrected predicted value Vp' (predicted value Vp before the first correction) by the overall adjustment coefficient and the actual measured value Vm is larger than the reference value ⁇ Vref.
  • the necessary condition fulfillment flag is ON.
  • the second corrected frequency signal Sa2 is input.
  • the second correction permission flag is ON.
  • the absolute value (ABS) of the difference ⁇ V between the result of multiplying the corrected predicted value Vp' (predicted value Vp of the learning model M itself before the first correction) by the overall adjustment coefficient and the actual measured value Vm is It is determined whether the absolute value is larger than the reference value ⁇ Vref.
  • the measured value Vm that is compared with the corrected predicted value Vp' of the learning model M is corrected for the measurement delay.
  • the measurement delay correction is performed to correct the time lag (measurement time delay) between the actual measurement value Vm by the gas analyzer 17 and the corrected predicted value Vp', since acquisition of the actual measurement value Vm by the gas analyzer 17 requires considerable measurement time. This is the process.
  • Condition 13 is a condition for determining whether the necessary condition fulfillment flag, which can be switched by the output of the above-mentioned necessary condition determination unit 39, is ON. By including condition 13 in the second correction conditions in this manner, the second correction by the second correction unit 50 is performed on the premise that the above-mentioned necessary conditions are satisfied.
  • Condition 14 is a condition for adjusting the frequency of implementation by the second correction unit 50 based on the input second correction frequency signal Sa2.
  • the second correction frequency signal Sa2 is a rectangular wave pulse signal that repeats an ON time for validating the second correction and an OFF time for invalidating the second correction.
  • condition 14 is determined to be satisfied during the ON time, and determined not to be satisfied during the OFF time.
  • the frequency of performing the second correction can be adjusted by changing the ratio between the ON time and the OFF time of the input second correction frequency signal Sa2.
  • the ON time and OFF time of the second corrected frequency signal Sa2 can be set by the user.
  • Condition 15 is a condition for determining whether the first correction permission flag for determining permission to implement the second correction is ON.
  • the control device 15 includes an operation button (not shown) that allows the user to select whether or not to perform the second correction, and when the operation button is turned on, the second correction permission flag is turned on. This allows the user to select whether or not to perform the second correction.
  • the second correction condition determination unit 51 determines that the second correction condition is satisfied when all of these conditions 12 to 15 are satisfied, and outputs the second correction signal S2.
  • the second correction frequency signal Sa2 which is a rectangular wave pulse signal
  • the second correction signal S2 is adjusted so as to correspond to the second correction frequency signal Sa2. It is output as a rectangular wave pulse signal (flicker signal) in which ON time and OFF time are repeated.
  • the second correction coefficient calculation unit 52 is configured to calculate a second correction coefficient based on the second correction signal S2 output from the second correction condition determination unit 51.
  • FIG. 9 is a processing flow diagram of the second correction coefficient calculation unit 52 of FIG. 2.
  • the fourth switch T4 is switched to select the upward correction value A3.
  • the upward correction value A3 is set as a coefficient of 1 or more obtained by adding the upward correction width to the reference value "1", and is, for example, "1.01".
  • the upward correction value A3 output from the fourth switch T4 is multiplied by a correction gain K (typically set to "1.0", but can be changed as appropriate) set in advance by the correction gain adjustment section P.
  • the second correction signal S2 outputted from the second correction condition determining section 51 described above is outputted to the fifth switch T5 at the timing when the second correction signal S2 is turned on (note that the second correction signal S2 inputted to the fifth switch T5 At the timing when the correction signal S2 is in the OFF state, the fifth switch T5 outputs the default value "1").
  • the output of the fifth switch T5 is multiplied by the previous value (second correction coefficient) stored in advance, and is output as the second correction coefficient Z. Note that the second correction coefficient Z output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
  • the second correction coefficient Z increases every calculation cycle by the upward correction width set in the upward correction value A3.
  • the second correction coefficient Z is calculated so that the corrected predicted value Vp' is corrected in an increasing direction and approaches the actual measured value Vm.
  • the fourth switch T4 is switched to select the downward correction value A4.
  • the downward correction value A4 can be set as a coefficient less than 1 obtained by adding the downward correction width (negative value) to the reference value “1”, and is, for example, “0.99”.
  • the downward correction value A4 output from the fourth switch T4 is multiplied by a correction gain K (typically set to "1", but can be changed as appropriate) set in advance by the correction gain adjustment section P.
  • the fifth switch T5 is outputted to the fifth switch T5 at the timing when the second correction signal S2 outputted from the second correction condition determining section 51 described above turns ON (note that the second correction signal S2 inputted to the fifth switch T5 At the timing when S2 is in the OFF state, the fifth switch T5 outputs the default value "1").
  • the output of the fifth switch T5 is multiplied by the previous second correction coefficient Z stored in advance, and is output as the second correction coefficient Z. Note that the second correction coefficient Z output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
  • the second correction coefficient Z decreases every calculation cycle by the downward correction width set in the downward correction value A4.
  • the second correction coefficient Z is calculated so that the corrected predicted value Vp' is corrected in a decreasing direction and approaches the actual measured value Vm.
  • the second correction coefficient Z calculated by the second correction coefficient calculation unit 52 is output from the sixth switch T6 and multiplied by the predicted value Vp of the learning model M when the second correction permission flag is turned ON. By doing so, a corrected predicted value Vp' that has been subjected to the second correction is obtained.
  • Such second correction is performed by multiplying the predicted value Vp by the second correction coefficient Z, regardless of which of the first load range Lr1 to the fourth load range Lr4 the load L belongs to. Therefore, the predicted value Vp can be corrected as a whole without depending on the value of the load L, and the prediction accuracy can be effectively improved without reconstructing the learning model M.
  • FIG. 10 is a processing flow diagram of the table creation section 31 of FIG. 2.
  • the learning model M To create the table Tb, first input each parameter included in the operating data received by the operating data receiving unit 30 into the learning model M, and obtain the predicted value Vp (predicted value of SO 2 concentration at the absorption tower outlet) of the learning model M. calculate.
  • the obtained predicted value Vp is corrected by at least one of the first correction section 40 and the second correction section 50 depending on the success or failure status of the above-mentioned necessary conditions, first correction conditions, and second correction conditions.
  • a corrected predicted value Vp' having higher prediction accuracy than the predicted value Vp of the learning model M is obtained.
  • a target absorbent concentration value in the absorbent liquid is calculated as an optimal value for the corrected predicted value Vp' to satisfy a preset reference value (for example, become equal to or less than the reference value).
  • a preset reference value for example, become equal to or less than the reference value.
  • FIG. 10 by inputting combinations of such loads L1, L2, . . . and optimal absorbent concentration values M1, M2, . It shows how
  • control target value determination unit 32 inputs the load L included in the operation data into the table Tb created by the table creation unit 31, so that the corrected predicted value Vp' can be set to a preset reference value.
  • An absorbent concentration target value M to be satisfied is determined, and control target values for the absorbent input amount and the circulation flow rate of the absorbent corresponding to the absorbent concentration target value M are determined.
  • FIG. 11 is a process flow diagram regarding the control target value determination process by the control target value determination unit 32 of FIG. 2. In FIG.
  • the control target value determination unit 32 first inputs the difference ⁇ between the absorbent concentration target value M and its actual measurement value Mm into the PI controller.
  • the PI control value output from the PI controller is corrected using a feedforward correction value calculated based on operational data. Specifically, the first feedforward correction value ff1 corresponding to the exhaust gas flow rate of the combustion device 1 and the SO 2 concentration at the absorption tower inlet, and the second feedforward value obtained by converting the input amount predicted value using conversion logic.
  • a feedforward correction value ff is obtained by adding the correction value ff2.
  • the feedforward correction value ff obtained in this manner is added to the PI control value to determine the control target value regarding the amount of absorbent to be introduced.
  • the control target value determined in this manner enables advance control using the feedforward correction value, so that the control accuracy by the control device 15 can be further improved.
  • the predicted value correction unit 36 corrects the predicted value Vp of the learning model M, and creates the table Tb using the corrected predicted value Vp'.
  • the control target value determination unit 32 determines the control target value using the table Tb.
  • Such a control device 15 can change or add the above processing by adjusting the parameters of the predicted value correction section 36 and the control target value determination section 32.
  • the predicted value correction unit 36 uses the reference value of ⁇ Vref, the ON/OFF time of the second correction frequency signal Sa2 of the above-mentioned first correction condition Condition 10, the above-mentioned second correction condition Condition 14, and the above-mentioned upward correction value A1.
  • control target value determining unit 32 inputs absorbent based on PI parameters (parameters related to the PI controller in FIG. 11, such as the proportionality constant K and integral time T), the output ff1 of the function Fx in FIG. 11, and the output ff2 of the conversion logic. It is possible to change or add the amount.
  • the functional blocks of the control device 15 including the predicted value correction section 36 and the control target value determination section 32 are arranged in the upper control device 15A, the functional blocks are written by a program in the upper control device 15A.
  • the functional blocks are written by a program in the upper control device 15A.
  • at least two people are required, including a program engineer to handle the upper control device 15A and a control logic engineer to handle the lower control device 15B. Become.
  • FIG. 12 is a processing flow diagram of the circulation pump adjustment section 33 of FIG. 2.
  • the circulation pump adjustment section 33 adjusts the number of operating circulation pumps based on the control target value regarding the circulation flow rate of the absorption liquid determined by the control target value determination section 32.
  • the circulation pump adjustment unit 33 adjusts the number of operating circulation pumps by issuing a command to increase the number of operating circulation pumps, for example, when the following four conditions are satisfied.
  • the circulation pump adjustment unit 33 adjusts the number of operating circulation pumps by issuing a command to reduce the number of operating circulation pumps, for example, when the following four conditions are satisfied.
  • Condition 16 When the difference ⁇ between the target value of SO2 concentration at the outlet of the absorption tower and the actual value Vm is less than the allowable value and changes in the negative direction (i.e., the difference between the target value of SO2 concentration at the outlet of the absorption tower and the actual value Vm is large and it is possible to reduce the number of pumps), the difference ⁇ between the optimal number of circulation pumps and the current number of operating pumps is larger than the reference value (for example, 0.5 units).
  • Condition 20 Stopping after startup is not prohibited (to prevent frequent starting and stopping of the circulation pump).
  • Condition 21 Stopping is not prohibited after stopping (preventing frequent starting and stopping of the circulation pump).
  • Condition 22 There is a pump that can be stopped.
  • FIG. 13A and 13B are block configuration diagrams showing other aspects of FIG. 2.
  • the functional blocks (driving data receiving unit 30, learning model construction unit 38, table creation unit 31) included in the upper control device 15A in FIG. 2 are integrated into the lower control device 15B. That is, the lower control device 15B, except for the relearning device 15C, includes an operation data receiving section 30, a learning model construction section 38, a table creation section 31, a predicted value correction section 36, a control target value determination section 32, and a circulation pump adjustment section. 33 and an absorbent slurry supply control section 34, and all of these functional blocks are realized by control logic. Note that some of these functional blocks included in the lower control device 15B may be implemented in a program language that can be handled by the lower control device 15B.
  • the functional blocks (driving data receiving section 30, learning model construction section 38, table creation section 31) that were arranged in the upper control device 15A and described by the program in the embodiment of FIG. This is realized by being written as control logic in the lower control device 15B.
  • an edge server 15D is provided along with a higher-level control device 15A and a lower-level control device 15B.
  • the edge server 15D includes a data relay unit 60, and is placed between the upper control device 15A and the lower control device 15B, so that data between the upper control device 15A and the lower control device 15B, which are located geographically apart from each other, is transferred. Enables sending and receiving.
  • the upper control device 15A controls the control state of the wet flue gas desulfurization device 10 in a remote location away from the site where the lower control device 15B is installed (the place where the wet flue gas desulfurization device 10 to be controlled is installed). It can be applied to an embodiment in which the system functions as a remote monitoring system for remotely monitoring.
  • the wet flue gas desulfurization device 10 may constitute a remote monitoring system including, for example, an information processing device 18 that can communicate with a host control device 15A.
  • remote monitoring can be performed by displaying information regarding the control state of the wet flue gas desulfurization device 10 on the display unit 70 provided in the information processing device 18.
  • a configuration may be provided in which each processing flow in the control device 15 is executed in response to a request from the information processing device 18 via the display unit 70 of the information processing device 18.
  • the predicted values of the learning model used to create the table used to determine the control target value of the amount of absorbent input and the circulating flow rate of the absorbent liquid are corrected. Corrected using a coefficient.
  • the predicted value is corrected by using the first correction coefficient calculated based on the load of the combustion device, taking into account the characteristics of the load. For example, the predicted value and the actual value are Even if the difference between the two values changes, an accurate corrected predicted value can be obtained.
  • the control target value can be determined with high accuracy, and as a result, even if there is a difference between the predicted value of the learning model and the actual measured value, Control accuracy can be obtained.
  • a control device for a wet flue gas desulfurization device includes: A control device for a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower.
  • a learning model construction unit for constructing a learning model using machine learning regarding the relationship with the objective variable; Predicted value correction for correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower.
  • Department and A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value.
  • the predicted value of the learning model used to create the table used to determine the control target value of the amount of absorbent input and the circulating flow rate of the absorbent is calculated using the correction coefficient.
  • the predicted value is corrected by using the first correction coefficient calculated based on the load of the combustion device, taking into account the characteristics of the load. For example, the predicted value and the actual value are Even if the difference between the two values changes, an accurate corrected predicted value can be obtained.
  • the control target value can be determined with high accuracy, and as a result, even if there is a difference between the predicted value of the learning model and the actual measured value, Control accuracy can be obtained.
  • the first correction coefficient is calculated such that the difference decreases for each load range to which the load belongs.
  • the first correction coefficient is calculated such that the difference between the predicted value of the learning model and the actual value decreases in the load range to which the load of the combustion device belongs.
  • the first correction unit calculates the first correction coefficient as the correction coefficient when a first correction condition including that a difference between the corrected predicted value and the measured value is larger than a reference value is satisfied. .
  • the predicted value is corrected using the first correction coefficient when the first correction condition is satisfied.
  • the correction coefficient is calculated to change at the preset rate of change so that the difference decreases every calculation cycle.
  • the correction coefficient is calculated to change at a predetermined rate of change, so that the difference between the predicted value of the learning model and the actual value is suitably reduced. Corrections are made. Further, by setting the rate of change of the correction coefficient as a parameter that can be set in advance by the user, for example, it is possible to arbitrarily adjust the degree of correction to the predicted value.
  • the predicted value correction section includes a second correction section that corrects the predicted value using a second correction coefficient that does not depend on the load as the correction coefficient.
  • the predicted value of the learning model is corrected using, in addition to the first correction coefficient calculated based on the load described above, a second correction coefficient that does not depend on the load.
  • the second correction unit is configured to calculate, as the correction coefficient, when a second correction condition including that a difference between the corrected predicted value and the result of multiplying the second correction coefficient is larger than a reference value is satisfied. , calculating the second correction coefficient.
  • the predicted value is corrected using the second correction coefficient when the second correction condition is satisfied.
  • the control target value determination unit calculates a PI control value corresponding to the difference between the absorbent concentration target value calculated based on the table and the absorbent concentration actual value of the absorbent, based on the operation data.
  • the control target value regarding the input amount of the absorbent is determined by correcting using the feedforward correction value.
  • the control target value when calculating the control target value regarding the amount of absorbent input based on the absorbent concentration of the absorbent calculated based on the table, the control target value is calculated based on the operation data. By performing the correction using the feedforward correction value, it becomes possible to calculate the control target value with high accuracy.
  • a higher-level control device whose functional blocks are composed of programs;
  • a lower control device that cooperates with the upper control device and whose functional blocks are composed of control logic, At least one of the predicted value correction section and the control target value determination section is provided in the lower control device.
  • At least one of the predicted value correction section and the control target value determination section among the functional blocks included in the control device is configured by control logic in the lower control device.
  • control logic in the lower control device.
  • the upper control device is a main control device
  • the lower-level control device is a distributed control device that is placed under the control of the higher-level control device and controls the components of the wet flue gas desulfurization device.
  • a control device for a wet flue gas desulfurization device that uses a distributed control device (DCS) as a lower-level control device.
  • DCS distributed control device
  • these functional blocks may be aggregated so that they are all configured by control logic in the lower control device.
  • a relearning device electrically connected to at least one of the upper control device or the lower control device for relearning the learning model.
  • the relearning device is configured separately from the above-mentioned higher-level control device and lower-level control device, and by electrically connecting to these control devices, the re-learning device can adjust the machine specifications required by the higher-level control device and lower-level control device. It can be suppressed.
  • the upper control device is a remote control device for remotely monitoring the lower control device installed at the site where the wet flue gas desulfurization device is installed,
  • the lower-level control device can communicate with the higher-level control device via an edge server that can relay data between the higher-level control device and the lower-level control device.
  • data relay by the edge server enables data transmission and reception between the upper control device and the lower control device. Therefore, by arranging the upper control device and the lower control device at remote locations from each other, a remote control device for the flue gas desulfurization device can be realized.
  • a remote monitoring system includes: A remote monitoring system comprising an information processing device that can communicate with a control device of a wet flue gas desulfurization device that desulfurizes exhaust gas generated in a combustion device and an absorption liquid by bringing it into gas-liquid contact in an absorption tower,
  • the control device includes: In response to a request from the information processing device, at least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, including at least the load of the combustion device, and a future a learning model construction unit that constructs a learning model by machine learning regarding the relationship between the target variable, which is the sulfur dioxide concentration at the absorption tower outlet; a predicted value correction unit that corrects the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower; , A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation
  • a table creation part to create The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated.
  • a control target value determination unit that determines a control target value for the input amount and the circulation flow rate of the absorption liquid; Equipped with The predicted value correction unit includes a first correction unit that corrects the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
  • remote monitoring is suitably performed by displaying information regarding the control state of the wet flue gas desulfurization apparatus 1 according to each of the above aspects on a display unit provided in the information processing device. be able to.
  • a method for controlling a remote monitoring system includes: A method for controlling a remote monitoring system comprising an information processing device capable of communicating with a control device of a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, ,
  • the control device includes: In response to a request from the information processing device, at least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, including at least the load of the combustion device, and a future a learning model construction step of constructing a learning model by machine learning regarding the relationship with a target variable, which is the sulfur dioxide concentration at the absorption tower outlet; a predicted value correction step of correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower; , A table showing the relationship between the load of the
  • the table creation process to be created The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated.
  • Run The predicted value correction step includes a first correction step of correcting the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
  • remote monitoring is suitably performed by displaying information regarding the control state of the wet flue gas desulfurization apparatus 1 according to each of the above aspects on a display unit provided in the information processing device. be able to.
  • a method for controlling a wet flue gas desulfurization device includes: A method for controlling a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, the method comprising: At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower.
  • a table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value.
  • the process of creating The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated.
  • the predicted value of the learning model used to create the table used to determine the control target value of the amount of absorbent input and the circulation flow rate of the absorbent liquid uses the correction coefficient.
  • the predicted value is corrected by using the first correction coefficient calculated based on the load of the combustion device, taking into account the characteristics of the load. For example, the predicted value and the actual value are Even if the difference between the two values changes, an accurate corrected predicted value can be obtained.
  • the control target value can be determined with high accuracy, and as a result, even if there is a difference between the predicted value of the learning model and the actual measured value, Control accuracy can be obtained.

Abstract

The present application relates to a control device for a wet flue-gas desulfurization apparatus that performs desulfurization by bringing exhaust gas generated by a combustion apparatus and absorbent liquid in an absorption tower into gas-liquid contact. The control device comprises a trained model construction unit, a prediction value correction unit, a table creation unit, and a control target value determination unit. The trained model construction unit constructs a trained model by machine learning with respect to a relationship between an explanatory variable including at least the load of the combustion apparatus, and an objective variable that is a future concentration of sulfur dioxide at the outlet of the absorption tower. The prediction value correction unit corrects the prediction value produced by the trained model by using a correction coefficient calculated on the basis of a difference from a measured value. The table creation unit creates a table indicating a relationship between the load of the combustion apparatus and an absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid for which the prediction value corrected by the prediction value correction unit satisfies a reference value. The control target value determination unit calculates the absorbent concentration target value on the basis of the table, and determines control target values for the input amount of the absorbent and the circulation flow rate of the absorbent liquid corresponding to the absorbent concentration target value and the absorbent circulation amount target value. The prediction value correction unit comprises a first correction unit that corrects the prediction value by using, as the correction coefficient, a first correction coefficient calculated on the basis of the load.

Description

湿式排煙脱硫装置の制御装置、遠隔監視システム、遠隔監視システムの制御方法、及び、湿式排煙脱硫装置の制御方法Wet flue gas desulfurization equipment control device, remote monitoring system, remote monitoring system control method, and wet flue gas desulfurization equipment control method
 本開示は、湿式排煙脱硫装置の制御装置、遠隔監視システム、遠隔監視システムの制御方法、及び、湿式排煙脱硫装置の制御方法に関する。
 本願は、2022年5月30日に日本国特許庁に出願された特願2022-087548号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a control device for a wet flue gas desulfurization device, a remote monitoring system, a method for controlling the remote monitoring system, and a method for controlling a wet flue gas desulfurization device.
This application claims priority based on Japanese Patent Application No. 2022-087548 filed with the Japan Patent Office on May 30, 2022, the contents of which are incorporated herein by reference.
 湿式排煙脱硫装置では、ボイラ等の燃焼装置で発生した排ガスを脱硫装置の吸収塔内に導入し、吸収塔を循環する吸収液と気液接触させる。気液接触の過程で、吸収液中の吸収剤(例えば、炭酸カルシウム)と排ガス中の二酸化硫黄(SO)とが反応することにより、排ガス中のSOは吸収液に吸収され、排ガスからSOが除去(排ガスが脱硫)される。一方、SOを吸収した吸収液は落下して、吸収塔下方の貯留タンク内に溜められる。貯留タンクには吸収剤が供給され、供給された吸収剤で吸収性能を回復した吸収液は循環ポンプによって吸収塔の上方に供給され、排ガスとの気液接触(SOの吸収)に供せられる。吸収液を循環させる循環ポンプは消費電力が大きいため、従来は、消費電力の抑制を目的として、吸収塔に流入する排ガスの流量と排ガス中のSO濃度等に基づいて必要となる吸収液の循環流量を計算し、循環ポンプの運転台数の制御が行われている。 In a wet flue gas desulfurization device, exhaust gas generated in a combustion device such as a boiler is introduced into an absorption tower of the desulfurization device, and brought into gas-liquid contact with an absorption liquid circulating through the absorption tower. During the gas-liquid contact process, the absorbent (e.g., calcium carbonate) in the absorption liquid reacts with sulfur dioxide (SO 2 ) in the exhaust gas, so that SO 2 in the exhaust gas is absorbed by the absorption liquid and removed from the exhaust gas. SO 2 is removed (exhaust gas is desulfurized). On the other hand, the absorption liquid that has absorbed SO 2 falls and is stored in a storage tank below the absorption tower. An absorbent is supplied to the storage tank, and the absorbent whose absorption performance has been restored by the supplied absorbent is supplied to the upper part of the absorption tower by a circulation pump, where it is brought into gas-liquid contact with the exhaust gas (absorption of SO 2 ). It will be done. Since the circulation pump that circulates the absorption liquid consumes a large amount of power, conventionally, in order to reduce power consumption, the amount of absorption liquid required is determined based on the flow rate of the exhaust gas flowing into the absorption tower, the SO 2 concentration in the exhaust gas, etc. The circulation flow rate is calculated and the number of operating circulation pumps is controlled.
 特許文献1では、このような湿式排煙脱硫装置の吸収塔において吸収液を循環させるための循環ポンプの運転条件を適切に調節するための技術が開示されている。この文献では、ボイラ等の燃焼装置及び湿式排煙脱硫装置から得られた運転データを用いて、運転データと吸収塔出口におけるSO濃度との相関関係、及び、運転データと吸収液に含まれる吸収剤濃度との相関関係を、それぞれ機械学習によってモデル化し、これら2つの学習モデルによって求められるテーブルに基づいて、吸収液の循環流量や吸収剤濃度を最適化するように制御している。 Patent Document 1 discloses a technique for appropriately adjusting the operating conditions of a circulation pump for circulating an absorption liquid in an absorption tower of such a wet flue gas desulfurization apparatus. This document uses operational data obtained from combustion equipment such as boilers and wet flue gas desulfurization equipment to examine the correlation between the operational data and the SO 2 concentration at the outlet of the absorption tower, and the correlation between the operational data and the SO 2 concentration contained in the absorption liquid. The correlation with the absorbent concentration is modeled by machine learning, and the circulation flow rate of the absorbent and the absorbent concentration are controlled to be optimized based on the tables obtained by these two learning models.
特開2020-11163号公報JP 2020-11163 Publication
 上記特許文献1では、学習モデルによって求められるテーブルに基づいて、吸収液の循環流量や吸収剤濃度の制御目標値を算出しているため、何らかの要因によって学習モデルの予測精度が低下すると(学習モデルの予測値が実測値から乖離すると)、テーブルに基づいて算出される制御目標値が最適値からずれてしまい、制御精度が低下してしまうおそれがある。このような制御精度の低下を抑制するために、学習モデルの予測精度が低下した場合には、学習モデルを再学習によって構築し直すことで改善を図ることが考えられる。しかしながら学習モデルの再学習は、演算を行うコンピュータ等の処理装置に対して高度な処理能力が求められ、実現するためのコストが高くなってしまう。また、学習モデルの予測精度を改善する他の手法としては、学習モデルの再学習を行わずに、学習モデルの予測値に対して補正処理を行うことも考えられるが、学習モデルを用いて得られる予測値の精度は、湿式排煙脱硫装置の状態に依存する。そのため、学習モデルの予測値を補正することで予測精度を改善する場合においても、どのように補正処理を行うかが課題となる。 In Patent Document 1, the control target values for the circulating flow rate of the absorption liquid and the concentration of the absorbent are calculated based on the table determined by the learning model, so if the prediction accuracy of the learning model decreases due to some factor (the learning model If the predicted value deviates from the actual measured value), the control target value calculated based on the table will deviate from the optimal value, and there is a risk that control accuracy will decrease. In order to suppress such a decrease in control accuracy, when the prediction accuracy of the learning model decreases, it may be possible to improve the learning model by rebuilding it through relearning. However, relearning of a learning model requires high processing power from a processing device such as a computer that performs calculations, and the cost to realize it becomes high. Another method to improve the prediction accuracy of the learning model is to perform correction processing on the predicted values of the learning model without retraining the learning model. The accuracy of the predicted value depends on the condition of the wet flue gas desulfurization equipment. Therefore, even when improving prediction accuracy by correcting the predicted value of the learning model, the problem is how to perform the correction process.
 本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、学習モデルの予測値を補正することで、制御目標値を決定するためのテーブルの精度を改善可能な湿式排煙脱硫装置の制御装置、遠隔監視システム、及び、制御方法を提供することを目的とする。 At least one embodiment of the present disclosure has been made in view of the above circumstances, and provides a wet flue gas desulfurization device that can improve the accuracy of a table for determining control target values by correcting predicted values of a learning model. The purpose of the present invention is to provide a control device, a remote monitoring system, and a control method.
 本開示の少なくとも一実施形態に係る湿式排煙脱硫装置の制御装置は、上記課題を解決するために、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
 前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
 前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正するための予測値補正部と、
 前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するためのテーブル作成部と、
 前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と、
を備え、
 前記予測値補正部は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正部を含む。
In order to solve the above problems, a control device for a wet flue gas desulfurization device according to at least one embodiment of the present disclosure,
A control device for a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower,
At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower. a learning model construction unit for constructing a learning model using machine learning regarding the relationship with the objective variable;
Predicted value correction for correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower. Department and
A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. A table creation part for creating,
The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determination unit for determining a control target value of the input amount and the circulating flow rate of the absorption liquid;
Equipped with
The predicted value correction unit includes a first correction unit that corrects the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
 本開示の少なくとも一実施形態に係る湿式排煙脱硫装置の制御方法は、上記課題を解決するために、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
 前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する工程と、
 前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する工程と、
 前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成する工程と、
 前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する工程と、
を備え、
 前記予測値を補正する工程では、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する。
In order to solve the above problems, a method for controlling a wet flue gas desulfurization device according to at least one embodiment of the present disclosure includes:
A method for controlling a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, the method comprising:
At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower. A step of constructing a learning model using machine learning regarding the relationship with the objective variable;
correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower;
A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. The process of creating
The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. determining control target values for the input amount and the circulating flow rate of the absorption liquid;
Equipped with
In the step of correcting the predicted value, the predicted value is corrected using a first correction coefficient calculated based on the load as the correction coefficient.
 本開示の少なくとも一実施形態によれば、学習モデルの予測値を補正することで、制御目標値を決定するためのテーブルの精度を改善可能な湿式排煙脱硫装置の制御装置、遠隔監視システム、及び、制御方法を提供できる。 According to at least one embodiment of the present disclosure, a control device and a remote monitoring system for a wet flue gas desulfurization device that can improve the accuracy of a table for determining a control target value by correcting a predicted value of a learning model; Also, a control method can be provided.
一実施形態に係る湿式排煙脱硫装置の構成図である。FIG. 1 is a configuration diagram of a wet flue gas desulfurization device according to an embodiment. 図1の制御装置のブロック構成図である。FIG. 2 is a block configuration diagram of the control device in FIG. 1. FIG. 図2の必要条件判定部の処理フロー図である。FIG. 3 is a processing flow diagram of the necessary condition determination unit in FIG. 2; 図2の第1補正条件判定部の処理フロー図である。FIG. 3 is a processing flow diagram of the first correction condition determining section in FIG. 2; 図2の負荷別補正信号生成部の処理フロー図である。FIG. 3 is a processing flow diagram of the load-specific correction signal generation section of FIG. 2; 図2の負荷別補正係数算出部のうち第1負荷別補正係数算出部の処理フロー図である。FIG. 3 is a processing flow diagram of a first load-specific correction coefficient calculation unit among the load-specific correction coefficient calculation units in FIG. 2; 図2の第1補正係数算出部の処理フロー図である。FIG. 3 is a processing flow diagram of a first correction coefficient calculation unit in FIG. 2; 図2の第2補正条件判定部の処理フロー図である。FIG. 3 is a processing flow diagram of a second correction condition determining section in FIG. 2; 図2の第2補正係数算出部の処理フロー図である。FIG. 3 is a processing flow diagram of a second correction coefficient calculation unit in FIG. 2; 図2のテーブル作成部の処理フロー図である。FIG. 3 is a processing flow diagram of a table creation unit in FIG. 2; 図2の制御目標値決定部による制御目標値の補正に関する処理フロー図である。FIG. 3 is a process flow diagram regarding correction of the control target value by the control target value determination unit of FIG. 2; 図2の循環ポンプ調整部の処理フロー図である。FIG. 3 is a processing flow diagram of the circulation pump adjustment section of FIG. 2. FIG. 図2の他の態様を示すブロック構成図である。3 is a block configuration diagram showing another aspect of FIG. 2. FIG. 図2の他の態様を示すブロック構成図である。3 is a block configuration diagram showing another aspect of FIG. 2. FIG.
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative positions, etc. of the structures described in the following embodiments are not intended to limit the scope of the present invention, but are merely illustrative examples.
 図1は一実施形態に係る湿式排煙脱硫装置10の構成図である。
 湿式排煙脱硫装置10は、燃焼装置1で発生した排ガスを脱硫するための装置である。燃焼装置1は例えば蒸気を生成するためのボイラである。燃焼装置1で生成された蒸気は例えば蒸気タービン(不図示)に供給され、蒸気によって蒸気タービンが駆動されると、蒸気タービンの出力軸に連結された発電機5によって発電が行われる。湿式排煙脱硫装置10は、燃焼装置1と配管2を介して連通する吸収塔11と、吸収塔11内を循環する吸収液の循環用配管3に設けられた複数の循環ポンプ12a,12b,12c,・・・(図1では、3台の循環ポンプが代表的に例示されており、台数は限定されない。また、これらを総称する場合には適宜「循環ポンプ12」と称する)と、吸収液に含まれる吸収剤である炭酸カルシウム(CaCO)のスラリー(吸収剤スラリー)を吸収塔11内に供給するための吸収剤スラリー供給部13と、吸収液中の石膏を回収するための石膏回収部14とを備えている。吸収塔11には、後述する動作で脱硫された排ガスが吸収塔11から流出ガスとして流出するための流出配管16が設けられ、流出配管16には、流出ガス中のSO濃度を測定するためのガス分析計17が設けられている。
FIG. 1 is a configuration diagram of a wet flue gas desulfurization apparatus 10 according to an embodiment.
The wet flue gas desulfurization device 10 is a device for desulfurizing the exhaust gas generated by the combustion device 1. The combustion device 1 is, for example, a boiler for generating steam. The steam generated by the combustion device 1 is supplied to, for example, a steam turbine (not shown), and when the steam turbine is driven by the steam, electric power is generated by the generator 5 connected to the output shaft of the steam turbine. The wet flue gas desulfurization device 10 includes an absorption tower 11 that communicates with the combustion device 1 via a pipe 2, and a plurality of circulation pumps 12a, 12b, which are provided in a pipe 3 for circulating an absorption liquid circulating inside the absorption tower 11. 12c,... (In FIG. 1, three circulation pumps are representatively illustrated, and the number is not limited. In addition, when these are collectively referred to as "circulation pump 12"), An absorbent slurry supply section 13 for supplying slurry (absorbent slurry) of calcium carbonate (CaCO 3 ), which is an absorbent contained in the liquid, into the absorption tower 11, and a gypsum for recovering gypsum in the absorption liquid. The recovery section 14 is also provided. The absorption tower 11 is provided with an outflow pipe 16 for the exhaust gas desulfurized in the operation described below to flow out from the absorption tower 11 as an outflow gas, and the outflow pipe 16 is provided with a pipe for measuring the SO 2 concentration in the outflow gas. A gas analyzer 17 is provided.
 吸収剤スラリー供給部13は、吸収剤スラリーを製造するための吸収剤スラリー製造設備21と、吸収剤スラリー製造設備21と吸収塔11とを連通する吸収剤スラリー供給用配管22と、吸収剤スラリー供給用配管22を流通する吸収剤スラリーの流量を制御するための吸収剤スラリー供給量制御弁23とを備えている。石膏回収部14は、石膏分離器25と、石膏分離器25と吸収塔11とを連通する石膏スラリー抜き出し用配管26と、石膏スラリー抜き出し用配管26に設けられた石膏スラリー抜き出し用ポンプ27とを備えている。 The absorbent slurry supply unit 13 includes an absorbent slurry production facility 21 for producing absorbent slurry, an absorbent slurry supply pipe 22 that communicates the absorbent slurry production facility 21 and the absorption tower 11, and an absorbent slurry supply pipe 22 for communicating the absorbent slurry production facility 21 with the absorption tower 11. It includes an absorbent slurry supply amount control valve 23 for controlling the flow rate of the absorbent slurry flowing through the supply piping 22. The gypsum recovery unit 14 includes a gypsum separator 25, a gypsum slurry extraction pipe 26 that communicates the gypsum separator 25 and the absorption tower 11, and a gypsum slurry extraction pump 27 provided in the gypsum slurry extraction pipe 26. We are prepared.
 湿式排煙脱硫装置10には、湿式排煙脱硫装置10を制御するための制御装置15が設けられている。制御装置15は、燃焼装置1及び湿式排煙脱硫装置10の各種運転データ(例えば、様々な部位における温度や圧力、各種流体の流量等)を取得し、各種制御を実施する。 The wet type flue gas desulfurization device 10 is provided with a control device 15 for controlling the wet type flue gas desulfurization device 10. The control device 15 acquires various operational data (for example, temperatures and pressures at various parts, flow rates of various fluids, etc.) of the combustion device 1 and the wet flue gas desulfurization device 10, and performs various controls.
 制御装置15のハードウェア構成は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。尚、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The hardware configuration of the control device 15 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. A series of processes for realizing various functions is stored in a storage medium, etc. in the form of a program, for example, and the CPU reads this program into a RAM, etc., and executes information processing and arithmetic processing. By doing so, various functions are realized. Note that the program may be pre-installed in a ROM or other storage medium, provided as being stored in a computer-readable storage medium, or distributed via wired or wireless communication means. etc. may also be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図2は図1の制御装置15のブロック構成図である。この例では、制御装置15は、上位制御装置15A及び下位制御装置15Bにわたって構成される。上位制御装置15Aは、制御装置15を構成する主装置であり、各機能ブロックがプログラムによって記述されることで実現される。下位制御装置15Bは、上位制御装置15Aの管理下に置かれる制御装置であって、例えば、湿式排煙脱硫装置10(図1参照)を構成する各機器の分散制御システム(DCS)であり、各機能ブロックが制御ロジックによって記述されることで実現される。これら上位制御装置15A及び下位制御装置15Bは互いに通信可能であり、協働して湿式排煙脱硫装置10を制御する。 FIG. 2 is a block diagram of the control device 15 in FIG. 1. In this example, the control device 15 is configured to include an upper control device 15A and a lower control device 15B. The upper control device 15A is a main device that constitutes the control device 15, and is realized by having each functional block described by a program. The lower control device 15B is a control device placed under the control of the upper control device 15A, and is, for example, a distributed control system (DCS) of each device that constitutes the wet flue gas desulfurization device 10 (see FIG. 1). This is achieved by describing each functional block using control logic. These upper control device 15A and lower control device 15B can communicate with each other and control the wet flue gas desulfurization device 10 in cooperation with each other.
 制御装置15は、運転データ受信部30、学習モデル構築部38、テーブル作成部31、予測値補正部36、制御目標値決定部32、循環ポンプ調整部33、及び、吸収剤スラリー供給制御部34を備える。このような制御装置15の各機能ブロックは互いにデータを送受信可能であり、協働して後述の制御方法を実現可能である。本実施形態では、これら機能ブロックのうち、運転データ受信部30、学習モデル構築部38及びテーブル作成部31は上位制御装置15Aに配置される一方で、予測値補正部36、制御目標値決定部32、循環ポンプ調整部33、及び、吸収剤スラリー供給制御部34は下位制御装置15Bに配置される。 The control device 15 includes an operation data reception section 30, a learning model construction section 38, a table creation section 31, a predicted value correction section 36, a control target value determination section 32, a circulation pump adjustment section 33, and an absorbent slurry supply control section 34. Equipped with. Each of the functional blocks of the control device 15 is capable of transmitting and receiving data to and from each other, and can cooperate to realize the control method described below. In this embodiment, among these functional blocks, the driving data receiving section 30, the learning model constructing section 38, and the table creating section 31 are arranged in the upper control device 15A, while the predicted value correcting section 36, the control target value determining section 32, the circulation pump adjustment section 33, and the absorbent slurry supply control section 34 are arranged in the lower control device 15B.
 尚、制御装置15は、上位制御装置15A及び下位制御装置15Bに加えて、再学習装置15Cを備える。再学習装置15Cは、学習モデル構築部38で構築された学習モデルMの予測精度が低下した場合に、再学習アルゴリズムに基づいて学習モデルMの再学習を行うことで、学習モデルMの予測精度を改善させるための構成である。学習モデルMの予測精度が低下した場合には、後述するように予測値補正部36による予測値Vpの補正で対応可能であるが、予測値補正部36による予測値Vpの補正では対応できない場合には、再学習装置15Cによる学習モデルMの再学習を行うことができる。このような再学習は頻繁には行われないため、再学習装置15Cを上位制御装置15A及び下位制御装置15Bとは別構成として備えることで、上位制御装置15A及び下位制御装置15Bの処理負荷を効果的に低減できる。 Note that the control device 15 includes a relearning device 15C in addition to the upper control device 15A and the lower control device 15B. The relearning device 15C improves the prediction accuracy of the learning model M by relearning the learning model M based on a relearning algorithm when the prediction accuracy of the learning model M constructed by the learning model construction unit 38 decreases. This is a configuration for improving. If the prediction accuracy of the learning model M decreases, it can be corrected by correcting the predicted value Vp by the predicted value correction unit 36 as described later, but if the prediction accuracy cannot be corrected by correcting the predicted value Vp by the predicted value correction unit 36, as described later. In this case, the learning model M can be relearned by the relearning device 15C. Since such relearning is not performed frequently, the processing load on the upper controller 15A and lower controller 15B can be reduced by providing the relearning device 15C as a separate configuration from the upper controller 15A and lower controller 15B. can be effectively reduced.
 運転データ受信部30は、運転データ取得部20で取得された運転データを受信するための構成である。この運転データには、燃焼装置1及び湿式排煙脱硫装置10で取得される各種パラメータが含まれ、特に、燃焼装置1の負荷、及び、ガス分析計17によって計測された吸収塔出口のSO濃度が少なくとも含まれる。 The driving data receiving section 30 is configured to receive the driving data acquired by the driving data acquiring section 20. This operation data includes various parameters acquired by the combustion device 1 and the wet flue gas desulfurization device 10, and in particular, the load of the combustion device 1 and the SO 2 at the outlet of the absorption tower measured by the gas analyzer 17. Concentration is included at least.
 学習モデル構築部38は、運転データ受信部30によって受信された各種運転データと吸収塔出口における将来のSO濃度との関係について機械学習により学習モデルMを構築するための構成である。学習モデルMは、例えば、重回帰、リッジ回帰、ラッソ回帰或いはElastic Net等の回帰手法を用いた回帰モデルとして構築される。本実施形態では、学習モデルMの一例として、次式のように線形多項式で表される回帰モデルが構築される。
吸収塔出口におけるSO濃度=k1×説明変数1+k2×説明変数2+・・・+kn×説明変数n+b   (1)
 このように学習モデルMとして線形多項式を用いることで、複雑なシミュレーションモデルに比べて説明可能性(解釈性)が高く、演算負荷も効果的に軽減できる。尚、nは任意の自然数であり、k1~knは係数であり、bは任意の切片である。
The learning model constructing unit 38 is configured to construct a learning model M by machine learning regarding the relationship between various operating data received by the operating data receiving unit 30 and future SO 2 concentration at the outlet of the absorption tower. The learning model M is constructed as a regression model using a regression method such as multiple regression, ridge regression, lasso regression, or elastic net. In this embodiment, as an example of the learning model M, a regression model expressed by a linear polynomial as shown in the following equation is constructed.
SO 2 concentration at the absorption tower outlet = k1 x explanatory variable 1 + k2 x explanatory variable 2 + ... + kn x explanatory variable n + b (1)
By using a linear polynomial as the learning model M in this way, the explainability (interpretability) is higher than that of a complicated simulation model, and the calculation load can be effectively reduced. Note that n is an arbitrary natural number, k1 to kn are coefficients, and b is an arbitrary intercept.
 機械学習によって得られる学習モデルMは、運転データ受信部30によって受信された運転データに含まれる複数のパラメータからなる説明変数と、吸収塔出口における将来のSO濃度を目的変数として、両者の相関を示すモデルとして構築される。ここで学習モデルMの説明変数に含まれる複数のパラメータの組み合わせは、以下の候補から任意に選択することができる。
i)発電機5に対する出力指令値(外部からの出力指令値)
ii)発電機5の出力
iii)燃焼装置1に対する供給空気流量又は燃焼装置1からの排ガス流量
iv)吸収塔11入口におけるSO濃度又は燃焼装置1出口におけるSO濃度
v)吸収塔11出口におけるSO濃度
vi)吸収液のCaCO濃度又はpH
vii)循環ポンプ12の稼働台数又は吐出流量の制御値
viii)燃焼装置1出口、又は、吸収塔11入口におけるO濃度
x)吸収塔11における脱硫率(=100%-(吸収塔11出口における硫黄分濃度/吸収塔11入口における硫黄分濃度)×100%)
 これらの候補は、通常多くの湿式排煙脱硫装置10で従来から計測可能なパラメータであり、他のパラメータを含めてもよい。
The learning model M obtained by machine learning uses an explanatory variable consisting of a plurality of parameters included in the operation data received by the operation data receiving unit 30 and the future SO 2 concentration at the absorption tower outlet as an objective variable, and calculates the correlation between the two. It is constructed as a model to show the following. Here, the combination of a plurality of parameters included in the explanatory variables of the learning model M can be arbitrarily selected from the following candidates.
i) Output command value for generator 5 (output command value from outside)
ii) Output of the generator 5 iii) Supply air flow rate to the combustion device 1 or exhaust gas flow rate from the combustion device 1 iv) SO 2 concentration at the absorption tower 11 inlet or SO 2 concentration at the combustion device 1 outlet v) at the absorption tower 11 exit SO2 concentration vi) CaCO3 concentration or pH of absorption liquid
vii) Control value of the number of operating circulation pumps 12 or discharge flow rate viii) O 2 concentration at the exit of the combustion device 1 or the inlet of the absorption tower 11 Sulfur concentration/sulfur concentration at the inlet of absorption tower 11) x 100%)
These candidates are parameters that can be conventionally measured in many wet flue gas desulfurization apparatuses 10, and may include other parameters.
 本実施形態では学習モデルMの説明変数は、上記候補のうち、i)発電機5に対する出力指令値(外部からの出力指令値)、iii)燃焼装置1に対する供給空気流量又は燃焼装置1からの排ガス流量、又は、iv)吸収塔11入口におけるSO濃度又は燃焼装置1出口におけるSO濃度のうち少なくとも1つが含まれるように選択される。より好ましくは、学習モデルの説明変数は、上記候補のうち、iii)燃焼装置1に対する供給空気流量又は燃焼装置1からの排ガス流量、及び、iv)吸収塔11入口におけるSO濃度又は燃焼装置1出口におけるSO濃度を含むように選択される。これにより、目的関数である吸収塔出口における将来のSO濃度を、良好な精度で予測可能な学習モデルMを構築できる。また運転データ受信部30で受信される運転データから、このように一部のパラメータを説明変数として選定することで、学習対象データを効率的に絞り込み、機械学習の演算負担を軽減することができる。 In this embodiment, the explanatory variables of the learning model M are selected from among the above candidates: i) output command value for the generator 5 (output command value from the outside), iii) supply air flow rate for the combustion device 1 or It is selected to include at least one of the exhaust gas flow rate, or iv) the SO 2 concentration at the absorption tower 11 inlet or the SO 2 concentration at the combustion device 1 outlet. More preferably, the explanatory variables of the learning model are, from among the above candidates, iii) the supply air flow rate to the combustion device 1 or the exhaust gas flow rate from the combustion device 1, and iv) the SO 2 concentration at the inlet of the absorption tower 11 or the combustion device 1 chosen to include the SO2 concentration at the outlet. Thereby, it is possible to construct a learning model M that can predict the future SO 2 concentration at the outlet of the absorption tower, which is the objective function, with good accuracy. In addition, by selecting some parameters as explanatory variables from the driving data received by the driving data receiving unit 30, it is possible to efficiently narrow down the learning target data and reduce the computational burden of machine learning. .
 テーブル作成部31は、学習モデル構築部38で構築された学習モデルMを用いて、発電機5の出力(燃焼装置1の負荷)と、吸収塔出口における将来のSO濃度の予測値Vpが基準値を満たすための吸収液の吸収剤濃度目標値との関係を規定するテーブルTbを作成するための構成である。テーブル作成部31による具体的なテーブルTbの作成方法については、後述するが、テーブル作成部31によって作成されるテーブルTbの精度は、学習モデルMに基づいて算出される予測値Vpの精度に依存する。そのため学習モデルMの予測精度が低い場合(すなわち予測値Vpと実測値Vmとの間に乖離がある場合)、予測値補正部36によって、学習モデルMの予測値Vpを補正する。テーブル作成部31は、このように補正された予測値Vp(以下、適宜「補正後予測値Vp´」と称する)を用いてテーブルTbを作成することで、制御目標値の算出精度を改善できる。 The table creation unit 31 uses the learning model M constructed by the learning model construction unit 38 to calculate the output of the generator 5 (load of the combustion device 1) and the predicted value Vp of the future SO 2 concentration at the absorption tower outlet. This configuration is for creating a table Tb that defines the relationship between the absorption liquid and the absorbent concentration target value to satisfy the reference value. The specific method for creating the table Tb by the table creation unit 31 will be described later, but the accuracy of the table Tb created by the table creation unit 31 depends on the accuracy of the predicted value Vp calculated based on the learning model M. do. Therefore, when the prediction accuracy of the learning model M is low (that is, when there is a discrepancy between the predicted value Vp and the actual measurement value Vm), the predicted value correction unit 36 corrects the predicted value Vp of the learning model M. The table creation unit 31 can improve the calculation accuracy of the control target value by creating the table Tb using the predicted value Vp corrected in this way (hereinafter appropriately referred to as "corrected predicted value Vp'"). .
 制御目標値決定部32は、テーブル作成部31によって作成されるテーブルTbに基づいて、運転データ受信部30で受信された運転データに含まれる負荷に対応する吸収剤濃度目標値を求め、当該吸収剤濃度目標値に対応する吸収剤の投入量及び吸収液の循環流量のそれぞれの制御目標値を決定するための構成である。 The control target value determination unit 32 determines the absorbent concentration target value corresponding to the load included in the operation data received by the operation data reception unit 30 based on the table Tb created by the table creation unit 31, and This configuration is for determining respective control target values of the amount of absorbent input and the circulating flow rate of the absorbent liquid corresponding to the target agent concentration value.
 また循環ポンプ調整部33は、制御目標値決定部32で決定された吸収液の循環流量に関する制御目標値に基づいて、循環ポンプ12a~12cを制御するための構成である。また吸収剤スラリー供給制御部34は、制御目標値決定部32で決定された吸収剤の投入量に関する制御目標値に基づいて、吸収剤の供給量を制御するための構成である。 Further, the circulation pump adjustment section 33 is configured to control the circulation pumps 12a to 12c based on the control target value regarding the circulation flow rate of the absorption liquid determined by the control target value determination section 32. Further, the absorbent slurry supply control section 34 is configured to control the supply amount of the absorbent based on the control target value regarding the input amount of the absorbent determined by the control target value determination section 32.
 続いて予測値補正部36の構成について詳細に説明する。予測値補正部36は、学習モデルMの予測値Vpに対する補正処理の要否を判定するための必要条件判定部39を備える。必要条件判定部39は、学習モデル構築部38で構築された学習モデルMの予測値Vpに対して補正が必要であるか否かを判定するための構成である。学習モデルMは少なからず予測誤差を含んでおり、予測値Vpと実測値Vmとの差分ΔVが大きくなった場合には、後述の第1補正部40又は第2補正部50の少なくとも一方によって学習モデルMによる予測値Vpを補正する。必要条件は、このような学習モデルMの予測値Vpに対する補正処理の要否を判定するための条件として規定される。 Next, the configuration of the predicted value correction section 36 will be explained in detail. The predicted value correction unit 36 includes a necessary condition determination unit 39 for determining whether correction processing for the predicted value Vp of the learning model M is necessary. The necessary condition determining unit 39 is configured to determine whether or not the predicted value Vp of the learning model M constructed by the learning model constructing unit 38 requires correction. The learning model M includes a considerable amount of prediction error, and if the difference ΔV between the predicted value Vp and the actual measurement value Vm becomes large, the learning model M will be corrected by at least one of the first correction unit 40 and the second correction unit 50, which will be described later. The predicted value Vp by the model M is corrected. The necessary conditions are defined as conditions for determining whether correction processing is necessary for the predicted value Vp of such learning model M.
 図3は図2の必要条件判定部39の処理フロー図である。図3では、必要条件判定部39の一構成例として、次の7つの条件からなる必要条件に基づいて判定が行われる場合の処理フローが示されている。具体的には、必要条件判定部39は、以下の7つの条件(条件1~条件7)が全て満たされた場合に、必要条件が成立したと判定する。
(条件1)学習モデルMの予測値Vpに対応する実測値Vm(吸収塔出口におけるSO濃度)が、予め設定された基準値Vmrefより大きいこと。
(条件2)燃焼装置1の負荷Lが予め設定された基準値Lrefより大きいこと。
(条件3)学習モデルMの説明変数に相関があるパラメータに異常がないこと。
(条件4)バイパスダンパが閉状態であること。
(条件5)湿式排煙脱硫装置10が通煙状態であること。
(条件6)上位制御装置15Aに異常がないこと。
(条件7)制御装置15の初期化(イニシャライズ)が完了されていること。
FIG. 3 is a processing flow diagram of the necessary condition determination unit 39 in FIG. 2. FIG. 3 shows, as an example of the configuration of the necessary condition determination unit 39, a processing flow when determination is made based on necessary conditions consisting of the following seven conditions. Specifically, the necessary condition determining unit 39 determines that the necessary condition is satisfied when all of the following seven conditions (conditions 1 to 7) are satisfied.
(Condition 1) The measured value Vm (SO 2 concentration at the absorption tower outlet) corresponding to the predicted value Vp of the learning model M is larger than a preset reference value Vmref.
(Condition 2) The load L of the combustion device 1 is greater than a preset reference value Lref.
(Condition 3) There is no abnormality in the parameters that are correlated with the explanatory variables of the learning model M.
(Condition 4) The bypass damper is in a closed state.
(Condition 5) The wet flue gas desulfurization device 10 is in a state where smoke is flowing.
(Condition 6) There is no abnormality in the host controller 15A.
(Condition 7) Initialization of the control device 15 is completed.
 条件1は、学習モデルMの予測対象である吸収塔出口におけるSO濃度の実測値Vmが基準値Vrefより大きいか否かに基づいて、学習モデルMの予測値Vpを補正する必要性の有無を判定するための条件である。条件2は、燃焼装置1の負荷Lが基準負荷値Lrefより大きいか否かに基づいて、学習モデルMの予測値Vpを補正する必要性の有無を判定するための条件である。
 尚、条件1及び条件2は類似の観点から補正の要否を判定する条件であるため、いずれか一方を省略してもよい。
Condition 1 is whether or not it is necessary to correct the predicted value Vp of the learning model M based on whether the actual measured value Vm of the SO 2 concentration at the absorption tower outlet, which is the prediction target of the learning model M, is greater than the reference value Vref. This is the condition for determining. Condition 2 is a condition for determining whether it is necessary to correct the predicted value Vp of the learning model M based on whether the load L of the combustion device 1 is larger than the reference load value Lref.
Note that since Condition 1 and Condition 2 are conditions for determining whether or not correction is necessary from a similar viewpoint, either one may be omitted.
 条件3は、学習モデルMの予測値Vpの補正に適した運転状態にあるか否かを判定するための条件である。「学習モデルMの説明変数に相関があるパラメータ」は、例えば、説明変数に含まれるパラメータ(吸収塔出口におけるSO濃度、燃焼装置1の排ガス流量、吸収剤濃度など)であってもよいし、またこれらのパラメータを測定するための測定機器において、異常を監視するためのパラメータであってもよい。 Condition 3 is a condition for determining whether the vehicle is in a driving state suitable for correcting the predicted value Vp of the learning model M. The "parameters that are correlated with the explanatory variables of the learning model M" may be, for example, parameters included in the explanatory variables (SO 2 concentration at the outlet of the absorption tower, exhaust gas flow rate of the combustion device 1, absorbent concentration, etc.). , or may be a parameter for monitoring abnormalities in a measuring device for measuring these parameters.
 条件4は、湿式排煙脱硫装置10が備えるバイパスダンパが閉状態にあるか否かを判定するための条件である。バイパスダンパは、ボイラ排ガスを脱硫装置に通さずそのまま煙突にバイパスするためのダンパー弁であり、発電所が通常運転中である場合には閉状態にあるが、例えば何らかの異常が発生した場合のような非常時は全開されることで脱硫装置の機器保護を行うための構成である。尚、近年ではバイパスダンパが備わっていないプラントもあるが、その場合、条件4は必要条件から省略可能である。 Condition 4 is a condition for determining whether the bypass damper included in the wet flue gas desulfurization device 10 is in the closed state. A bypass damper is a damper valve that bypasses the boiler exhaust gas directly to the chimney without passing it through the desulfurization equipment.It is closed when the power plant is in normal operation, but it is closed when some abnormality occurs, for example. The structure is designed to protect the desulfurization equipment by fully opening it in case of an emergency. Incidentally, in recent years, some plants are not equipped with a bypass damper, but in that case, condition 4 can be omitted from the necessary conditions.
 条件5は湿式排煙脱硫装置10が通煙状態にあるか否かを判定するための条件であり、例えば、湿式排煙脱硫装置10が備える脱硫ファンが運転中であるか否か、又は、IDFが起動しているか否かに基づいて判定される。 Condition 5 is a condition for determining whether or not the wet type flue gas desulfurization device 10 is in a smoking state, for example, whether or not the desulfurization fan included in the wet type flue gas desulfurization device 10 is in operation, or The determination is made based on whether or not the IDF is activated.
 条件6は、制御装置15のうち上位制御装置15Aに異常がないか否かを判定するための条件であり、条件7は、制御装置15の初期化が完了されているか否かを判定するための条件である。 Condition 6 is a condition for determining whether there is any abnormality in the upper control device 15A of the control device 15, and condition 7 is a condition for determining whether initialization of the control device 15 has been completed. This is the condition.
 必要条件判定部39は、これらの条件が全て満たされた場合に、必要条件が成立したとして、必要条件成立フラグをONにする。必要条件成立フラグがONになると、第1補正部40及び第2補正部50による予測値Vpの補正が可能な状態となる。 If all of these conditions are met, the necessary condition determining unit 39 determines that the necessary conditions are satisfied and turns on the necessary condition fulfillment flag. When the necessary condition fulfillment flag is turned ON, the predicted value Vp can be corrected by the first correction unit 40 and the second correction unit 50.
 第1補正部40は、学習モデルMによる予測値Vpに対して、燃焼装置1の負荷Lに応じた補正を行うための構成である。第1補正部40は、第1補正条件判定部41と、負荷別補正信号生成部42と、負荷別補正係数算出部43と、第1補正係数算出部44とを備える。以下、図4~図7を参照して第1補正部40が備える各構成について順に説明する。 The first correction unit 40 is configured to correct the predicted value Vp based on the learning model M in accordance with the load L of the combustion device 1. The first correction section 40 includes a first correction condition determination section 41 , a load-specific correction signal generation section 42 , a load-specific correction coefficient calculation section 43 , and a first correction coefficient calculation section 44 . Each component included in the first correction section 40 will be described in order below with reference to FIGS. 4 to 7.
 図4は図2の第1補正条件判定部41の処理フロー図である。第1補正条件判定部41は、第1補正条件の成否を判定するための構成である。第1補正条件は、学習モデルMの予測値Vpに対して第1補正部40による第1補正を実施するか否かを判定するための条件であり、図4では、第1補正条件の一例として、次の4つの条件に基づく判定がなされる。
(条件8)補正後予測値Vp´(初回補正前は予測値Vp)と実測値Vmとの差分ΔVが基準値ΔVrefより大きいこと。
(条件9)必要条件成立フラグがONであること。
(条件10)第1補正頻度信号Sa1が入力されていること。
(条件11)第1補正許可フラグがONであること。
FIG. 4 is a processing flow diagram of the first correction condition determination unit 41 in FIG. 2. The first correction condition determination unit 41 is a configuration for determining whether the first correction condition is satisfied or not. The first correction condition is a condition for determining whether or not to perform the first correction by the first correction unit 40 on the predicted value Vp of the learning model M. In FIG. 4, an example of the first correction condition is shown. Judgments are made based on the following four conditions.
(Condition 8) The difference ΔV between the corrected predicted value Vp′ (predicted value Vp before the first correction) and the actual measured value Vm is larger than the reference value ΔVref.
(Condition 9) The necessary condition fulfillment flag is ON.
(Condition 10) The first corrected frequency signal Sa1 is input.
(Condition 11) The first correction permission flag is ON.
 条件8では、補正後予測値Vp´(初回補正前は学習モデルMの予測値Vpそのもの)と実測値Vmとの差分ΔVについて絶対値(ABS)が算出され、当該絶対値が基準値ΔVrefより大きいか否かが判定される。図4では、学習モデルMの補正後予測値Vp´と比較される実測値Vmは、計測遅れ補正がなされる。計測遅れ補正は、ガス分析計17による実測値Vmの取得は少なからず計測時間を要するため、補正後予測値Vp´に対するガス分析計17による実測値Vmのタイムラグ(計測遅れ)を補正するための処理である。 In condition 8, the absolute value (ABS) is calculated for the difference ΔV between the corrected predicted value Vp' (predicted value Vp of the learning model M itself before the first correction) and the actual measured value Vm, and the absolute value is calculated from the reference value ΔVref. It is determined whether or not it is large. In FIG. 4, the measured value Vm that is compared with the corrected predicted value Vp' of the learning model M is corrected for the measurement delay. The measurement delay correction is performed to correct the time lag (measurement delay) of the actual measurement value Vm by the gas analyzer 17 with respect to the corrected predicted value Vp', since acquisition of the actual measurement value Vm by the gas analyzer 17 requires a considerable amount of measurement time. It is processing.
 条件9は、前述の必要条件判定部39の出力によって切替可能な必要条件成立フラグがONであるか否か判定するための条件である。このように第1補正条件に条件9を含むことで、第1補正部40による第1補正は、前述の必要条件が成立していることを前提として実施される。 Condition 9 is a condition for determining whether the necessary condition fulfillment flag, which can be switched by the output of the above-mentioned necessary condition determination unit 39, is ON. By including condition 9 in the first correction conditions in this way, the first correction by the first correction unit 40 is performed on the premise that the above-mentioned necessary conditions are satisfied.
 条件10は、入力される第1補正頻度信号Sa1に基づいて、第1補正部40による実施頻度を調整するための条件である。第1補正頻度信号Sa1は、第1補正を有効にするON時間と、第1補正を無効にするOFF時間との繰り返しである矩形波パルス信号である。条件10は、このような第1補正頻度信号Sa1が入力された際に、ON時間の間は成立判定がなされ、OFF時間の間は不成立判定がなされる。条件10では、入力される第1補正頻度信号Sa1のON時間とOFF時間との比率を変化させることで、第1補正の実施頻度を調整可能である。このような第1補正頻度信号Sa1のON時間及びOFF時間は、ユーザが設定可能である。 Condition 10 is a condition for adjusting the frequency of implementation by the first correction unit 40 based on the input first correction frequency signal Sa1. The first correction frequency signal Sa1 is a rectangular wave pulse signal that repeats an ON time for validating the first correction and an OFF time for invalidating the first correction. When the first corrected frequency signal Sa1 is input, condition 10 is determined to be satisfied during the ON time, and determined not to be satisfied during the OFF time. In condition 10, the frequency of performing the first correction can be adjusted by changing the ratio between the ON time and the OFF time of the input first correction frequency signal Sa1. The ON time and OFF time of the first corrected frequency signal Sa1 can be set by the user.
 条件11は、第1補正の実施許可を判定するための第1補正許可フラグがONであるか否かを判定するための条件である。例えば、制御装置15はユーザが第1補正の実施可否を選択可能な操作ボタン(不図示)を備えており、当該操作ボタンがON操作された場合に、第1補正許可フラグがONとなる。これにより、第1補正の実施有無をユーザが選択可能となっている。 Condition 11 is a condition for determining whether the first correction permission flag for determining permission to implement the first correction is ON. For example, the control device 15 includes an operation button (not shown) that allows the user to select whether or not to perform the first correction, and when the operation button is turned on, the first correction permission flag is turned on. This allows the user to select whether or not to perform the first correction.
 第1補正条件判定部41は、これら条件8~条件11が全て満たされた場合に第1補正条件が成立したと判断し、第1補正信号S1を出力する。第1補正条件には、前述したように条件10として矩形波パルス信号である第1補正頻度信号Sa1が入力されるため、第1補正信号S1は、第1補正頻度信号Sa1に対応するようにON時間及びOFF時間が繰り返される矩形波パルス信号(フリッカ信号)として出力される。 The first correction condition determination unit 41 determines that the first correction condition is satisfied when all of these conditions 8 to 11 are satisfied, and outputs the first correction signal S1. As described above, the first correction frequency signal Sa1, which is a rectangular wave pulse signal, is input to the first correction condition as condition 10. Therefore, the first correction signal S1 is adjusted so as to correspond to the first correction frequency signal Sa1. It is output as a rectangular wave pulse signal (flicker signal) in which ON time and OFF time are repeated.
 負荷別補正信号生成部42は、燃焼装置1の負荷Lに応じた負荷別補正信号Slを生成するための構成である。ここで図5は図2の負荷別補正信号生成部42の処理フロー図である。 The load-specific correction signal generation unit 42 is configured to generate a load-specific correction signal Sl according to the load L of the combustion device 1. Here, FIG. 5 is a processing flow diagram of the load-specific correction signal generation section 42 of FIG. 2. In FIG.
 本実施形態では、燃焼装置1が取り得る負荷範囲は第1負荷範囲Lr1~第4負荷範囲Lr4(Lr1<Lr2<Lr3<Lr4)に分割されており、負荷別補正信号生成部42は、それぞれに対応する第1負荷範囲判定部42a1~第4負荷範囲判定部42a4を備える。第1負荷範囲判定部42a1は、入力される負荷Lが第1負荷範囲Lr1に含まれる場合にON信号を出力し、第1負荷範囲Lr1に含まれない場合にOFF信号を出力するロジック回路である。第2負荷範囲判定部42a2は、入力される負荷Lが第2負荷範囲Lr2に含まれる場合にON信号を出力し、第2負荷範囲Lr2に含まれない場合にOFF信号を出力するロジック回路である。第3負荷範囲判定部42a3は、入力される負荷Lが第3負荷範囲Lr3に含まれる場合にON信号を出力し、第3負荷範囲Lr3に含まれない場合にOFF信号を出力するロジック回路である。第4負荷範囲判定部42a4は、入力される負荷Lが第4負荷範囲Lr4に含まれる場合にON信号を出力し、第4負荷範囲Lr4に含まれない場合にOFF信号を出力するロジック回路である。 In this embodiment, the load range that the combustion device 1 can take is divided into a first load range Lr1 to a fourth load range Lr4 (Lr1<Lr2<Lr3<Lr4), and the load-specific correction signal generation unit 42 The first load range determining section 42a1 to the fourth load range determining section 42a4 corresponding to the load range determining section 42a4 are provided. The first load range determination unit 42a1 is a logic circuit that outputs an ON signal when the input load L is included in the first load range Lr1, and outputs an OFF signal when it is not included in the first load range Lr1. be. The second load range determination unit 42a2 is a logic circuit that outputs an ON signal when the input load L is included in the second load range Lr2, and outputs an OFF signal when it is not included in the second load range Lr2. be. The third load range determination unit 42a3 is a logic circuit that outputs an ON signal when the input load L is included in the third load range Lr3, and outputs an OFF signal when it is not included in the third load range Lr3. be. The fourth load range determination unit 42a4 is a logic circuit that outputs an ON signal when the input load L is included in the fourth load range Lr4, and outputs an OFF signal when it is not included in the fourth load range Lr4. be.
 第1負荷別補正信号出力部42b1は、第1負荷範囲判定部42a1からON信号が出力され、且つ、前述の第1補正条件判定部41からの第1補正信号S1(フリッカ信号)がON状態である場合に、第1負荷範囲Lr1に対応する補正を行うように指令するための第1負荷別補正信号Sl1を出力する。第2負荷別補正信号出力部42b2は、第2負荷範囲判定部42a2からON信号が出力され、且つ、前述の第1補正条件判定部41からの第1補正信号S1(フリッカ信号)がON状態である場合に、第2負荷範囲Lr2に対応する補正を行うように指令するための第2負荷別補正信号Sl2を出力する。第3負荷別補正信号出力部42b3は、第3負荷範囲判定部42a3からON信号が出力され、且つ、前述の第1補正条件判定部41からの第1補正信号S1(フリッカ信号)がON状態である場合に、第3負荷範囲Lr3に対応する補正を行うように指令するための第3負荷別補正信号Sl3を出力する。第4負荷別補正信号出力部42b4は、第4負荷範囲判定部41a4からON信号が出力され、且つ、前述の第1補正条件判定部41からの第1補正信号S1(フリッカ信号)がON状態である場合に、第4負荷範囲Lr4に対応する補正を行うように指令するための第4負荷別補正信号Sl4を出力する。 The first load-specific correction signal output section 42b1 is configured to output an ON signal from the first load range determination section 42a1, and to which the first correction signal S1 (flicker signal) from the first correction condition determination section 41 described above is in an ON state. In this case, a first load-specific correction signal Sl1 is output for instructing to perform correction corresponding to the first load range Lr1. The second load-based correction signal output unit 42b2 is configured to output an ON signal from the second load range determination unit 42a2, and to which the first correction signal S1 (flicker signal) from the first correction condition determination unit 41 is in the ON state. In this case, a second load-specific correction signal Sl2 is output for instructing to perform correction corresponding to the second load range Lr2. The third load-specific correction signal output unit 42b3 is configured to output an ON signal from the third load range determination unit 42a3, and to which the first correction signal S1 (flicker signal) from the first correction condition determination unit 41 is in the ON state. In this case, a third load-specific correction signal Sl3 is output for instructing to perform correction corresponding to the third load range Lr3. The fourth load-based correction signal output unit 42b4 is configured to output an ON signal from the fourth load range determination unit 41a4, and to which the first correction signal S1 (flicker signal) from the first correction condition determination unit 41 is in the ON state. In this case, a fourth load-specific correction signal Sl4 is output for instructing to perform correction corresponding to the fourth load range Lr4.
 負荷別補正係数算出部43は、負荷別補正信号生成部42で生成された負荷別補正信号Sl1~Sl4に対応する負荷別補正係数Y1~Y4を算出するための構成である。ここで図6は図2の負荷別補正係数算出部43のうち第1負荷別補正係数算出部43aの処理フロー図である。第1負荷別補正係数算出部43aは、負荷別補正係数算出部43のうち第1負荷別補正信号Sl1に基づいて第1負荷別補正係数Y1を算出するための構成である。 The load-specific correction coefficient calculation unit 43 is configured to calculate load-specific correction coefficients Y1 to Y4 corresponding to the load-specific correction signals Sl1 to Sl4 generated by the load-specific correction signal generation unit 42. Here, FIG. 6 is a processing flow diagram of the first load-based correction coefficient calculation unit 43a of the load-based correction coefficient calculation unit 43 in FIG. The first load-specific correction coefficient calculation section 43a is a configuration of the load-specific correction coefficient calculation section 43 for calculating the first load-specific correction coefficient Y1 based on the first load-specific correction signal Sl1.
 尚、負荷別補正係数算出部43は、第1負荷別補正係数算出部43aに加えて、第2負荷別補正信号Sl2に基づいて第2負荷別補正係数Y2を算出するための第2負荷別補正係数算出部43b、第3負荷別補正信号Sl3に基づいて第3負荷別補正係数Y3を算出するための第3負荷別補正係数算出部43c、及び、第4負荷別補正信号Sl4に基づいて第4負荷別補正係数Y4を算出するための第4負荷別補正係数算出部43dを備える。図示を省略するが、第2負荷別補正係数算出部43b、第3負荷別補正係数算出部43c及び第4負荷別補正係数算出部43dについては、特段の記載がない限りにおいて、以下に述べる第1負荷別補正係数算出部43aと同様である。 In addition to the first load-specific correction coefficient calculation unit 43a, the load-specific correction coefficient calculation unit 43 includes a second load-specific correction coefficient calculation unit 43 for calculating the second load-specific correction coefficient Y2 based on the second load-specific correction signal Sl2. A correction coefficient calculation unit 43b, a third load-specific correction coefficient calculation unit 43c for calculating a third load-specific correction coefficient Y3 based on the third load-specific correction signal Sl3, and a fourth load-specific correction coefficient calculation unit 43c based on the fourth load-specific correction signal Sl4. A fourth load-specific correction coefficient calculation unit 43d is provided for calculating the fourth load-specific correction coefficient Y4. Although not shown, the second load-specific correction coefficient calculation unit 43b, the third load-specific correction coefficient calculation unit 43c, and the fourth load-specific correction coefficient calculation unit 43d are described below unless otherwise specified. This is the same as the per-load correction coefficient calculation unit 43a.
 第1負荷別補正係数算出部43aでは、補正後予測値Vp´(初回補正前は学習モデルMの予測値Vpそのもの)と実測値Vmとの差分ΔVが入力されると、差分ΔVが負である場合(すなわち予測値Vpが実測値Vmより小さい場合)、第1スイッチT1は、上方補正値A1を選択するように切り替えられる。上方補正値A1は基準となる「1」に対して上方補正幅が加算された1以上の係数として設定され、例えば、「1.01」である。第1スイッチT1から出力された上方補正値A1は、補正ゲイン調整部Pによって予め設定された補正ゲインK(典型的には「1.0」に設定されるが、適宜変更可能)が乗算された後、第2スイッチT2に、前述の第1補正条件判定部41から出力される第1補正信号S1がON状態になるタイミングで出力される(尚、第2スイッチT2に入力される第1補正信号S1がOFF状態になるタイミングでは、第2スイッチT2は、デフォルト値「1」が出力される)。第2スイッチT2の出力は、予め記憶された前回値(第1負荷別補正係数)に乗算されることで、第1負荷別補正係数Y1として出力される。このように出力される第1負荷別補正係数Y1は、不図示のメモリ等の記憶部に記憶されることで、次の演算サイクルにおいて前回値として利用される。 In the first load-specific correction coefficient calculation unit 43a, when the difference ΔV between the corrected predicted value Vp' (the predicted value Vp of the learning model M before the first correction) and the actual measured value Vm is input, the difference ΔV is negative. In some cases (that is, when the predicted value Vp is smaller than the actual value Vm), the first switch T1 is switched to select the upward correction value A1. The upward correction value A1 is set as a coefficient of 1 or more obtained by adding the upward correction width to the reference value "1", and is, for example, "1.01". The upward correction value A1 output from the first switch T1 is multiplied by a correction gain K (typically set to "1.0", but can be changed as appropriate) set in advance by the correction gain adjustment section P. After that, the first correction signal S1 output from the first correction condition determining section 41 described above is output to the second switch T2 at the timing when the first correction signal S1 is turned on (note that the first correction signal S1 input to the second switch T2 At the timing when the correction signal S1 is in the OFF state, the second switch T2 outputs the default value "1"). The output of the second switch T2 is multiplied by the previous value (first load-specific correction coefficient) stored in advance, and is output as the first load-specific correction coefficient Y1. The first load-based correction coefficient Y1 output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
 このように差分ΔVが負である場合、第1負荷別補正係数Y1は、上方補正値A1に設定された上方補正幅の分だけ、演算サイクルごとに増加する。これにより、補正後予測値Vp´が実測値Vmより小さい場合には、補正後予測値Vp´が増加する方向に補正されて実測値Vmに近づくように第1負荷別補正係数Y1が算出される。 In this way, when the difference ΔV is negative, the first load-specific correction coefficient Y1 increases every calculation cycle by the upward correction width set in the upward correction value A1. As a result, when the corrected predicted value Vp' is smaller than the actual measured value Vm, the first load-specific correction coefficient Y1 is calculated so that the corrected predicted value Vp' is corrected in the direction of increasing and approaches the actual measured value Vm. Ru.
 一方、差分ΔVが正である場合(すなわち補正後予測値Vp´が実測値Vmより大きい場合)、第1スイッチT1は下方補正値A2を選択するように切り替えられる。下方補正値A2は基準となる「1」に対して下方補正幅(負の値)が加算された1未満の係数として設定可能であり、例えば、「0.99」である。第1スイッチT1から出力された下方補正値A2は、補正ゲイン調整部Pによって予め設定された補正ゲインK(典型的には「1」に設定されるが、適宜変更可能)が乗算された後、第2スイッチT2に、前述の第1補正条件判定部41から出力される第1補正信号S1がON状態になるタイミングで出力される(尚、第2スイッチT2に入力される第1補正信号がOFF状態になるタイミングでは、第2スイッチT2は、デフォルト値「1」が出力される)。第2スイッチT2の出力は、予め記憶された前回値(第1負荷別補正係数)に乗算されることで、第1負荷別補正係数Y1として出力される。このように出力される第1負荷別補正係数Y1は、不図示のメモリ等の記憶部に記憶されることで、次の演算サイクルにおいて前回値として利用される。 On the other hand, when the difference ΔV is positive (that is, when the corrected predicted value Vp' is larger than the actual measured value Vm), the first switch T1 is switched to select the downward correction value A2. The downward correction value A2 can be set as a coefficient less than 1 obtained by adding a downward correction width (negative value) to the reference value "1", and is, for example, "0.99". The downward correction value A2 output from the first switch T1 is multiplied by the correction gain K (typically set to "1", but can be changed as appropriate) set in advance by the correction gain adjustment section P. , is outputted to the second switch T2 at the timing when the first correction signal S1 outputted from the first correction condition determining section 41 described above turns ON (the first correction signal inputted to the second switch T2 At the timing when T2 becomes OFF, the second switch T2 outputs the default value "1"). The output of the second switch T2 is multiplied by the previous value (first load-specific correction coefficient) stored in advance, and is output as the first load-specific correction coefficient Y1. The first load-based correction coefficient Y1 output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
 このように差分ΔVが正である場合、第1負荷別補正係数Y1は、下方補正値A2に設定された下方補正幅の分だけ、演算サイクルごとに減少する。これにより、補正後予測値Vp´が実測値Vmより大きい場合には、補正後予測値Vp´が減少する方向に補正されて実測値Vmに近づくように第1負荷別補正係数Y1が算出される。 In this way, when the difference ΔV is positive, the first load-specific correction coefficient Y1 decreases every calculation cycle by the downward correction width set in the downward correction value A2. As a result, when the corrected predicted value Vp' is larger than the actual measured value Vm, the first load-specific correction coefficient Y1 is calculated so that the corrected predicted value Vp' is corrected in a decreasing direction and approaches the actual measured value Vm. Ru.
 第1補正係数算出部44は、学習モデルMによる予測値Vpに対して、負荷Lに対応する第1補正係数Yを用いて補正するための構成である。ここで図7は図2の第1補正係数算出部44の処理フロー図である。 The first correction coefficient calculation unit 44 is configured to correct the predicted value Vp by the learning model M using the first correction coefficient Y corresponding to the load L. Here, FIG. 7 is a processing flow diagram of the first correction coefficient calculation unit 44 of FIG. 2.
 第1補正係数算出部44は、負荷別補正係数算出部43によって算出された負荷範囲ごとの第1負荷別補正係数Y1~第4負荷別補正係数Y4が入力される。そして、運転データに含まれる負荷Lが入力されると、当該負荷Lが属する負荷範囲に対応する第1負荷別補正係数Y1~第4負荷別補正係数Y4のいずれかが第1補正係数Yとして算出される。このように算出される第1補正係数Yは、負荷Lの大きさに応じた値となる。 The first correction coefficient calculation unit 44 receives the first load correction coefficient Y1 to fourth load correction coefficient Y4 for each load range calculated by the load correction coefficient calculation unit 43. Then, when the load L included in the operation data is input, one of the first load correction coefficient Y1 to the fourth load correction coefficient Y4 corresponding to the load range to which the load L belongs is set as the first correction coefficient Y. Calculated. The first correction coefficient Y calculated in this way has a value corresponding to the magnitude of the load L.
 第1補正係数算出部44で算出された第1補正係数Yは、第1補正許可フラグがONになった際に、第3スイッチT3から出力されて学習モデルMの予測値Vpに対して乗算されることで、第1補正が行われた補正後予測値Vp´が得られる。このような第1補正は、負荷Lが第1負荷範囲Lr1~第4負荷範囲Lr4のいずれに属するかに対応して算出された第1補正係数Yが予測値Vpに乗算されることにより行われる。そのため、負荷Lの値によって予測値Vpに対する補正量をきめ細かく設定することができ、学習モデルMの再構築を行うことなく、予測精度を効果的に向上できる。 The first correction coefficient Y calculated by the first correction coefficient calculation unit 44 is output from the third switch T3 and multiplied by the predicted value Vp of the learning model M when the first correction permission flag is turned ON. By doing so, a corrected predicted value Vp' that has been subjected to the first correction is obtained. Such a first correction is performed by multiplying the predicted value Vp by a first correction coefficient Y calculated according to which of the first load range Lr1 to fourth load range Lr4 the load L belongs to. be exposed. Therefore, the amount of correction for the predicted value Vp can be finely set depending on the value of the load L, and the prediction accuracy can be effectively improved without reconstructing the learning model M.
 第2補正部50は、学習モデルMによる予測値Vpに対して、燃焼装置1の全負荷Lに応じた補正(すなわち、負荷Lに依存する前述の第1補正とは異なり、負荷Lの大きさに依存しない補正)を行うための構成である。第2補正部50は、第2補正条件判定部51と、第2補正係数算出部52とを備える。 The second correction unit 50 corrects the predicted value Vp by the learning model M according to the total load L of the combustion device 1 (that is, unlike the first correction that depends on the load L, This is a configuration for performing corrections that do not depend on The second correction section 50 includes a second correction condition determination section 51 and a second correction coefficient calculation section 52.
 図8は図2の第2補正条件判定部51の処理フロー図である。第2補正条件判定部51は、第2補正条件の成否を判定するための構成である。第2補正条件は、学習モデルMの予測値Vpに対して第2補正部50による第2補正を実施するか否かを判定するための条件であり、図8では、第2補正条件の一例として、次の4つの条件に基づく判定がなされる。
(条件12)補正後予測値Vp´(初回補正前は予測値Vp)に対して全体調整係数が乗算された結果と実測値Vmとの差分ΔVが基準値ΔVrefより大きいこと。
(条件13)必要条件成立フラグがONであること。
(条件14)第2補正頻度信号Sa2が入力されていること。
(条件15)第2補正許可フラグがONであること。
FIG. 8 is a processing flow diagram of the second correction condition determining section 51 of FIG. 2. The second correction condition determination unit 51 is configured to determine whether the second correction condition is satisfied. The second correction condition is a condition for determining whether or not to perform the second correction by the second correction unit 50 on the predicted value Vp of the learning model M. In FIG. 8, an example of the second correction condition is Judgments are made based on the following four conditions.
(Condition 12) The difference ΔV between the result of multiplying the corrected predicted value Vp' (predicted value Vp before the first correction) by the overall adjustment coefficient and the actual measured value Vm is larger than the reference value ΔVref.
(Condition 13) The necessary condition fulfillment flag is ON.
(Condition 14) The second corrected frequency signal Sa2 is input.
(Condition 15) The second correction permission flag is ON.
 条件12では、補正後予測値Vp´(初回補正前は学習モデルMの予測値Vpそのもの)に対して全体調整係数が乗算された結果と実測値Vmとの差分ΔVについて絶対値(ABS)が算出され、当該絶対値が基準値ΔVrefより大きいか否かが判定される。図8では、学習モデルMの補正後予測値Vp´と比較される実測値Vmは、計測遅れ補正がなされる。計測遅れ補正は、ガス分析計17による実測値Vmの取得は少なからず計測時間を要するため、補正後予測値Vp´に対するガス分析計17による実測値Vmのタイムラグ(計測時間遅れ)を補正するための処理である。 In condition 12, the absolute value (ABS) of the difference ΔV between the result of multiplying the corrected predicted value Vp' (predicted value Vp of the learning model M itself before the first correction) by the overall adjustment coefficient and the actual measured value Vm is It is determined whether the absolute value is larger than the reference value ΔVref. In FIG. 8, the measured value Vm that is compared with the corrected predicted value Vp' of the learning model M is corrected for the measurement delay. The measurement delay correction is performed to correct the time lag (measurement time delay) between the actual measurement value Vm by the gas analyzer 17 and the corrected predicted value Vp', since acquisition of the actual measurement value Vm by the gas analyzer 17 requires considerable measurement time. This is the process.
 条件13は、前述の必要条件判定部39の出力によって切替可能な必要条件成立フラグがONであるか否か判定するための条件である。このように第2補正条件に条件13を含むことで、第2補正部50による第2補正は、前述の必要条件が成立していることを前提として実施される。 Condition 13 is a condition for determining whether the necessary condition fulfillment flag, which can be switched by the output of the above-mentioned necessary condition determination unit 39, is ON. By including condition 13 in the second correction conditions in this manner, the second correction by the second correction unit 50 is performed on the premise that the above-mentioned necessary conditions are satisfied.
 条件14は、入力される第2補正頻度信号Sa2に基づいて、第2補正部50による実施頻度を調整するための条件である。第2補正頻度信号Sa2は、第2補正を有効にするON時間と、第2補正を無効にするOFF時間との繰り返しである矩形波パルス信号である。条件14は、このような第2補正頻度信号Sa2が入力された際に、ON時間の間は成立判定がなされ、OFF時間の間は不成立判定がなされる。条件14では、入力される第2補正頻度信号Sa2のON時間とOFF時間との比率を変化させることで、第2補正の実施頻度を調整可能である。このような第2補正頻度信号Sa2のON時間及びOFF時間は、ユーザが設定可能である。 Condition 14 is a condition for adjusting the frequency of implementation by the second correction unit 50 based on the input second correction frequency signal Sa2. The second correction frequency signal Sa2 is a rectangular wave pulse signal that repeats an ON time for validating the second correction and an OFF time for invalidating the second correction. When the second corrected frequency signal Sa2 is input, condition 14 is determined to be satisfied during the ON time, and determined not to be satisfied during the OFF time. In condition 14, the frequency of performing the second correction can be adjusted by changing the ratio between the ON time and the OFF time of the input second correction frequency signal Sa2. The ON time and OFF time of the second corrected frequency signal Sa2 can be set by the user.
 条件15は、第2補正の実施許可を判定するための第1補正許可フラグがONであるか否かを判定するための条件である。例えば、制御装置15はユーザが第2補正の実施可否を選択可能な操作ボタン(不図示)を備えており、当該操作ボタンがON操作された場合に、第2補正許可フラグがONとなる。これにより、第2補正の実施有無をユーザが選択可能となっている。 Condition 15 is a condition for determining whether the first correction permission flag for determining permission to implement the second correction is ON. For example, the control device 15 includes an operation button (not shown) that allows the user to select whether or not to perform the second correction, and when the operation button is turned on, the second correction permission flag is turned on. This allows the user to select whether or not to perform the second correction.
 第2補正条件判定部51は、これら条件12~条件15が全て満たされた場合に第2補正条件が成立したと判断し、第2補正信号S2を出力する。第2補正条件には、前述したように条件14として矩形波パルス信号である第2補正頻度信号Sa2が入力されるため、第2補正信号S2は、第2補正頻度信号Sa2に対応するようにON時間及びOFF時間が繰り返される矩形波パルス信号(フリッカ信号)として出力される。 The second correction condition determination unit 51 determines that the second correction condition is satisfied when all of these conditions 12 to 15 are satisfied, and outputs the second correction signal S2. As described above, the second correction frequency signal Sa2, which is a rectangular wave pulse signal, is input to the second correction condition as condition 14. Therefore, the second correction signal S2 is adjusted so as to correspond to the second correction frequency signal Sa2. It is output as a rectangular wave pulse signal (flicker signal) in which ON time and OFF time are repeated.
 第2補正係数算出部52は、第2補正条件判定部51から出力される第2補正信号S2に基づいて第2補正係数を算出するための構成である。ここで図9は図2の第2補正係数算出部52の処理フロー図である。 The second correction coefficient calculation unit 52 is configured to calculate a second correction coefficient based on the second correction signal S2 output from the second correction condition determination unit 51. Here, FIG. 9 is a processing flow diagram of the second correction coefficient calculation unit 52 of FIG. 2.
 第2補正係数算出部52では、補正後予測値Vp´(初回補正前は学習モデルMの予測値Vpそのもの)と実測値Vmとの差分ΔVが入力されると、差分ΔVが負である場合(すなわち予測値Vpが実測値Vm未満である場合)、第4スイッチT4は、上方補正値A3を選択するように切り替えられる。上方補正値A3は基準となる「1」に対して上方補正幅が加算された1以上の係数として設定され、例えば、「1.01」である。第4スイッチT4から出力された上方補正値A3は、補正ゲイン調整部Pによって予め設定された補正ゲインK(典型的には「1.0」に設定されるが、適宜変更可能)が乗算された後、第5スイッチT5に、前述の第2補正条件判定部51から出力される第2補正信号S2がON状態になるタイミングで出力される(尚、第5スイッチT5に入力される第2補正信号S2がOFF状態になるタイミングでは、第5スイッチT5は、デフォルト値「1」を出力する)。第5スイッチT5の出力は、予め記憶された前回値(第2補正係数)に乗算されることで、第2補正係数Zとして出力される。
 尚、このように出力される第2補正係数Zは、不図示のメモリ等の記憶部に記憶されることで、次の演算サイクルにおいて前回値として利用される。
In the second correction coefficient calculation unit 52, when the difference ΔV between the corrected predicted value Vp′ (predicted value Vp of the learning model M itself before the first correction) and the actual measured value Vm is input, if the difference ΔV is negative (That is, when the predicted value Vp is less than the actual value Vm), the fourth switch T4 is switched to select the upward correction value A3. The upward correction value A3 is set as a coefficient of 1 or more obtained by adding the upward correction width to the reference value "1", and is, for example, "1.01". The upward correction value A3 output from the fourth switch T4 is multiplied by a correction gain K (typically set to "1.0", but can be changed as appropriate) set in advance by the correction gain adjustment section P. After that, the second correction signal S2 outputted from the second correction condition determining section 51 described above is outputted to the fifth switch T5 at the timing when the second correction signal S2 is turned on (note that the second correction signal S2 inputted to the fifth switch T5 At the timing when the correction signal S2 is in the OFF state, the fifth switch T5 outputs the default value "1"). The output of the fifth switch T5 is multiplied by the previous value (second correction coefficient) stored in advance, and is output as the second correction coefficient Z.
Note that the second correction coefficient Z output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
 このように差分ΔVが負である場合、第2補正係数Zは、上方補正値A3に設定された上方補正幅の分だけ、演算サイクルごとに増加する。これにより、補正後予測値Vp´が実測値Vmより小さい場合には、補正後予測値Vp´が増加する方向に補正されて実測値Vmに近づくように第2補正係数Zが算出される。 In this way, when the difference ΔV is negative, the second correction coefficient Z increases every calculation cycle by the upward correction width set in the upward correction value A3. Thereby, when the corrected predicted value Vp' is smaller than the actual measured value Vm, the second correction coefficient Z is calculated so that the corrected predicted value Vp' is corrected in an increasing direction and approaches the actual measured value Vm.
 一方、差分ΔVが正である場合(すなわち補正後予測値Vp´が実測値Vmより大きい場合)、第4スイッチT4は下方補正値A4を選択するように切り替えられる。下方補正値A4は基準となる「1」に対して下方補正幅(負の値)が加算された1未満の係数として設定可能であり、例えば、「0.99」である。第4スイッチT4から出力された下方補正値A4は、補正ゲイン調整部Pによって予め設定された補正ゲインK(典型的には「1」に設定されるが、適宜変更可能)が乗算された後、第5スイッチT5に、前述の第2補正条件判定部51から出力される第2補正信号S2がON状態になるタイミングで出力される(尚、第5スイッチT5に入力される第2補正信号S2がOFF状態になるタイミングでは、第5スイッチT5は、デフォルト値「1」を出力する)。第5スイッチT5の出力は、予め記憶された前回の第2補正係数Zに乗算されることで、第2補正係数Zとして出力される。
 尚、このように出力される第2補正係数Zは、不図示のメモリ等の記憶部に記憶されることで、次の演算サイクルにおいて前回値として利用される。
On the other hand, when the difference ΔV is positive (that is, when the corrected predicted value Vp' is larger than the actual measured value Vm), the fourth switch T4 is switched to select the downward correction value A4. The downward correction value A4 can be set as a coefficient less than 1 obtained by adding the downward correction width (negative value) to the reference value “1”, and is, for example, “0.99”. The downward correction value A4 output from the fourth switch T4 is multiplied by a correction gain K (typically set to "1", but can be changed as appropriate) set in advance by the correction gain adjustment section P. , is outputted to the fifth switch T5 at the timing when the second correction signal S2 outputted from the second correction condition determining section 51 described above turns ON (note that the second correction signal S2 inputted to the fifth switch T5 At the timing when S2 is in the OFF state, the fifth switch T5 outputs the default value "1"). The output of the fifth switch T5 is multiplied by the previous second correction coefficient Z stored in advance, and is output as the second correction coefficient Z.
Note that the second correction coefficient Z output in this way is stored in a storage unit such as a memory (not shown), and is used as the previous value in the next calculation cycle.
 このように差分ΔVが正である場合、第2補正係数Zは、下方補正値A4に設定された下方補正幅の分だけ、演算サイクルごとに減少する。これにより、補正後予測値Vp´が実測値Vmより大きい場合には、補正後予測値Vp´が減少する方向に補正されて実測値Vmに近づくように第2補正係数Zが算出される。 In this way, when the difference ΔV is positive, the second correction coefficient Z decreases every calculation cycle by the downward correction width set in the downward correction value A4. Thereby, when the corrected predicted value Vp' is larger than the actual measured value Vm, the second correction coefficient Z is calculated so that the corrected predicted value Vp' is corrected in a decreasing direction and approaches the actual measured value Vm.
 第2補正係数算出部52で算出された第2補正係数Zは、第2補正許可フラグがONになった際に、第6スイッチT6から出力されて学習モデルMの予測値Vpに対して乗算されることで、第2補正が行われた補正後予測値Vp´が得られる。このような第2補正は、負荷Lが第1負荷範囲Lr1~第4負荷範囲Lr4のいずれに属するかに関わらず第2補正係数Zが予測値Vpに乗算されることにより行われる。そのため、負荷Lの値に依存せず予測値Vpを全体的に補正でき、学習モデルMの再構築を行うことなく、予測精度を効果的に向上できる。 The second correction coefficient Z calculated by the second correction coefficient calculation unit 52 is output from the sixth switch T6 and multiplied by the predicted value Vp of the learning model M when the second correction permission flag is turned ON. By doing so, a corrected predicted value Vp' that has been subjected to the second correction is obtained. Such second correction is performed by multiplying the predicted value Vp by the second correction coefficient Z, regardless of which of the first load range Lr1 to the fourth load range Lr4 the load L belongs to. Therefore, the predicted value Vp can be corrected as a whole without depending on the value of the load L, and the prediction accuracy can be effectively improved without reconstructing the learning model M.
 続いてテーブル作成部31によるテーブルTbの作成方法について図10を参照して説明する。図10は図2のテーブル作成部31の処理フロー図である。 Next, a method for creating table Tb by the table creation unit 31 will be described with reference to FIG. 10. FIG. 10 is a processing flow diagram of the table creation section 31 of FIG. 2.
 テーブルTbの作成は、まず運転データ受信部30で受信した運転データに含まれる各パラメータを学習モデルMに入力して学習モデルMの予測値Vp(吸収塔出口におけるSO濃度の予測値)を算出する。得られた予測値Vpは、前述の必要条件、第1補正条件、第2補正条件の成否状況に応じて第1補正部40又は第2補正部50の少なくとも一方によって補正される。これにより、学習モデルMの予測値Vpに比べて予測精度が高い補正後予測値Vp´が得られる。そして補正後予測値Vp´が、予め設定された基準値を満たす(例えば、基準値以下になる)ための最適値としての吸収液における吸収剤濃度目標値が算出される。図10では、このような負荷L1、L2、・・・と吸収剤濃度の最適値M1、M2、・・・との組み合わせが入力されることで、負荷Lと吸収剤濃度目標値Mとの関係を規定するテーブルTbが作成される様子が示されている。 To create the table Tb, first input each parameter included in the operating data received by the operating data receiving unit 30 into the learning model M, and obtain the predicted value Vp (predicted value of SO 2 concentration at the absorption tower outlet) of the learning model M. calculate. The obtained predicted value Vp is corrected by at least one of the first correction section 40 and the second correction section 50 depending on the success or failure status of the above-mentioned necessary conditions, first correction conditions, and second correction conditions. Thereby, a corrected predicted value Vp' having higher prediction accuracy than the predicted value Vp of the learning model M is obtained. Then, a target absorbent concentration value in the absorbent liquid is calculated as an optimal value for the corrected predicted value Vp' to satisfy a preset reference value (for example, become equal to or less than the reference value). In FIG. 10, by inputting combinations of such loads L1, L2, . . . and optimal absorbent concentration values M1, M2, . It shows how a table Tb that defines relationships is created.
 そして制御目標値決定部32は、テーブル作成部31によって作成されたテーブルTbに対して、運転データに含まれる負荷Lを入力することで、補正後予測値Vp´が予め設定された基準値を満たすための吸収剤濃度目標値Mを求め、当該吸収剤濃度目標値Mに対応する吸収剤の投入量及び吸収液の循環流量の制御目標値が決定される。 Then, the control target value determination unit 32 inputs the load L included in the operation data into the table Tb created by the table creation unit 31, so that the corrected predicted value Vp' can be set to a preset reference value. An absorbent concentration target value M to be satisfied is determined, and control target values for the absorbent input amount and the circulation flow rate of the absorbent corresponding to the absorbent concentration target value M are determined.
 ここで制御目標値決定部32は、テーブルTbから求められた吸収剤濃度目標値Mに対して、更にフィードフォワード成分を用いた補正を行うことで、吸収剤の投入量に関する制御目標値を決定してもよい。図11は図2の制御目標値決定部32による制御目標値の決定処理に関する処理フロー図である。 Here, the control target value determining unit 32 further corrects the absorbent concentration target value M obtained from the table Tb using a feedforward component, thereby determining the control target value regarding the amount of absorbent to be introduced. You may. FIG. 11 is a process flow diagram regarding the control target value determination process by the control target value determination unit 32 of FIG. 2. In FIG.
 制御目標値決定部32は、まず吸収剤濃度目標値Mと、その実測値Mmとの差分ΔをPI制御器に入力する。PI制御器から出力されるPI制御値は、運転データに基づいて算出されるフィードフォワード補正値を用いて補正される。具体的には、燃焼装置1の排ガス流量、及び、吸収塔入口におけるSO濃度に対応する第1フィードフォワード補正値ff1と、投入量予測値を換算ロジックで換算して得られる第2フィードフォワード補正値ff2とを加算してフィードフォワード補正値ffが求められる。
このように得られたフィードフォワード補正値ffは、PI制御値に加算されることで、吸収剤の投入量に関する制御目標値が決定される。このように決定された制御目標値は、フィードフォワード補正値による先行制御が可能となるため、制御装置15による制御精度を更に改善できる。
The control target value determination unit 32 first inputs the difference Δ between the absorbent concentration target value M and its actual measurement value Mm into the PI controller. The PI control value output from the PI controller is corrected using a feedforward correction value calculated based on operational data. Specifically, the first feedforward correction value ff1 corresponding to the exhaust gas flow rate of the combustion device 1 and the SO 2 concentration at the absorption tower inlet, and the second feedforward value obtained by converting the input amount predicted value using conversion logic. A feedforward correction value ff is obtained by adding the correction value ff2.
The feedforward correction value ff obtained in this manner is added to the PI control value to determine the control target value regarding the amount of absorbent to be introduced. The control target value determined in this manner enables advance control using the feedforward correction value, so that the control accuracy by the control device 15 can be further improved.
 上記説明した制御装置15では、図2を参照して前述したように、学習モデルMの予測値Vpを予測値補正部36によって補正し、補正後予測値Vp´を用いてテーブルTbの作成を行い、制御目標値決定部32によって当該テーブルTbを用いた制御目標値の決定が行われる。このような制御装置15は、予測値補正部36や制御目標値決定部32のパラメータを調整することで、上記処理の変更・追加が可能である。例えば予測値補正部36はΔVrefの基準値、前述の第1補正条件の条件10、前述の第2補正条件の条件14の第2補正頻度信号Sa2におけるON/OFF時間、前述の上方補正値A1及びA3、前述の下方補正値A2及びA4、補正ゲイン調整部Pで調整可能な補正ゲインK、第1負荷別補正係数Y1及び第2補正係数Zの上下限値の変更が可能である。また制御目標値決定部32はPIパラメータ(図11のPI制御器に関する、例えば比例定数Kや積分時間T等のパラメータ)、図11の関数Fxの出力ff1及び換算ロジックの出力ff2の吸収剤投入量の変更・追加が可能である。 In the control device 15 described above, as described above with reference to FIG. 2, the predicted value correction unit 36 corrects the predicted value Vp of the learning model M, and creates the table Tb using the corrected predicted value Vp'. The control target value determination unit 32 determines the control target value using the table Tb. Such a control device 15 can change or add the above processing by adjusting the parameters of the predicted value correction section 36 and the control target value determination section 32. For example, the predicted value correction unit 36 uses the reference value of ΔVref, the ON/OFF time of the second correction frequency signal Sa2 of the above-mentioned first correction condition Condition 10, the above-mentioned second correction condition Condition 14, and the above-mentioned upward correction value A1. And A3, the above-mentioned downward correction values A2 and A4, the correction gain K adjustable by the correction gain adjustment section P, the upper and lower limits of the first load-specific correction coefficient Y1 and the second correction coefficient Z can be changed. In addition, the control target value determining unit 32 inputs absorbent based on PI parameters (parameters related to the PI controller in FIG. 11, such as the proportionality constant K and integral time T), the output ff1 of the function Fx in FIG. 11, and the output ff2 of the conversion logic. It is possible to change or add the amount.
 ここで仮に予測値補正部36や制御目標値決定部32を含む制御装置15の全ての機能ブロックが上位制御装置15Aに配置されると、上位制御装置15Aでは機能ブロックがプログラムによって記述されるため、処理の変更・追加の際には、上位制御装置15Aに対応するためのプログラム技術者と、下位制御装置15Bに対応するための制御ロジック技術者とを含む、最低2名の人員が必要になる。 Here, if all the functional blocks of the control device 15 including the predicted value correction section 36 and the control target value determination section 32 are arranged in the upper control device 15A, the functional blocks are written by a program in the upper control device 15A. When changing or adding processes, at least two people are required, including a program engineer to handle the upper control device 15A and a control logic engineer to handle the lower control device 15B. Become.
 それに対して上記構成によれば、図2を参照して前述したように、予測値補正部36や制御目標値決定部32が下位制御装置15Bに配置されることで、後者(下位制御装置15Bで制御ロジックを理解できる技術者)が1名だけで対応することが可能となり、処理の変更・追加に要する人員を効果的に削減できる。 On the other hand, according to the above configuration, as described above with reference to FIG. This makes it possible for only one person (an engineer who can understand the control logic) to handle the process, effectively reducing the number of personnel required to change or add processing.
 また図12は図2の循環ポンプ調整部33の処理フロー図である。循環ポンプ調整部33は、制御目標値決定部32で決定された吸収液の循環流量に関する制御目標値に基づいて、循環ポンプの稼働台数を調整する。循環ポンプ調整部33は、例えば、以下の4つの条件が成立した場合に、循環ポンプの稼働台数が増加するように指令を行うことで、循環ポンプの稼働台数を調整する。
(条件16)吸収塔出口におけるSO2濃度の目標値と実測値Vmとの差Δが許容値を超えて正方向に変化した場合(すなわち吸収塔出口におけるSO2濃度の目標値を守るべく循環ポンプの緊急起動が必要な場合)、循環ポンプの最適台数と現在の稼働台数との差Δが基準値(例えば-0.5台)より小さいこと。
(条件17)循環ポンプを1台起動後、吸収塔出口におけるSO2濃度に反映されるまでの追加起動禁止時間中でないこと。
(条件18)起動可能なポンプが有ること。
(条件19)最適運転AI使用中であること。
Further, FIG. 12 is a processing flow diagram of the circulation pump adjustment section 33 of FIG. 2. The circulation pump adjustment section 33 adjusts the number of operating circulation pumps based on the control target value regarding the circulation flow rate of the absorption liquid determined by the control target value determination section 32. The circulation pump adjustment unit 33 adjusts the number of operating circulation pumps by issuing a command to increase the number of operating circulation pumps, for example, when the following four conditions are satisfied.
(Condition 16) When the difference Δ between the target SO2 concentration at the absorption tower outlet and the measured value Vm exceeds the allowable value and changes in the positive direction (i.e., the circulation pump is (if emergency startup is required), the difference Δ between the optimal number of circulating pumps and the current number of operating pumps is smaller than the standard value (for example, -0.5 units).
(Condition 17) After starting one circulation pump, there is no additional start-up prohibition period until it is reflected in the SO2 concentration at the outlet of the absorption tower.
(Condition 18) There must be a pump that can be started.
(Condition 19) Optimum operation AI is in use.
 また循環ポンプ調整部33は、例えば、以下の4つの条件が成立した場合に、循環ポンプの稼働台数が減少するように指令を行うことで、循環ポンプの稼働台数を調整する。
(条件16)吸収塔出口におけるSO2濃度の目標値と実測値Vmとの差Δが許容値を下回って負方向に変化した場合(すなわち吸収塔出口におけるSO2濃度目標値と実測値Vmとの差が大きく、ポンプ減台が可能な場合)、循環ポンプの最適台数と現在の稼働台数との差Δが基準値(例えば0.5台)より大きいこと。
(条件20)起動後停止禁止中でないこと(循環ポンプの頻繁な発停を防ぐ)。
(条件21)停止後停止禁止中でないこと(循環ポンプの頻繁な発停を防ぐ)。
(条件22)停止可能ポンプがあること。
Further, the circulation pump adjustment unit 33 adjusts the number of operating circulation pumps by issuing a command to reduce the number of operating circulation pumps, for example, when the following four conditions are satisfied.
(Condition 16) When the difference Δ between the target value of SO2 concentration at the outlet of the absorption tower and the actual value Vm is less than the allowable value and changes in the negative direction (i.e., the difference between the target value of SO2 concentration at the outlet of the absorption tower and the actual value Vm is large and it is possible to reduce the number of pumps), the difference Δ between the optimal number of circulation pumps and the current number of operating pumps is larger than the reference value (for example, 0.5 units).
(Condition 20) Stopping after startup is not prohibited (to prevent frequent starting and stopping of the circulation pump).
(Condition 21) Stopping is not prohibited after stopping (preventing frequent starting and stopping of the circulation pump).
(Condition 22) There is a pump that can be stopped.
 続いて図13を参照して前述した制御装置15の構成のバリエーションについて説明する。図13A~図13Bは図2の他の態様を示すブロック構成図である。 Next, variations in the configuration of the control device 15 described above will be described with reference to FIG. 13. 13A and 13B are block configuration diagrams showing other aspects of FIG. 2.
 図13Aに示す態様では、図2において上位制御装置15Aが備える機能ブロック(運転データ受信部30、学習モデル構築部38、テーブル作成部31)が、下位制御装置15Bに統合される。すなわち、下位制御装置15Bは、再学習装置15Cを除いて、運転データ受信部30、学習モデル構築部38、テーブル作成部31、予測値補正部36、制御目標値決定部32、循環ポンプ調整部33、及び、吸収剤スラリー供給制御部34を備え、これらの機能ブロックは全て制御ロジックによって実現される。尚、下位制御装置15Bが備えるこれらの機能ブロックの一部は、下位制御装置15Bで取り扱い可能なプログラム言語で実装されてもよい。 In the embodiment shown in FIG. 13A, the functional blocks (driving data receiving unit 30, learning model construction unit 38, table creation unit 31) included in the upper control device 15A in FIG. 2 are integrated into the lower control device 15B. That is, the lower control device 15B, except for the relearning device 15C, includes an operation data receiving section 30, a learning model construction section 38, a table creation section 31, a predicted value correction section 36, a control target value determination section 32, and a circulation pump adjustment section. 33 and an absorbent slurry supply control section 34, and all of these functional blocks are realized by control logic. Note that some of these functional blocks included in the lower control device 15B may be implemented in a program language that can be handled by the lower control device 15B.
 図13Aに示す態様では、図2の態様において上位制御装置15Aに配置されることでプログラムによって記述されていた機能ブロック(運転データ受信部30、学習モデル構築部38、テーブル作成部31)が、下位制御装置15Bにおいて制御ロジックとして記述されることで実現される。これにより、制御装置15の各種機能を下位制御装置15Bに集約することで、例えば、制御対象である湿式排煙脱硫装置10がある現場に上位制御装置15Aを設置する必要がなくなり、制御装置15の管理負担を軽減できる。 In the embodiment shown in FIG. 13A, the functional blocks (driving data receiving section 30, learning model construction section 38, table creation section 31) that were arranged in the upper control device 15A and described by the program in the embodiment of FIG. This is realized by being written as control logic in the lower control device 15B. By consolidating various functions of the control device 15 into the lower control device 15B, for example, it becomes unnecessary to install the upper control device 15A at the site where the wet flue gas desulfurization device 10 to be controlled is located, and the control device 15 management burden can be reduced.
 図13Bに示す態様では、上位制御装置15A及び下位制御装置15Bとともに、エッジサーバ15Dを備える。エッジサーバ15Dはデータ中継部60を備え、上位制御装置15A及び下位制御装置15B間に配置されることで、互いに地理的に離れて配置された上位制御装置15A及び下位制御装置15Bの間におけるデータ送受信を可能とする。この場合、上位制御装置15Aが下位制御装置15Bが配置された現場(制御対象である湿式排煙脱硫装置10が設置された場所)から離れた遠隔地で、湿式排煙脱硫装置10の制御状態を遠隔監視するための遠隔監視システムとして機能するような態様に適用できる。 In the embodiment shown in FIG. 13B, an edge server 15D is provided along with a higher-level control device 15A and a lower-level control device 15B. The edge server 15D includes a data relay unit 60, and is placed between the upper control device 15A and the lower control device 15B, so that data between the upper control device 15A and the lower control device 15B, which are located geographically apart from each other, is transferred. Enables sending and receiving. In this case, the upper control device 15A controls the control state of the wet flue gas desulfurization device 10 in a remote location away from the site where the lower control device 15B is installed (the place where the wet flue gas desulfurization device 10 to be controlled is installed). It can be applied to an embodiment in which the system functions as a remote monitoring system for remotely monitoring.
 また図13Bに示すように、湿式排煙脱硫装置10は、例えば、上位制御装置15Aと通信可能な情報処理装置18からなる遠隔監視システムを構成してもよい。この遠隔監視システムでは、情報処理装置18に備えられた表示部70に対して、湿式排煙脱硫装置10の制御状態に関する情報を表示することで遠隔監視を行うことが可能となる。
 また、このようなシステム構成において、情報処理装置18の表示部70を介して、当該情報処理装置18からの要求により、制御装置15における各処理フローを実行する構成を備えてもよい。
Further, as shown in FIG. 13B, the wet flue gas desulfurization device 10 may constitute a remote monitoring system including, for example, an information processing device 18 that can communicate with a host control device 15A. In this remote monitoring system, remote monitoring can be performed by displaying information regarding the control state of the wet flue gas desulfurization device 10 on the display unit 70 provided in the information processing device 18.
Further, in such a system configuration, a configuration may be provided in which each processing flow in the control device 15 is executed in response to a request from the information processing device 18 via the display unit 70 of the information processing device 18.
 以上説明したように上記各実施形態によれば、吸収剤の投入量や吸収液の循環流量の制御目標値を決定するために用いられるテーブルを作成するために用いられる学習モデルの予測値が補正係数を用いて補正される。予測値の補正は、燃焼装置の負荷に基づいて算出される第1補正係数を用いることで、負荷に対する特性を加味して行われることで、例えば負荷の大きさに応じて予測値と実測値との差が変化する場合においても、精度のよい補正後予測値が得られる。このような補正後予測値を用いてテーブルを作成することで制御目標値を精度よく求めることができ、その結果、学習モデルの予測値と実測値との間に差がある場合においても、良好な制御精度が得られる。 As explained above, according to each of the above embodiments, the predicted values of the learning model used to create the table used to determine the control target value of the amount of absorbent input and the circulating flow rate of the absorbent liquid are corrected. Corrected using a coefficient. The predicted value is corrected by using the first correction coefficient calculated based on the load of the combustion device, taking into account the characteristics of the load. For example, the predicted value and the actual value are Even if the difference between the two values changes, an accurate corrected predicted value can be obtained. By creating a table using such corrected predicted values, the control target value can be determined with high accuracy, and as a result, even if there is a difference between the predicted value of the learning model and the actual measured value, Control accuracy can be obtained.
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, the components in the embodiments described above can be replaced with well-known components as appropriate without departing from the spirit of the present disclosure, and the embodiments described above may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood as follows, for example.
(1)一態様に係る湿式排煙脱硫装置の制御装置は、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
 前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
 前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正するための予測値補正部と、
 前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するためのテーブル作成部と、
 前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と、
を備え、
 前記予測値補正部は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正部を含む。
(1) A control device for a wet flue gas desulfurization device according to one aspect includes:
A control device for a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower,
At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower. a learning model construction unit for constructing a learning model using machine learning regarding the relationship with the objective variable;
Predicted value correction for correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower. Department and
A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. A table creation part for creating,
The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determination unit for determining a control target value of the input amount and the circulation flow rate of the absorption liquid;
Equipped with
The predicted value correction unit includes a first correction unit that corrects the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
 上記(1)の態様によれば、吸収剤の投入量や吸収液の循環流量の制御目標値を決定するために用いられるテーブルを作成するために用いられる学習モデルの予測値が補正係数を用いて補正される。予測値の補正は、燃焼装置の負荷に基づいて算出される第1補正係数を用いることで、負荷に対する特性を加味して行われることで、例えば負荷の大きさに応じて予測値と実測値との差が変化する場合においても、精度のよい補正後予測値が得られる。このような補正後予測値を用いてテーブルを作成することで制御目標値を精度よく求めることができ、その結果、学習モデルの予測値と実測値との間に差がある場合においても、良好な制御精度が得られる。 According to the aspect (1) above, the predicted value of the learning model used to create the table used to determine the control target value of the amount of absorbent input and the circulating flow rate of the absorbent is calculated using the correction coefficient. will be corrected. The predicted value is corrected by using the first correction coefficient calculated based on the load of the combustion device, taking into account the characteristics of the load. For example, the predicted value and the actual value are Even if the difference between the two values changes, an accurate corrected predicted value can be obtained. By creating a table using such corrected predicted values, the control target value can be determined with high accuracy, and as a result, even if there is a difference between the predicted value of the learning model and the actual measured value, Control accuracy can be obtained.
(2)他の態様では、上記(1)の態様において、
 前記第1補正係数は、前記負荷が属する負荷範囲ごとに、前記差が減少するように算出される。
(2) In another aspect, in the aspect of (1) above,
The first correction coefficient is calculated such that the difference decreases for each load range to which the load belongs.
 上記(2)の態様によれば、第1補正係数は、燃焼装置の負荷が属する負荷範囲に、学習モデルの予測値と実測値との差が減少するように算出される。これにより、学習モデルの予測値に対して、燃焼装置の負荷の大きさに応じたきめ細やかな補正が可能となり、制御目標値を決定するためのテーブルを精度よく作成できる。 According to the aspect (2) above, the first correction coefficient is calculated such that the difference between the predicted value of the learning model and the actual value decreases in the load range to which the load of the combustion device belongs. Thereby, it is possible to make detailed corrections to the predicted values of the learning model according to the magnitude of the load on the combustion device, and it is possible to accurately create a table for determining the control target value.
(3)他の態様では、上記(1)又は(2)の態様において、
 前記第1補正部は、前記補正後予測値と前記実測値との差分が基準値より大きいことを含む第1補正条件が成立した場合に、前記補正係数として、前記第1補正係数を算出する。
(3) In another aspect, in the aspect (1) or (2) above,
The first correction unit calculates the first correction coefficient as the correction coefficient when a first correction condition including that a difference between the corrected predicted value and the measured value is larger than a reference value is satisfied. .
 上記(3)の態様によれば、第1補正係数を用いた予測値の補正は、第1補正条件が成立した場合に実施される。 According to the aspect (3) above, the predicted value is corrected using the first correction coefficient when the first correction condition is satisfied.
(4)他の態様では、上記(1)から(3)のいずれか一態様において、
 前記補正係数は、演算サイクルごとに前記差が減少するように前記予め設定された変化率で変化するように算出される。
(4) In another aspect, in any one of the above (1) to (3),
The correction coefficient is calculated to change at the preset rate of change so that the difference decreases every calculation cycle.
 上記(4)の態様によれば、補正係数が所定の変化率で変化するように算出されることで、学習モデルの予測値と実測値との差が好適に減少するように、予測値の補正が行われる。また補正係数の変化率は、例えばユーザによって予め設定可能なパラメータとすることで、予測値に対する補正の程度を任意に調整することもできる。 According to the aspect (4) above, the correction coefficient is calculated to change at a predetermined rate of change, so that the difference between the predicted value of the learning model and the actual value is suitably reduced. Corrections are made. Further, by setting the rate of change of the correction coefficient as a parameter that can be set in advance by the user, for example, it is possible to arbitrarily adjust the degree of correction to the predicted value.
(5)他の態様では、上記(1)から(4)のいずれか一態様において、
 前記予測値補正部は、前記補正係数として、前記負荷に依存しない第2補正係数を用いて、前記予測値を補正する第2補正部を含む。
(5) In another aspect, in any one of the above (1) to (4),
The predicted value correction section includes a second correction section that corrects the predicted value using a second correction coefficient that does not depend on the load as the correction coefficient.
 上記(5)の態様によれば、学習モデルの予測値に対する補正は、前述した負荷に基づいて算出される第1補正係数に加えて、負荷に依存しない第2補正係数を用いて行われる。このように第1補正係数及び第2補正係数を組み合わせた補正を行うことにより、学習モデルの予測値と実測値との差をより好適に減少させることができる。 According to the aspect (5) above, the predicted value of the learning model is corrected using, in addition to the first correction coefficient calculated based on the load described above, a second correction coefficient that does not depend on the load. By performing correction using a combination of the first correction coefficient and the second correction coefficient in this manner, it is possible to more suitably reduce the difference between the predicted value of the learning model and the actual value.
(6)他の態様では、上記(5)の態様において、
 前記第2補正部は、前記補正後予測値に対して前記第2補正係数が乗算された結果との差分が基準値より大きいことを含む第2補正条件が成立した場合に、前記補正係数として、前記第2補正係数を算出する。
(6) In another aspect, in the aspect (5) above,
The second correction unit is configured to calculate, as the correction coefficient, when a second correction condition including that a difference between the corrected predicted value and the result of multiplying the second correction coefficient is larger than a reference value is satisfied. , calculating the second correction coefficient.
 上記(6)の態様によれば、第2補正係数を用いた予測値の補正は、第2補正条件が成立した場合に実施される。 According to the aspect (6) above, the predicted value is corrected using the second correction coefficient when the second correction condition is satisfied.
(7)他の態様では、上記(1)から(6)のいずれか一態様において、
 前記制御目標値決定部は、前記テーブルに基づいて算出された前記吸収剤濃度目標値と前記吸収液の吸収剤濃度実測値との差分に対応するPI制御値を、前記運転データに基づいて算出されるフィードフォワード補正値を用いて補正することで、前記吸収剤の投入量に関する前記制御目標値を決定する。
(7) In another aspect, in any one of the above (1) to (6),
The control target value determination unit calculates a PI control value corresponding to the difference between the absorbent concentration target value calculated based on the table and the absorbent concentration actual value of the absorbent, based on the operation data. The control target value regarding the input amount of the absorbent is determined by correcting using the feedforward correction value.
 上記(7)の態様によれば、テーブルに基づいて算出される吸収液の吸収剤濃度に基づいて、吸収剤の投入量に関する制御目標値を算出する際に、運転データに基づいて算出されるフィードフォワード補正値を用いた補正が行われることで、精度のよい制御目標値の算出が可能となる。 According to the aspect (7) above, when calculating the control target value regarding the amount of absorbent input based on the absorbent concentration of the absorbent calculated based on the table, the control target value is calculated based on the operation data. By performing the correction using the feedforward correction value, it becomes possible to calculate the control target value with high accuracy.
(8)他の態様では、上記(1)から(7)のいずれか一態様において、
 機能ブロックがプログラムで構成される上位制御装置と、
 前記上位制御装置と協働し、機能ブロックが制御ロジックで構成される下位制御装置とを備え、
 前記予測値補正部、又は、前記制御目標値決定部の少なくとも一方が、前記下位制御装置に設けられる。
(8) In another aspect, in any one of the above (1) to (7),
a higher-level control device whose functional blocks are composed of programs;
A lower control device that cooperates with the upper control device and whose functional blocks are composed of control logic,
At least one of the predicted value correction section and the control target value determination section is provided in the lower control device.
 上記(8)の態様によれば、制御装置が備える機能ブロックのうち予測値補正部又は制御目標値決定部の少なくとも一方が、下位制御装置において制御ロジックで構成される。前述の制御装置による処理の変更・追加の際には、予測値補正部や制御目標値決定部における設定値変更などの調整が必要になるが、予測値補正部や制御目標値決定部を制御ロジックで構成する下位制御装置に設けることで、上位制御装置で取り扱われるプログラムに精通した人員を必要とすることなく対応が可能となる。また上位制御装置が備える機能ブロックを削減することで、上位制御装置に対して要求されるマシンスペックを抑えることもできる。 According to the aspect (8) above, at least one of the predicted value correction section and the control target value determination section among the functional blocks included in the control device is configured by control logic in the lower control device. When changing or adding processing by the aforementioned control device, it is necessary to make adjustments such as changing the set values in the predicted value correction section and control target value determination section. By providing it in a lower-level control device configured with logic, it becomes possible to handle it without requiring personnel who are familiar with the programs handled by the higher-level control device. Furthermore, by reducing the number of functional blocks included in the higher-level control device, it is possible to reduce the machine specifications required for the higher-level control device.
(9)他の態様では、上記(8)の態様において、
 前記上位制御装置は、主制御装置であり、
 前記下位制御装置は、前記上位制御装置の管理下に置かれ、前記湿式排煙脱硫装置の構成機器を制御するための分散型制御装置である。
(9) In another aspect, in the aspect (8) above,
The upper control device is a main control device,
The lower-level control device is a distributed control device that is placed under the control of the higher-level control device and controls the components of the wet flue gas desulfurization device.
 上記(9)の態様によれば、下位制御装置として分散型制御装置(DCS)を用いる湿式排煙脱硫装置の制御装置に適する。 According to the aspect (9) above, it is suitable for a control device for a wet flue gas desulfurization device that uses a distributed control device (DCS) as a lower-level control device.
(10)他の態様では、上記(8)又は(9)の態様において、
 前記学習モデル構築部、前記予測値補正部、前記テーブル作成部、及び、前記制御目標値決定部が前記下位制御装置に設けられる。
(10) In another aspect, in the aspect (8) or (9) above,
The learning model construction section, the predicted value correction section, the table creation section, and the control target value determination section are provided in the lower control device.
 上記(10)の態様によれば、これらの機能ブロックは下位制御装置において全て制御ロジックにより構成されるように集約されてもよい。 According to the aspect (10) above, these functional blocks may be aggregated so that they are all configured by control logic in the lower control device.
(11)他の態様では、上記(8)から(10)のいずれか一態様において、
 前記上位制御装置又は前記下位制御装置の少なくとも一方に電気的に接続され、前記学習モデルを再学習するための再学習装置を備える。
(11) In another aspect, in any one of the above (8) to (10),
A relearning device electrically connected to at least one of the upper control device or the lower control device for relearning the learning model.
 上記(11)態様によれば、学習モデルの予測値を補正することで精度が十分に改善されない場合には、再学習装置によって学習モデルの再学習を行うことで対応できる。この場合、再学習装置は、前述の上位制御装置及び下位制御装置とは別構成として、これらの制御装置に電気的に接続することにより、上位制御装置及び下位制御装置に要求されるマシンスペックを抑えることができる。 According to aspect (11) above, if the accuracy is not sufficiently improved by correcting the predicted value of the learning model, it can be dealt with by relearning the learning model using the relearning device. In this case, the relearning device is configured separately from the above-mentioned higher-level control device and lower-level control device, and by electrically connecting to these control devices, the re-learning device can adjust the machine specifications required by the higher-level control device and lower-level control device. It can be suppressed.
(12)他の態様では、上記(8)から(11)のいずれか一態様において、
 前記上位制御装置は、前記湿式排煙脱硫装置が配置された現場に設けられた前記下位制御装置を遠隔監視するための遠隔制御装置であり、
 前記下位制御装置は、前記上位制御装置及び前記下位制御装置の間のデータ中継が可能なエッジサーバを介して、前記上位制御装置と通信可能である。
(12) In another aspect, in any one of the above (8) to (11),
The upper control device is a remote control device for remotely monitoring the lower control device installed at the site where the wet flue gas desulfurization device is installed,
The lower-level control device can communicate with the higher-level control device via an edge server that can relay data between the higher-level control device and the lower-level control device.
 上記(12)の態様によれば、エッジサーバによるデータ中継によって、上位制御装置及び下位制御装置の間におけるデータ送受信が可能となる。そのため、上位制御装置と下位制御装置とを互いに遠隔地に配置することで、排煙脱硫装置の遠隔制御装置を実現できる。 According to the aspect (12) above, data relay by the edge server enables data transmission and reception between the upper control device and the lower control device. Therefore, by arranging the upper control device and the lower control device at remote locations from each other, a remote control device for the flue gas desulfurization device can be realized.
(13)一態様に係る遠隔監視システムは、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置と通信可能な情報処理装置からなる遠隔監視システムであって、
 前記制御装置は、
 前記情報処理装置からの要求により、前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する学習モデル構築部と、
 前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する予測値補正部と、
 前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するテーブル作成部と、
 前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する制御目標値決定部と、
を備え、
 前記予測値補正部は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正部を含む。
(13) A remote monitoring system according to one aspect includes:
A remote monitoring system comprising an information processing device that can communicate with a control device of a wet flue gas desulfurization device that desulfurizes exhaust gas generated in a combustion device and an absorption liquid by bringing it into gas-liquid contact in an absorption tower,
The control device includes:
In response to a request from the information processing device, at least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, including at least the load of the combustion device, and a future a learning model construction unit that constructs a learning model by machine learning regarding the relationship between the target variable, which is the sulfur dioxide concentration at the absorption tower outlet;
a predicted value correction unit that corrects the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower; ,
A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. A table creation part to create,
The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determination unit that determines a control target value for the input amount and the circulation flow rate of the absorption liquid;
Equipped with
The predicted value correction unit includes a first correction unit that corrects the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
 上記(13)の態様によれば、情報処理装置に備えられた表示部に対して、上記各態様に係る湿式排煙脱硫装置1の制御状態に関する情報を表示することで遠隔監視を好適に行うことができる。 According to the aspect (13) above, remote monitoring is suitably performed by displaying information regarding the control state of the wet flue gas desulfurization apparatus 1 according to each of the above aspects on a display unit provided in the information processing device. be able to.
(14)一態様に係る遠隔監視システムの制御方法は、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置と通信可能な情報処理装置からなる遠隔監視システムの制御方法であって、
 前記制御装置は、
 前記情報処理装置からの要求により、前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する学習モデル構築工程と、
 前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する予測値補正工程と、
 前記燃焼装置の負荷と、前記予測値補正工程によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するテーブル作成工程と、
 前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する制御目標値決定工程と、
を実行し、
 前記予測値補正工程は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正工程を含む。
(14) A method for controlling a remote monitoring system according to one aspect includes:
A method for controlling a remote monitoring system comprising an information processing device capable of communicating with a control device of a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, ,
The control device includes:
In response to a request from the information processing device, at least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, including at least the load of the combustion device, and a future a learning model construction step of constructing a learning model by machine learning regarding the relationship with a target variable, which is the sulfur dioxide concentration at the absorption tower outlet;
a predicted value correction step of correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower; ,
A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction step satisfies the reference value. The table creation process to be created,
The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determining step of determining a control target value of the input amount and the circulation flow rate of the absorption liquid;
Run
The predicted value correction step includes a first correction step of correcting the predicted value using a first correction coefficient calculated based on the load as the correction coefficient.
 上記(14)の態様によれば、情報処理装置に備えられた表示部に対して、上記各態様に係る湿式排煙脱硫装置1の制御状態に関する情報を表示することで遠隔監視を好適に行うことができる。 According to the aspect (14) above, remote monitoring is suitably performed by displaying information regarding the control state of the wet flue gas desulfurization apparatus 1 according to each of the above aspects on a display unit provided in the information processing device. be able to.
(15)一態様に係る湿式排煙脱硫装置の制御方法は、
 吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
 前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する工程と、
 前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する工程と、
 前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成する工程と、
 前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する工程と、
を備え、
 前記予測値を補正する工程では、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する。
(15) A method for controlling a wet flue gas desulfurization device according to one embodiment includes:
A method for controlling a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, the method comprising:
At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower. A step of constructing a learning model using machine learning regarding the relationship with the objective variable;
correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower;
A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. The process of creating
The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. determining control target values for the input amount and the circulating flow rate of the absorption liquid;
Equipped with
In the step of correcting the predicted value, the predicted value is corrected using a first correction coefficient calculated based on the load as the correction coefficient.
 上記(15)の態様によれば、吸収剤の投入量や吸収液の循環流量の制御目標値を決定するために用いられるテーブルを作成するために用いられる学習モデルの予測値が補正係数を用いて補正される。予測値の補正は、燃焼装置の負荷に基づいて算出される第1補正係数を用いることで、負荷に対する特性を加味して行われることで、例えば負荷の大きさに応じて予測値と実測値との差が変化する場合においても、精度のよい補正後予測値が得られる。このような補正後予測値を用いてテーブルを作成することで制御目標値を精度よく求めることができ、その結果、学習モデルの予測値と実測値との間に差がある場合においても、良好な制御精度が得られる。 According to the aspect (15) above, the predicted value of the learning model used to create the table used to determine the control target value of the amount of absorbent input and the circulation flow rate of the absorbent liquid uses the correction coefficient. will be corrected. The predicted value is corrected by using the first correction coefficient calculated based on the load of the combustion device, taking into account the characteristics of the load. For example, the predicted value and the actual value are Even if the difference between the two values changes, an accurate corrected predicted value can be obtained. By creating a table using such corrected predicted values, the control target value can be determined with high accuracy, and as a result, even if there is a difference between the predicted value of the learning model and the actual measured value, Control accuracy can be obtained.
1 燃焼装置
2 配管
3 循環用配管
5 発電機
10 湿式排煙脱硫装置
11 吸収塔
12 循環ポンプ
13 吸収剤スラリー供給部
14 石膏回収部
15 制御装置
15A 上位制御装置
15B 下位制御装置
15C 再学習装置
15D エッジサーバ
16 流出配管
17 ガス分析計
18 情報処理装置
20 運転データ取得部
21 吸収剤スラリー製造設備
22 吸収剤スラリー供給用配管
23 吸収剤スラリー供給量制御弁
25 石膏分離器
26 石膏スラリー抜き出し用配管
27 石膏スラリー抜き出し用ポンプ
30 運転データ受信部
31 テーブル作成部
32 制御目標値決定部
33 循環ポンプ調整部
34 吸収剤スラリー供給制御部
36 予測値補正部
38 学習モデル構築部
39 必要条件判定部
40 第1補正部
41 第1補正条件判定部
42 負荷別補正信号生成部
42a1~42a4 第1~第4負荷範囲判定部
42b1~42b4 第1~第4負荷別補正信号出力部
43 負荷別補正係数算出部
43a~43d 第1~第4負荷別補正係数算出部
44 第1補正係数算出部
50 第2補正部
51 第2補正条件判定部
52 第2補正係数算出部
60 データ中継部
70 表示部
M 学習モデル
1 Combustion device 2 Piping 3 Circulation piping 5 Generator 10 Wet flue gas desulfurization device 11 Absorption tower 12 Circulation pump 13 Absorbent slurry supply section 14 Gypsum recovery section 15 Control device 15A Upper control device 15B Lower control device 15C Relearning device 15D Edge server 16 Outflow piping 17 Gas analyzer 18 Information processing device 20 Operation data acquisition section 21 Absorbent slurry manufacturing equipment 22 Absorbent slurry supply piping 23 Absorbent slurry supply amount control valve 25 Gypsum separator 26 Gypsum slurry extraction piping 27 Pump 30 for extracting gypsum slurry Operation data receiving section 31 Table creating section 32 Control target value determining section 33 Circulating pump adjusting section 34 Absorbent slurry supply controlling section 36 Predicted value correcting section 38 Learning model constructing section 39 Necessary condition determining section 40 First Correction unit 41 First correction condition determination unit 42 Load-specific correction signal generation unit 42a1 to 42a4 First to fourth load range determination units 42b1 to 42b4 First to fourth load-specific correction signal output unit 43 Load-specific correction coefficient calculation unit 43a ~43d First to fourth load-based correction coefficient calculation unit 44 First correction coefficient calculation unit 50 Second correction unit 51 Second correction condition determination unit 52 Second correction coefficient calculation unit 60 Data relay unit 70 Display unit M Learning model

Claims (15)

  1.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置であって、
     前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築するための学習モデル構築部と、
     前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正するための予測値補正部と、
     前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するためのテーブル作成部と、
     前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定するための制御目標値決定部と、
    を備え、
     前記予測値補正部は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正部を含む、湿式排煙脱硫装置の制御装置。
    A control device for a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower,
    At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower. a learning model construction unit for constructing a learning model using machine learning regarding the relationship with the objective variable;
    Predicted value correction for correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower. Department and
    A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. A table creation part for creating,
    The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determination unit for determining a control target value of the input amount and the circulation flow rate of the absorption liquid;
    Equipped with
    The predicted value correction unit is a control device for a wet flue gas desulfurization apparatus, including a first correction unit that corrects the predicted value using, as the correction coefficient, a first correction coefficient calculated based on the load.
  2.  前記第1補正係数は、前記負荷が属する負荷範囲ごとに、前記差が減少するように算出される、請求項1に記載の湿式排煙脱硫装置の制御装置。 The control device for a wet flue gas desulfurization device according to claim 1, wherein the first correction coefficient is calculated such that the difference is reduced for each load range to which the load belongs.
  3.  前記第1補正部は、前記補正後予測値と前記実測値との差分が基準値より大きいことを含む第1補正条件が成立した場合に、前記補正係数として、前記第1補正係数を算出する、請求項1又は2に記載の湿式排煙脱硫装置の制御装置。 The first correction unit calculates the first correction coefficient as the correction coefficient when a first correction condition including that a difference between the corrected predicted value and the measured value is larger than a reference value is satisfied. A control device for a wet flue gas desulfurization device according to claim 1 or 2.
  4.  前記補正係数は、演算サイクルごとに前記差が減少するように前記予め設定された変化率で変化するように算出される、請求項1又は2に記載の湿式排煙脱硫装置の制御装置。 The control device for a wet flue gas desulfurization device according to claim 1 or 2, wherein the correction coefficient is calculated so as to change at the preset rate of change so that the difference decreases every calculation cycle.
  5.  前記予測値補正部は、前記補正係数として、前記負荷に依存しない第2補正係数を用いて、前記予測値を補正する第2補正部を含む、請求項1又は2に記載の湿式排煙脱硫装置の制御装置。 The wet flue gas desulfurization according to claim 1 or 2, wherein the predicted value correction section includes a second correction section that corrects the predicted value using a second correction coefficient that does not depend on the load as the correction coefficient. Device control device.
  6.  前記第2補正部は、前記補正後予測値に対して前記第2補正係数が乗算された結果との差分が基準値より大きいことを含む第2補正条件が成立した場合に、前記補正係数として、前記第2補正係数を算出する、請求項5に記載の湿式排煙脱硫装置の制御装置。 The second correction unit is configured to calculate, as the correction coefficient, when a second correction condition including that a difference between the corrected predicted value and the result of multiplying the second correction coefficient is larger than a reference value is satisfied. The control device for a wet flue gas desulfurization device according to claim 5, which calculates the second correction coefficient.
  7.  前記制御目標値決定部は、前記テーブルに基づいて算出された前記吸収剤濃度目標値と前記吸収液の吸収剤濃度実測値との差分に対応するPI制御値を、前記運転データに基づいて算出されるフィードフォワード補正値を用いて補正することで、前記吸収剤の投入量に関する前記制御目標値を決定する、請求項1又は2に記載の湿式排煙脱硫装置の制御装置。 The control target value determination unit calculates a PI control value corresponding to the difference between the absorbent concentration target value calculated based on the table and the absorbent concentration actual value of the absorbent, based on the operation data. The control device for a wet flue gas desulfurization device according to claim 1 or 2, wherein the control target value regarding the input amount of the absorbent is determined by correcting it using a feedforward correction value.
  8.  機能ブロックがプログラムで構成される上位制御装置と、
     前記上位制御装置と協働し、機能ブロックが制御ロジックで構成される下位制御装置とを備え、
     前記予測値補正部、又は、前記制御目標値決定部の少なくとも一方が、前記下位制御装置に設けられる、請求項1又は2に記載の湿式排煙脱硫装置の制御装置。
    a higher-level control device whose functional blocks are composed of programs;
    A lower control device that cooperates with the upper control device and whose functional blocks are composed of control logic,
    The control device for a wet flue gas desulfurization device according to claim 1 or 2, wherein at least one of the predicted value correction section or the control target value determination section is provided in the lower control device.
  9.  前記上位制御装置は、主制御装置であり、
     前記下位制御装置は、前記上位制御装置の管理下に置かれ、前記湿式排煙脱硫装置の構成機器を制御するための分散型制御装置である、請求項8に記載の湿式排煙脱硫装置の制御装置。
    The upper control device is a main control device,
    The wet flue gas desulfurization device according to claim 8, wherein the lower control device is a distributed control device that is placed under the management of the higher order control device and controls components of the wet flue gas desulfurization device. Control device.
  10.  前記学習モデル構築部、前記予測値補正部、前記テーブル作成部、及び、前記制御目標値決定部が前記下位制御装置に設けられる、請求項8又は9に記載の湿式排煙脱硫装置の制御装置。 The control device for a wet flue gas desulfurization device according to claim 8 or 9, wherein the learning model construction section, the predicted value correction section, the table creation section, and the control target value determination section are provided in the lower control device. .
  11.  前記上位制御装置又は前記下位制御装置の少なくとも一方に電気的に接続され、前記学習モデルを再学習するための再学習装置を備える、請求項8又は9に記載の湿式排煙脱硫装置の制御装置。 The control device for a wet flue gas desulfurization device according to claim 8 or 9, further comprising a relearning device electrically connected to at least one of the upper control device or the lower control device and for relearning the learning model. .
  12.  前記上位制御装置は、前記湿式排煙脱硫装置が配置された現場に設けられた前記下位制御装置を遠隔監視するための遠隔制御装置であり、
     前記下位制御装置は、前記上位制御装置及び前記下位制御装置の間のデータ中継が可能なエッジサーバを介して、前記上位制御装置と通信可能である、請求項8又は9に記載の湿式排煙脱硫装置の制御装置。
    The upper control device is a remote control device for remotely monitoring the lower control device installed at the site where the wet flue gas desulfurization device is installed,
    The wet smoke exhaust system according to claim 8 or 9, wherein the lower-level control device is capable of communicating with the higher-level control device via an edge server that can relay data between the higher-level control device and the lower-level control device. Control device for desulfurization equipment.
  13.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置と通信可能な情報処理装置からなる遠隔監視システムであって、
     前記制御装置は、
     前記情報処理装置からの要求により、前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する学習モデル構築部と、
     前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する予測値補正部と、
     前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するテーブル作成部と、
     前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する制御目標値決定部と、
    を備え、
     前記予測値補正部は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正部を含む、湿式排煙脱硫装置の遠隔監視システム。
    A remote monitoring system comprising an information processing device that can communicate with a control device of a wet flue gas desulfurization device that desulfurizes exhaust gas generated in a combustion device and an absorption liquid by bringing it into gas-liquid contact in an absorption tower,
    The control device includes:
    In response to a request from the information processing device, at least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, including at least the load of the combustion device, and a future a learning model construction unit that constructs a learning model by machine learning regarding the relationship between the target variable, which is the sulfur dioxide concentration at the absorption tower outlet;
    a predicted value correction unit that corrects the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower; ,
    A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. A table creation part to create,
    The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determination unit that determines a control target value for the input amount and the circulation flow rate of the absorption liquid;
    Equipped with
    The predicted value correction unit includes a first correction unit that corrects the predicted value using a first correction coefficient calculated based on the load as the correction coefficient, a remote monitoring system for a wet flue gas desulfurization apparatus. .
  14.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御装置と通信可能な情報処理装置からなる遠隔監視システムの制御方法であって、
     前記制御装置は、
     前記情報処理装置からの要求により、前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する学習モデル構築工程と、
     前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する予測値補正工程と、
     前記燃焼装置の負荷と、前記予測値補正工程によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成するテーブル作成工程と、
     前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する制御目標値決定工程と、
    を実行し、
     前記予測値補正工程は、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する第1補正工程を含む、遠隔監視システムの制御方法。
    A method for controlling a remote monitoring system comprising an information processing device capable of communicating with a control device of a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, ,
    The control device includes:
    In response to a request from the information processing device, at least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, including at least the load of the combustion device, and a future a learning model construction step of constructing a learning model by machine learning regarding the relationship with a target variable, which is the sulfur dioxide concentration at the absorption tower outlet;
    a predicted value correction step of correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower; ,
    A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction step satisfies the reference value. The table creation process to be created,
    The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. a control target value determining step of determining a control target value of the input amount and the circulation flow rate of the absorption liquid;
    Run
    The predicted value correction step includes a first correction step of correcting the predicted value using, as the correction coefficient, a first correction coefficient calculated based on the load.
  15.  吸収塔内において、燃焼装置で発生した排ガスと吸収液とを気液接触させて脱硫を行う湿式排煙脱硫装置の制御方法であって、
     前記燃焼装置又は前記湿式排煙脱硫装置の少なくとも一方の運転データに含まれる少なくとも1つのパラメータであって、前記燃焼装置の負荷を少なくとも含む説明変数と、将来の吸収塔出口における二酸化硫黄濃度である目的変数との関係について機械学習により学習モデルを構築する工程と、
     前記学習モデルによる前記二酸化硫黄濃度の予測値を、前記予測値と前記吸収塔出口における前記二酸化硫黄濃度の実測値との差に基づいて算出される補正係数を用いて補正する工程と、
     前記燃焼装置の負荷と、前記予測値補正部によって補正された補正後予測値が基準値を満たすための前記吸収液の吸収剤濃度目標値及び吸収剤循環量目標値との関係を示すテーブルを作成する工程と、
     前記テーブルに基づいて前記運転データに対応する前記吸収剤濃度目標値及び前記吸収剤循環量目標値を算出し、前記吸収剤濃度目標値及び前記吸収剤循環量目標値に対応する前記吸収剤の投入量及び前記吸収液の循環流量の制御目標値を決定する工程と、
    を実行し、
     前記予測値を補正する工程では、前記補正係数として、前記負荷に基づいて算出される第1補正係数を用いて、前記予測値を補正する、湿式排煙脱硫装置の制御方法。
    A method for controlling a wet flue gas desulfurization device that performs desulfurization by bringing exhaust gas generated in a combustion device into gas-liquid contact with an absorption liquid in an absorption tower, the method comprising:
    At least one parameter included in the operation data of at least one of the combustion device or the wet flue gas desulfurization device, the explanatory variable including at least the load of the combustion device, and the future sulfur dioxide concentration at the outlet of the absorption tower. A step of constructing a learning model using machine learning regarding the relationship with the objective variable;
    correcting the predicted value of the sulfur dioxide concentration by the learning model using a correction coefficient calculated based on the difference between the predicted value and the actual measured value of the sulfur dioxide concentration at the outlet of the absorption tower;
    A table showing the relationship between the load of the combustion device and the absorbent concentration target value and absorbent circulation amount target value of the absorbent liquid so that the corrected predicted value corrected by the predicted value correction unit satisfies the reference value. The process of creating
    The absorbent concentration target value and the absorbent circulation rate target value corresponding to the operation data are calculated based on the table, and the absorbent concentration target value and the absorbent circulation rate target value corresponding to the absorbent concentration target value and the absorbent circulation rate target value are calculated. determining control target values for the input amount and the circulating flow rate of the absorption liquid;
    Run
    In the step of correcting the predicted value, the predicted value is corrected using a first correction coefficient calculated based on the load as the correction coefficient.
PCT/JP2023/018968 2022-05-30 2023-05-22 Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus WO2023234103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087548 2022-05-30
JP2022087548A JP2023175210A (en) 2022-05-30 2022-05-30 Control apparatus for wet flue-gas desulfurization device, remote monitoring system, and control method

Publications (1)

Publication Number Publication Date
WO2023234103A1 true WO2023234103A1 (en) 2023-12-07

Family

ID=89024780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018968 WO2023234103A1 (en) 2022-05-30 2023-05-22 Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus

Country Status (2)

Country Link
JP (1) JP2023175210A (en)
WO (1) WO2023234103A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267115A (en) * 1990-03-15 1991-11-28 Hitachi Ltd Method and equipment for controlling wet type desulfurization
JPH08257349A (en) * 1995-03-28 1996-10-08 Mitsubishi Heavy Ind Ltd Predict control device and method for wet exhaust gas desulfurization plant
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment
CN111340199A (en) * 2020-03-26 2020-06-26 中煤能源研究院有限责任公司 Desulfurization system energy-saving method based on material balance and deep learning
CN113941233A (en) * 2021-10-19 2022-01-18 国能神福(石狮)发电有限公司 Desulfurization control method and device
WO2022210827A1 (en) * 2021-03-31 2022-10-06 三菱重工業株式会社 Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267115A (en) * 1990-03-15 1991-11-28 Hitachi Ltd Method and equipment for controlling wet type desulfurization
JPH08257349A (en) * 1995-03-28 1996-10-08 Mitsubishi Heavy Ind Ltd Predict control device and method for wet exhaust gas desulfurization plant
JP2020011163A (en) * 2018-07-13 2020-01-23 三菱日立パワーシステムズ株式会社 Control method of wet type flue-gas desulfurization equipment, control device of wet type flue-gas desulfurization equipment, and remote monitoring system with the same wet type flue-gas desulfurization equipment
CN111340199A (en) * 2020-03-26 2020-06-26 中煤能源研究院有限责任公司 Desulfurization system energy-saving method based on material balance and deep learning
WO2022210827A1 (en) * 2021-03-31 2022-10-06 三菱重工業株式会社 Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system
CN113941233A (en) * 2021-10-19 2022-01-18 国能神福(石狮)发电有限公司 Desulfurization control method and device

Also Published As

Publication number Publication date
JP2023175210A (en) 2023-12-12

Similar Documents

Publication Publication Date Title
US8027742B2 (en) Fault detection systems and methods for self-optimizing heating, ventilation, and air conditioning controls
CA2820216C (en) Optimized integrated controls for oxy-fuel combustion power plant
JP5575784B2 (en) System and method for controlling energy consumption efficiency
US8880202B2 (en) Optimization system using an iteratively coupled expert engine
JP4614536B2 (en) System control method using robust steady state target calculation for model predictive control, system controller and controller, and program storage medium for executing system control method using robust steady state target calculation for model predictive control
NO335836B1 (en) Cascade control of an average value of a process parameter to a desired value
US20070240648A1 (en) Systems and Methods for Multi-Level Optimizing Control Systems for Boilers
NO333425B1 (en) Predictive management of air pollution control process
NO332740B1 (en) Controls to direct operation of an air pollution control system
Parlos et al. Neuro-predictive process control using online controller adaptation
EP3246769A1 (en) Intelligent management system for a plant
WO2022210866A1 (en) Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system
JP4841848B2 (en) Optimal pump operation method, information processing system, optimal pump operation program, optimal flow distribution method for multiple pumps
Sedić et al. Dynamic model of a natural water circulation boiler suitable for on-line monitoring of fossil/alternative fuel plants
WO2023234103A1 (en) Control device for wet flue-gas desulfurization apparatus, remote monitoring system, control method for remote monitoring system, and control method for wet flue-gas desulfurization apparatus
WO2022210827A1 (en) Control method for wet flue gas desulfurisation device, control device for wet flue gas desulfurisation device, remote monitoring system comprising said control device for wet flue gas desulfurisation device, information processing device, and information processing system
JP7264697B2 (en) Plant operation support system and plant operation support method
JP7216566B2 (en) Information processing device, information processing method, and information processing program
Kruger et al. Optimal control for fast boiler start-up based on a nonlinear model and considering the thermal stress on thick-walled components
JP2023081485A (en) Quantity-of-state prediction device and quantity-of-state prediction method
JP6188653B2 (en) Energy supply system management and control support system
WO2023228901A1 (en) State quantity prediction device, state quantity prediction method, state quantity prediction system, and method for controlling state quantity prediction system
CN112361322A (en) Boiler feed water automatic ammonia adding device and gray prediction feedforward PID control method
Prunescu et al. Modelling and L 1 adaptive control of pH in bioethanol enzymatic process
Prasad On fusion of PCA and a physical model‐based predictive control strategy for efficient load‐cycling operation of a thermal power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815862

Country of ref document: EP

Kind code of ref document: A1