JPS60235627A - Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production - Google Patents

Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production

Info

Publication number
JPS60235627A
JPS60235627A JP59092647A JP9264784A JPS60235627A JP S60235627 A JPS60235627 A JP S60235627A JP 59092647 A JP59092647 A JP 59092647A JP 9264784 A JP9264784 A JP 9264784A JP S60235627 A JPS60235627 A JP S60235627A
Authority
JP
Japan
Prior art keywords
absorption tower
level
output signal
function generator
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59092647A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Reiko Sakamoto
坂本 令子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59092647A priority Critical patent/JPS60235627A/en
Publication of JPS60235627A publication Critical patent/JPS60235627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To control the level of an absorption tower at a fixed level for the sudden change of a boiler load by inputting into a function generator values obtd. by multiplying the flow rate of the waste gas introduced into an absorption tower by the measured values of the concn. of SOX, and operating a control valve in a discharging pipe line of washing liq. with the output signal of the function generator and a level controller. CONSTITUTION:The flow rate of the waste gas introduced into the absorption tower 3 and the concn. of SOX of the gas are sensed by a flow meter 11 and a densitometer for SOX 12. The sensed values are multiplied and inputted into the function generator 14. An amt. of CaCO3 as the absorbent equivalent to the absorbed SO2 is fed to the washing liq. in the absorption tower 3 from a pipe 7. The level of the washing liq. in the absorption tower 3 is sensed and fed to a level sensing controller 9. The sensed signal and the output signal from the function generator 14 are added in an adder 15. The control valve 10 provided to a pipe line 8 for discharging the washing liquid from the absorption tower 3 is operated by the output signal from the adder 15, thus, the level of the absorption tower is held almost at a fixed level.

Description

【発明の詳細な説明】 本発明は、水酸化カルシウム(Cm(O)I)2 )及
び/又は炭酸カルシウム(CaCO5)を用いて排煙中
に含まれる硫黄酸化物(以下soxと称す)を除去する
湿式排煙脱硫装置の吸収塔レベル制御方法に関する。
Detailed Description of the Invention The present invention uses calcium hydroxide (Cm(O)I)2) and/or calcium carbonate (CaCO5) to remove sulfur oxides (hereinafter referred to as sox) contained in flue gas. The present invention relates to a method for controlling the absorption tower level of a wet flue gas desulfurization equipment.

従来、この種の制御方法としては第1図に示す方法が知
られている。例えば石炭だきゲイジからの排ガスは、排
ガス入口ダクト1から吸収塔3に導入され、吸収塔3の
入口部分で、洗浄液によって冷却、除じんされる。勿論
吸収塔3に入る前に1別に配置された冷却、除しん装置
で排ガスを冷却除じんする方法も知られている。
Conventionally, as this type of control method, the method shown in FIG. 1 is known. For example, exhaust gas from a coal-fired gage is introduced into an absorption tower 3 through an exhaust gas inlet duct 1, and is cooled and dust-removed by a cleaning liquid at the entrance of the absorption tower 3. Of course, a method is also known in which the exhaust gas is cooled and dust removed using a separate cooling and dust removal device before entering the absorption tower 3.

排ガスの冷却のためK、洗浄液の水分が一部蒸発、する
が、配管2からのメイクアップ水によって補給される。
Due to the cooling of the exhaust gas, some of the water in the K and cleaning liquid evaporates, but is replenished by makeup water from the pipe 2.

つづいて、排ガスは吸収塔3の本体部分で更に冷却除じ
んされると同時に1排ガス中のSOxは洗浄液に反応、
吸収される。
Next, the exhaust gas is further cooled and dust removed in the main body of the absorption tower 3, and at the same time, SOx in the exhaust gas reacts with the cleaning liquid.
Absorbed.

洗浄液中の吸収剤と1−てCaC0,を用い奔鳩をには
次のような反応忙より SOXが吸収される。
Using the absorbent and 1-CaC0 in the cleaning solution, SOX is absorbed by the following reaction process.

Ca5O,+SO2+H2O−+Ca +zuso、−
(1)ISO,’″十凭02→H+5O4(2)Ca2
++502−→C&5O4 4(3) CaCO+I(So−+r−+cmso、+a2+co
2(4)3 即ち、吸収塔3で生成し九〇 aSO5は吸収したso
 と(1)式でCm とH3O3−となるが、このH3
O5−の一部は排ガス中の0□によシ酸化されて(2)
式に示すように針+So4”Kなる。また、H8O,−
と肋は吸収剤でらるC aCOsで中和され(4)式に
示す如く、C* SO5とH2OとCO2とになル、C
02はガスとして第1図の排出口4から放散される。生
成し九〇a と8042−は濃度が高くなると、(3)
に示す如(CaSO4となシ、CaSO3と同様に固相
に析出する。なお、CaSO4とCaSO3の生成割合
は排ガス中の02によシ生成するso4”−の量によっ
て決まるものである。
Ca5O, +SO2+H2O-+Ca +zuso,-
(1) ISO, ''' 1002 → H+5O4 (2) Ca2
++502-→C&5O4 4(3) CaCO+I(So-+r-+cmso, +a2+co
2 (4) 3 In other words, the 90 aSO5 produced in the absorption tower 3 is the absorbed SO
In equation (1), Cm and H3O3- are obtained, but this H3
A part of O5- is oxidized by 0□ in the exhaust gas (2)
As shown in the formula, the needle + So4"K. Also, H8O, -
As shown in equation (4), C* SO5, H2O, and CO2 are neutralized with C aCOs, which is an absorbent.
02 is emitted as a gas from the outlet 4 in FIG. When the concentration of 90a and 8042- increases, (3)
As shown in (CaSO4 and CaSO3, it is precipitated in the solid phase.The production ratio of CaSO4 and CaSO3 is determined by the amount of SO4"- produced by O2 in the exhaust gas.

洗浄液は循3j!/ンプ5によりて循環配管6t−通し
て吸収塔3に供給され、排ガスと接する。
Cleaning liquid circulates 3j! It is supplied to the absorption tower 3 through the circulation pipe 6t by the pump 5, and comes into contact with the exhaust gas.

吸収塔3内の洗浄液には配管7からCa COs (又
はCa(OH)2 )の吸収剤が吸収したS02の当量
分供給されており、吸収したSO2に比例して増減する
The cleaning liquid in the absorption tower 3 is supplied from the pipe 7 in an amount equal to the amount of SO2 absorbed by the Ca COs (or Ca(OH)2) absorbent, and the amount increases or decreases in proportion to the absorbed SO2.

洗浄液の一部は配管8全通して系外に抜き出される。こ
の抜き出し量は、吸収塔3内の洗浄液レベルを一定にす
るようにレベル検出調節計9と調節弁10によって制御
されている。
A part of the cleaning liquid passes through the entire pipe 8 and is extracted out of the system. This withdrawal amount is controlled by a level detection controller 9 and a control valve 10 so as to keep the cleaning liquid level in the absorption tower 3 constant.

ところで、最近の発電用メイラは電力需要に合せて発電
量、つまシテイラ負荷を変動させるため、ボイラの発生
する排がス量も変動し、排ガス量が変動すると、吸収塔
3で吸収されるSO□量も変動し、同S02量に比例し
て供給する配管7の吸収剤流量も変動する状況にある。
By the way, recent power generation mailers vary the amount of power generated and the load of the boiler according to the power demand, so the amount of exhaust gas generated by the boiler also changes, and when the amount of exhaust gas fluctuates, the amount of SO absorbed by the absorption tower 3 increases. □The amount also fluctuates, and the flow rate of the absorbent in the pipe 7 to be supplied also fluctuates in proportion to the S02 amount.

々お、ボイラ負荷が変化した時に変化するのは、排ガス
流量だけでなく、排ガス中の80に濃度が大、きく変化
する特性をもったメイラの場合、排ガス流量とSOx濃
度の積と吸収塔への吸収剤供給流量がほぼ比例関係とな
る。
When the boiler load changes, it is not only the flue gas flow rate that changes, but also the concentration in the flue gas.In the case of mailers, the product of the flue gas flow rate and SOx concentration and the absorption tower The flow rate of absorbent supplied to is approximately proportional to the flow rate.

したがりて、上述したレベル検出調節計9と調節弁10
のみで吸収塔3内のレベル制御する方法では上記ボイラ
負荷の変動に対して十分く即応できない欠点があった。
Therefore, the above-mentioned level detection controller 9 and control valve 10
The method of controlling the level in the absorption tower 3 solely by the above method had the disadvantage that it could not respond quickly enough to the fluctuations in the boiler load.

これを30万kWaゲイラの排ガス処理用排煙脱硫装置
を例和して以下に具体的に説明する。
This will be specifically explained below using a 300,000 kW Geira exhaust gas desulfurization device for exhaust gas treatment as an example.

吸収塔3の洗浄液のホールドアツプ量は約500 m’
であシ、断面積は約100 m2である。
The holding up amount of cleaning liquid in absorption tower 3 is approximately 500 m'
The cross-sectional area is approximately 100 m2.

また、配管7からの吸収剤供給量はボイラ負荷が低いと
き25 m3/′H程度である。但し、配管2からのメ
イクアップ水の供給量は吸収剤供給量に比べて少ないの
で、ここでは無視して考える。
Further, the amount of absorbent supplied from the pipe 7 is about 25 m3/'H when the boiler load is low. However, since the amount of makeup water supplied from the pipe 2 is smaller than the amount of absorbent supplied, it will be ignored here.

こうした状態からボイラ負荷が倍増して吸収剤供給流量
がs o m371xに急増したとする。断面積が10
0m2近くKなる液面は常圧波打っておシ、レベルの検
出値はホールドアツプの変化がなくても、10cIn程
度に変動していると考えられる。
Assume that from this state, the boiler load doubles and the absorbent supply flow rate suddenly increases to s o m371x. The cross-sectional area is 10
The liquid level, which is close to 0 m2, is undulating under normal pressure, and the detected level value is thought to fluctuate by about 10 cIn even if there is no change in hold up.

し九がって、20cm位の変動を検出して始めてホール
ドアツプ量に変動があったと判断でき、調節弁10で操
作可能となる。
Therefore, it is not until a fluctuation of about 20 cm is detected that it can be determined that there has been a fluctuation in the hold up amount, and the control valve 10 can be operated.

ここで、20c!nレベルが上昇するための所要曲間を
訃″t+スと、〃すかl−148令間要する。
Here, 20c! The time required for the n level to rise is 148 years.

ホールドアツプに変動が起ってから、調節弁10を操作
するまでに48分間の遅れが生じることは、レベル制御
性の点で大きな問題となる。
The 48 minute delay between when a change in hold up occurs and when the control valve 10 is operated poses a major problem in terms of level controllability.

%に1上記ボイ2負荷が変動して吸収剤流量が大きく変
化した時、しくルが大きく変動した。
When the above-mentioned Boi 2 load fluctuated and the absorbent flow rate changed significantly, the mechanism fluctuated greatly.

本発明は上記従来法の欠点を解消すべくなされたもので
、吸収塔に導入される排ガスの流量と該排ガス中の硫黄
酸化物濃度を測定し、これらの測定信号を乗算器九入力
して乗算を行ない、該乗算器の出力信号を予め設定され
た関数を発生する関数発生器忙入力し、一方前記吸収塔
の洗浄液レベルを検出し、このレベル検出信号を制御量
としてレベル調節計に入力し、該レベル調節計の出力信
号と前記関数発生器の出力信号を加算器に入力して加算
し、該加算器の出力信号によって前記吸収塔から洗浄液
を抜き出す配管に設置した調節弁を操作することよシ、
がイラ負荷が急変して吸収剤流量が変動しても吸収塔レ
ベルをほぼ一定に制御できる方法を提供しようとするも
のである。
The present invention was made to solve the above-mentioned drawbacks of the conventional method, and measures the flow rate of the exhaust gas introduced into the absorption tower and the sulfur oxide concentration in the exhaust gas, and inputs these measurement signals into a multiplier. Multiplication is performed, and the output signal of the multiplier is inputted to a function generator that generates a preset function, while the cleaning liquid level in the absorption tower is detected, and this level detection signal is inputted as a control variable to a level controller. Then, the output signal of the level controller and the output signal of the function generator are input to an adder and added, and the output signal of the adder operates a control valve installed in a pipe for extracting the cleaning liquid from the absorption tower. Kotoyoshi,
However, the present invention aims to provide a method that can control the level of the absorption tower to be almost constant even if the absorbent flow rate fluctuates due to sudden changes in the blast load.

以下、本発明の実施例を第2図を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

まず、メイラからの排ガスを、排ガス入口ダクトlから
吸収塔JIC導入し、吸収塔30入口部分で洗浄液によ
って冷却、除じんする。排ガスの冷却に際して洗浄液が
一部蒸発するためにメイクアップ水を配管2から補給す
る。この時、前記吸収塔3に導入される排ガス流量を流
量計11で、排ガス中のSOx濃度をSOx濃度計12
で夫々検出し、これら検出信号を乗算器13に入力して
乗算を行ない、更に該乗算器13の出力1号を関数発生
器14に入力する。関数発生器14は第3図の如き排ガ
ス流量とSOx濃度の積と、吸収塔への吸収剤及びメイ
クアップ水の合計供給量との関係で表わされる関数f(
x)を発生するようにセットされている。つまり、関数
発生器14の出力は吸収塔3への吸収剤及びメイクアッ
プ水の供給量とほぼ等価となる。
First, the exhaust gas from the mailer is introduced into the absorption tower JIC through the exhaust gas inlet duct 1, and is cooled and dust removed by a cleaning liquid at the entrance of the absorption tower 30. Make-up water is replenished from piping 2 because part of the cleaning liquid evaporates when the exhaust gas is cooled. At this time, the flow rate of the exhaust gas introduced into the absorption tower 3 is measured by the flow meter 11, and the SOx concentration in the exhaust gas is measured by the SOx concentration meter 12.
These detection signals are input to a multiplier 13 for multiplication, and the output No. 1 of the multiplier 13 is input to a function generator 14. The function generator 14 generates the function f(
x) is set to occur. In other words, the output of the function generator 14 is approximately equivalent to the amount of absorbent and makeup water supplied to the absorption tower 3.

次いで、排ガスは吸収塔3の本体部分で更に冷却除じん
されると同時に、排ガス中のSOxは洗浄液に反応、吸
収される。
Next, the exhaust gas is further cooled and dust removed in the main body of the absorption tower 3, and at the same time, SOx in the exhaust gas is reacted and absorbed by the cleaning liquid.

洗浄液は循fi/ング5によって循環配管5全通して吸
収塔3和供給され、排ガスと接する。
The cleaning liquid is supplied to the absorption tower through the circulation piping 5 by the circulation pipe 5, and comes into contact with the exhaust gas.

吸収塔3内の洗浄液には配管7からCaCO3(駕Ca
(OH) )の吸収剤が吸収したS02の当量分供給さ
れておシ、吸収したSO2に比例して増減する。この時
、吸収塔3内の洗浄液レベルは検出器で検出され、その
検出信号はレベル検出調節計9に入力され、更に該調節
計9の検出信号は前記関数発生器14の出力信号が入力
される加算器15に出力される。
The cleaning liquid in the absorption tower 3 is supplied with CaCO3 from the pipe 7.
An equivalent amount of SO2 absorbed by the absorbent (OH) ) is supplied, and the amount increases or decreases in proportion to the absorbed SO2. At this time, the cleaning liquid level in the absorption tower 3 is detected by a detector, and its detection signal is input to the level detection controller 9, and the output signal of the function generator 14 is input to the detection signal of the controller 9. It is output to the adder 15.

洗浄液の一部は配管8全通して系外に抜き出される。こ
の抜き出し量は前記関数発生器14とレベル検出調節計
9の出力信号が入力され、それらを加算する加算器1r
からの出力信号により操作される調節弁10Vcよって
制御される。
A part of the cleaning liquid passes through the entire pipe 8 and is extracted out of the system. This extraction amount is determined by an adder 1r which receives the output signals of the function generator 14 and the level detection controller 9 and adds them.
The control valve 10Vc is controlled by an output signal from the control valve 10Vc.

しかして、メイラの負荷が急変して配管1から供給され
る吸収剤流量が変化しても、吸収塔3への供給流量とほ
ぼ等価である関数発生器14の出力信号とレベル検出調
節計9の出力信号が入力され、それらを加算する加算器
15からの出力信号で、吸収塔3からの抜き出し配管8
Vc介装した調節弁10を操作するので、いかなる時も
吸収塔3への供給流量とほぼ同量抜き出すことが可能で
ある。この際、加算器15で関数発生器14の出力信号
にレベル検出調節計9の出力信号を加算している。これ
は、関数発生器14で見積った吸収塔3への供給流量と
実際の供給流量が若干具なっている場合は、関数発生器
14の出力信号のみで制御すると、レベルが除々に高く
なりてくる。このため、吸収塔3の洗浄液レベルを検出
し、設定値との偏差をなくすように補正信号をレベル検
出調節計9で演算し、その信号を加算器15VC入力し
て関数発生器13VCよる見積シ誤差を補正している。
Therefore, even if the load on the mailer suddenly changes and the flow rate of the absorbent supplied from the pipe 1 changes, the output signal of the function generator 14, which is almost equivalent to the flow rate supplied to the absorption tower 3, and the level detection controller 9 The output signal from the adder 15 is input, and the output signal from the adder 15 is added to the output pipe 8 from the absorption tower 3.
Since the control valve 10 equipped with Vc is operated, it is possible to draw out almost the same amount as the flow rate supplied to the absorption tower 3 at any time. At this time, the adder 15 adds the output signal of the level detection controller 9 to the output signal of the function generator 14. This is because if there is a slight difference between the estimated supply flow rate to the absorption tower 3 by the function generator 14 and the actual supply flow rate, the level will gradually increase if controlled only by the output signal of the function generator 14. come. For this purpose, the cleaning liquid level in the absorption tower 3 is detected, a correction signal is calculated by the level detection controller 9 so as to eliminate the deviation from the set value, and the signal is inputted to the adder 15VC to generate an estimate by the function generator 13VC. Correcting errors.

したがって、本発明によれば吸収塔30レベルをほぼ一
定に制御できる。
Therefore, according to the present invention, the level of the absorption tower 30 can be controlled to be substantially constant.

なお、上記実施例では、加算器15の出力信号で調節弁
10t−直接操作したが、これに限定されない。例えば
第4図に示すように加算器15の出力信号によル配管8
の抜き庫シ量を検出する流量検出調節計16の設定([
を操作し、この調節計16により前記加算器15の出力
信号で設定された流量となるように調節弁10を操作し
てもよい。
In the above embodiment, the output signal of the adder 15 directly operates the control valve 10t, but the present invention is not limited thereto. For example, as shown in FIG.
The setting of the flow rate detection controller 16 that detects the amount of discharge ([
The controller 16 may operate the control valve 10 so that the flow rate is set by the output signal of the adder 15.

以上詳述した如く、本発明によれはボイラ負荷が急変し
て吸収剤供給流量が変動しても吸収塔レベルをほぼ一定
九制御し得る湿式石灰石こう法排煙脱硫装置における吸
収塔レベル制御方法を提供できる・
As detailed above, according to the present invention, the absorber level control method in a wet lime-gypsum flue gas desulfurization apparatus is capable of controlling the absorber level at a nearly constant level even if the boiler load suddenly changes and the absorbent supply flow rate fluctuates. can provide

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排煙脱硫装置の吸収塔レベル制御方法全
説明するための概略図、第2図は本発明の排煙脱硫装置
の吸収塔レベル制御方法全説明するための一実施例を示
す概略図、第3因は排ガス流量とBOX 11度の積と
、吸収塔への吸収剤及びメイクアップ水の供給流量との
関係を示す線図、第4図は本発明の吸収塔レベル制御方
法を説明するための他の実施例を示す概略図である。 J・・・排ガス入口ダクト、3・・・吸収塔、5・・・
循環ポンプ、6・・・循環配管、7・・・吸収剤供給用
の配管、8・・・洗浄液抜き取シ用の配管、9・・・レ
ベル検出調節計、10・・・調節弁、1ノ・・・排ガス
流量計、12・・・SOx濃度計、13・・・乗算器、
14・・・関数発生器、15・・・加算器、16・・・
流量検出調節計。 第1図 ト1 第2図
Fig. 1 is a schematic diagram for explaining the entire absorption tower level control method of a conventional flue gas desulfurization equipment, and Fig. 2 is an embodiment for explaining the entire absorption tower level control method of the flue gas desulfurization equipment of the present invention. The third factor is a diagram showing the relationship between the product of exhaust gas flow rate and BOX 11 degrees and the supply flow rate of absorbent and makeup water to the absorption tower. Figure 4 is the absorption tower level control of the present invention. FIG. 6 is a schematic diagram showing another example for explaining the method. J...Exhaust gas inlet duct, 3...Absorption tower, 5...
Circulation pump, 6... Circulation piping, 7... Piping for absorbent supply, 8... Piping for cleaning liquid extraction, 9... Level detection controller, 10... Control valve, 1 No...exhaust gas flow meter, 12...SOx concentration meter, 13...multiplier,
14...Function generator, 15...Adder, 16...
Flow rate detection controller. Figure 1 To1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 水酸化カルシウム及び/又は炭酸カルシウムを含むスラ
リを用いて排煙を洗浄し、排煙中の硫黄酸化物を除去す
る湿式排煙処理装置の吸収レベル制御方法において、前
記吸収塔に導入される排ガスの流量と前記排ガス中の硫
黄酸化物濃度を測定し、これらの測定信号を乗算器に入
力して乗算を行ない、該乗算器の出力信号を予め設定さ
れた関数を発生する関数発生器に入力し、一方、前記吸
収塔の洗浄液レベルを検出し、このレベル検出信号を制
御量としてレベル調節計に入力し、該レベル調節計の出
力信号と前記関数発生器の出力信号を加算器に入力して
加算し、該加算器の出力信号によって前記吸収塔から洗
浄液を抜き出す配管に設置した調節弁を操作することを
特徴とする湿式石灰石こう法排煙脱硫装置における吸収
塔レベル制御方法。
In the absorption level control method of a wet flue gas treatment device, which cleans flue gas using a slurry containing calcium hydroxide and/or calcium carbonate to remove sulfur oxides from the flue gas, the flue gas introduced into the absorption tower. and the sulfur oxide concentration in the exhaust gas, input these measurement signals to a multiplier to perform multiplication, and input the output signal of the multiplier to a function generator that generates a preset function. On the other hand, the level of the cleaning liquid in the absorption tower is detected, this level detection signal is inputted as a control amount to a level controller, and the output signal of the level controller and the output signal of the function generator are inputted to an adder. A method for controlling the level of an absorption tower in a wet lime-gypsum flue gas desulfurization apparatus, characterized in that the output signal of the adder is used to operate a control valve installed in a pipe for extracting cleaning liquid from the absorption tower.
JP59092647A 1984-05-09 1984-05-09 Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production Pending JPS60235627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59092647A JPS60235627A (en) 1984-05-09 1984-05-09 Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59092647A JPS60235627A (en) 1984-05-09 1984-05-09 Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production

Publications (1)

Publication Number Publication Date
JPS60235627A true JPS60235627A (en) 1985-11-22

Family

ID=14060243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59092647A Pending JPS60235627A (en) 1984-05-09 1984-05-09 Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production

Country Status (1)

Country Link
JP (1) JPS60235627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235737A2 (en) * 1986-03-05 1987-09-09 KRC Umwelttechnik GmbH Process for controlling the water balance of wet flue gas desulfurisation plants
JPWO2022014165A1 (en) * 2020-07-15 2022-01-20
CN115003403A (en) * 2020-08-24 2022-09-02 富士电机株式会社 Exhaust gas purification device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235737A2 (en) * 1986-03-05 1987-09-09 KRC Umwelttechnik GmbH Process for controlling the water balance of wet flue gas desulfurisation plants
JPWO2022014165A1 (en) * 2020-07-15 2022-01-20
WO2022014165A1 (en) * 2020-07-15 2022-01-20 富士電機株式会社 Exhaust gas treatment device
CN114867544A (en) * 2020-07-15 2022-08-05 富士电机株式会社 Exhaust gas treatment device
CN115003403A (en) * 2020-08-24 2022-09-02 富士电机株式会社 Exhaust gas purification device

Similar Documents

Publication Publication Date Title
EP0815923B1 (en) Method for controlling oxidation in flue gas desulfurization
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JP2738750B2 (en) Control method of exhaust gas desulfurization equipment
JPS60235629A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JP3519498B2 (en) Wet flue gas desulfurization equipment
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPS60235628A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPH11156153A (en) Method for controlling number of circulation pump of absorption tower of flue gas desulfurization apparatus
JPS60235626A (en) Level controlling process of absorption tower in stack gas desulpfurization apparatus for wet slaking gypsum production
JPS61245823A (en) Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process
JPS61245824A (en) Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process
JP2933664B2 (en) Absorbent PH control unit for wet flue gas desulfurization unit
JPS59102425A (en) Supply method of adsorbent for wet type stack gas desulfurizer
JP2798973B2 (en) Exhaust gas desulfurization equipment
JP2684735B2 (en) Carbonate concentration control method
JPS6078620A (en) Operation of oxidizing apparatus in waste gas desulfurizing apparatus according to wet limestone gypsum method
JP2547803B2 (en) Wet flue gas desulfurization equipment
JPS5855028A (en) Controlling method for wet type stack gas desulfurizer
JPH0398617A (en) Control device of wet-type exhaust smoke desulfurization device
JPS60118221A (en) Apparatus for controlling ph of absorbing tower in waste gas desulfurizing plant
JPH06134252A (en) Control device for wet flue gas desulfurization plant
JPS6244735Y2 (en)