JPH06134252A - Control device for wet flue gas desulfurization plant - Google Patents

Control device for wet flue gas desulfurization plant

Info

Publication number
JPH06134252A
JPH06134252A JP4290097A JP29009792A JPH06134252A JP H06134252 A JPH06134252 A JP H06134252A JP 4290097 A JP4290097 A JP 4290097A JP 29009792 A JP29009792 A JP 29009792A JP H06134252 A JPH06134252 A JP H06134252A
Authority
JP
Japan
Prior art keywords
absorption tower
concentration
output value
multiplier
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4290097A
Other languages
Japanese (ja)
Other versions
JP3411597B2 (en
Inventor
Reiko Sakamoto
令子 坂本
Susumu Kono
進 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29009792A priority Critical patent/JP3411597B2/en
Publication of JPH06134252A publication Critical patent/JPH06134252A/en
Application granted granted Critical
Publication of JP3411597B2 publication Critical patent/JP3411597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To keep the quality of formed gypsum well by calculating the concn. of CaCO3 in a tank and controlling the concn. of CaCO3 to a predetermined value without using an expensive CaCO3 concn. detector. CONSTITUTION:An inlet SO2 densitometer 18 an outlet SO2 concentration meter 21, a treated gas flowmeter 19, a pH meter 29 detecting the pH of the falling soln. in an absorbing tower and a circulating soln. flowmeter 20 are provided to the absorbing tower 1. Further, a subtractor 22 subtracting outlet SO2 concn. from inlet SO2 concn., a first multiplier 23 multiplying the output of the subtractor 22 by the flow rate of gas, a hydrogen ion concn. operator 24 calculating the concn. of a hydrogen ion from the pH of the falling soln., a divider 25 dividing the output value of the multiplier 23 by the output value of the operator 24, a second multiplier 26 multiplying the output value of the divider 25 by the flow rate of a circulating soln., an amplifier 27 multiplying the output value of the multiplier 26 by a constant and a regulator 28 setting the output value of the amplifier 27 to control quantity to regulate the opening degree of the flow rate regulating valve 10 to absorbent supply piping 11 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は処理ガス中の亜硫酸ガス
(SO2 )を除去する湿式排煙脱硫プラントの制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for a wet flue gas desulfurization plant that removes sulfurous acid gas (SO 2 ) in a process gas.

【0002】[0002]

【従来の技術】脱硫プラント、例えば炭酸カルシウムを
吸収剤とする湿式石灰石こう法排煙脱硫プラントの概略
構成を図2に示す系統図を参照して説明する。図2にお
いて、吸収塔1には処理ガス導入ダクト2を介して亜硫
酸ガスを含有する処理ガス3が上方から導入される。こ
の吸収塔1下方に設けられたタンク4内には吸収液5が
収容され、この吸収液5は循環ポンプ6及び循環配管7
により吸収塔1内を循環されている。前記処理ガス3は
循環塔1内で吸収液5と接触し、処理ガス3中に含まれ
る亜硫酸ガスが除去される。すなわち、処理ガス3中の
SO2 と下記の(1)式で示す反応によりH2 SO3
生成して流下する。このH2 SO3 の一部は処理ガス3
中の酸素(O2 )により酸化され、下記の(2)式で示
すようにH 2 SO4 を生成する。 SO2 +H2 O → H2 SO3 ・・・・・(1) H2 SO3 + 1/2O2 → H2 SO4 ・・・・・(2) そして、吸収塔1を通過し、亜硫酸ガスが除去された処
理ガスは排気ダクト8を介して処理済ガスとして大気中
に放出される。
2. Description of the Related Art Desulfurization plants such as calcium carbonate
Outline of wet lime gypsum flue gas desulfurization plant as absorbent.
The configuration will be described with reference to the system diagram shown in FIG. In Figure 2
The absorption tower 1 through the process gas introduction duct 2
The processing gas 3 containing the acid gas is introduced from above. This
The absorption liquid 5 is stored in the tank 4 provided below the absorption tower 1 of
The absorbed liquid 5 is stored and the circulation pump 6 and the circulation pipe 7 are stored.
Is circulated in the absorption tower 1. The processing gas 3 is
It comes into contact with the absorption liquid 5 in the circulation tower 1 and is contained in the processing gas 3.
Sulfur dioxide gas is removed. That is, in the processing gas 3
SO2And H by the reaction shown by the following formula (1)2SO3To
Generate and run down. This H2SO3Part of the processing gas 3
Oxygen (O2), And represented by the following equation (2).
H to do 2SOFourTo generate. SO2+ H2O → H2SO3 (1) H2SO3+ 1 / 2O2 → H2SOFour (2) Then, after passing through the absorption tower 1, the sulfur dioxide gas is removed.
The processing gas is in the atmosphere as processed gas through the exhaust duct 8.
Is released to.

【0003】以上のように吸収塔1内で処理ガス3との
接触を続けると、前記吸収液5中には上記(1)式及び
(2)式で示した吸収反応及び酸化反応により生成した
2SO4 が多量に含まれるかめ、何らかの措置をとら
なければSO2 を吸収することが困難となる。そこで、
タンク4内の吸収液5に流量調節弁10を介装した吸収
剤供給配管11を介して吸収剤、例えば炭酸カルシウム
(CaCO3 )を供給し、下記(3)式に示すように吸
収液5を中和して亜硫酸ガスを容易に吸収し得るように
再生している。 H2 SO4 +CaCO3 →CaSO4 +H2 O+CO2 ・・・(3) 上記(3)式により生成したCaSO4 を含む吸収液5
の一部は移送配管12を介して図示しない別の工程へ移
送される。
As described above, when the contact with the processing gas 3 is continued in the absorption tower 1, the absorption liquid 5 is produced by the absorption reaction and the oxidation reaction shown in the above formulas (1) and (2). Since it contains a large amount of H 2 SO 4, it is difficult to absorb SO 2 unless some measures are taken. Therefore,
An absorbent such as calcium carbonate (CaCO 3 ) is supplied to the absorbent 5 in the tank 4 through an absorbent supply pipe 11 having a flow rate control valve 10 interposed therebetween, and the absorbent 5 is supplied as shown in the following formula (3). Is regenerated so that sulfur dioxide can be easily absorbed. H 2 SO 4 + CaCO 3 → CaSO 4 + H 2 O + CO 2 (3) Absorption liquid 5 containing CaSO 4 produced by the above formula (3)
Is transferred to another process (not shown) through the transfer pipe 12.

【0004】以上の説明から示唆されるように、吸収液
5のSO2 吸収能力が脱硫プラントの性能に多大な影響
を及ぼす。この吸収液5のSO2 吸収能力の指標となる
のは吸収液5のpHである。すなわち、吸収液5中のC
aCO3 濃度が高く、pHが高いほどSO2 吸収反応が
促進される。単純には吸収液のpHを高く維持するため
に多量の吸収剤を供給することが考えられるが、これは
コストの面から好ましいことではない。
As suggested from the above description, the SO 2 absorption capacity of the absorption liquid 5 has a great influence on the performance of the desulfurization plant. The pH of the absorption liquid 5 is an index of the SO 2 absorption capacity of the absorption liquid 5. That is, C in the absorbing liquid 5
The higher the aCO 3 concentration and the higher the pH, the more promoted the SO 2 absorption reaction. It is possible to simply supply a large amount of the absorbent in order to keep the pH of the absorbing solution high, but this is not preferable in terms of cost.

【0005】こうしたことから所望の性能を維持できる
程度のpHで脱硫プラントの運転を行なうことが要望さ
れており、図2で図示の従来の脱硫プラントにおいて
は、吸収液5のpH制御装置は以下のように行われてい
る。すなわち、前記循環配管7にはpH検出器13が取
付けられており、このpH検出器13からの出力信号S
13はpH調節器14に入力される。このpH調節器14
では、予め設定されたpH設定値とpH検出器13から
の出力信号とを比較し、PIまたはPID(P:比例、
I:積分、D:微分)のフィードバック制御を行う。こ
のpH調節器14の出力信号で、吸収剤供給配管11に
設置された流量調整弁10の開度を調整する。このよう
にして、吸収液5のpHが所定値となるように制御して
いる。なお、配管20から空気がタンク4内に供給され
ている。吸収塔1内で前記(1)式の反応で生成される
2 SO3 は大部分排ガス中のO2 で酸化されるが、残
りのH2 SO3 はタンク内に供給された空気によって酸
化される。
From the above, desired performance can be maintained.
It is desired to operate the desulfurization plant at a moderate pH.
In the conventional desulfurization plant shown in FIG.
The pH control device for the absorbing liquid 5 is performed as follows.
It That is, the pH detector 13 is installed in the circulation pipe 7.
The output signal S from the pH detector 13 is attached.
13Is input to the pH controller 14. This pH controller 14
Then, from the preset pH setting value and the pH detector 13,
Of the PI or PID (P: proportional,
Feedback control (I: integral, D: derivative) is performed. This
The output signal of the pH controller 14 of the
The opening of the installed flow rate adjusting valve 10 is adjusted. like this
Then, the pH of the absorbing liquid 5 is controlled to a predetermined value.
There is. Air is supplied from the pipe 20 into the tank 4.
ing. Generated by the reaction of the above formula (1) in the absorption tower 1.
H2SO3Is mostly O in the exhaust gas2Is oxidized by
Rino H2SO3Is acid by the air supplied in the tank
Be converted.

【0006】[0006]

【発明が解決しようとする課題】従来の装置では吸収液
のpHが所定値になるように制御し、所定の脱硫性能、
つまり吸収塔出口のSO2 濃度を所定値以下に維持する
ように運転している。一方、吸収液5の一部は移送配管
12を介して系外に取出され、前記(3)式の反応で生
成された石こう(CaSO4 )は建築資材用石こうボー
ドなどに広く使用されている。ところが、吸収液中には
固形物として石こう以外に吸収剤である炭酸カルシウム
(CaCO3 )が一部含まれており良質の石こうボード
を生産するにはこの炭酸カルシウム濃度が所定値以下に
する必要がある。
In the conventional apparatus, the pH of the absorbing solution is controlled to a predetermined value, and the predetermined desulfurization performance,
That is, the operation is performed so that the SO 2 concentration at the outlet of the absorption tower is maintained below a predetermined value. On the other hand, a part of the absorbing liquid 5 is taken out of the system through the transfer pipe 12, and the gypsum (CaSO 4 ) produced by the reaction of the above formula (3) is widely used for gypsum board for building materials. . However, the absorption liquid contains calcium carbonate (CaCO 3 ) that is an absorbent in addition to gypsum as a solid, and the calcium carbonate concentration must be below a predetermined value in order to produce good quality gypsum board. There is.

【0007】しかし、従来の装置では吸収液のpHを所
定値に制御しているが、炭酸カルシウム濃度は制御して
いないため、常に炭酸カルシウム濃度が所定値以下にな
るという保障はなかった。
However, in the conventional apparatus, the pH of the absorbing solution is controlled to a predetermined value, but the calcium carbonate concentration is not controlled. Therefore, there is no guarantee that the calcium carbonate concentration is always below the predetermined value.

【0008】そこで炭酸カルシウム濃度を一定に制御す
る装置が提案されているが、これを図3によって説明す
る。図3において、図2と同一部分には同一符号を付し
てある。図3において循環する吸収液5の炭酸カルシウ
ム濃度を炭酸カルシウム濃度検出器16によって検出
し、この検出値を制御量として調節計15と流量調節弁
10とによって炭酸カルシウム濃度を所定値に制御して
いる。なお、炭酸カルシウム濃度検出器16の原理は特
公平3−52826号公報に示すような方法がある。し
かし、この炭酸カルシウム濃度検出器16は高価である
という問題点があった。
Therefore, an apparatus for controlling the calcium carbonate concentration to be constant has been proposed, which will be described with reference to FIG. 3, the same parts as those in FIG. 2 are designated by the same reference numerals. In FIG. 3, the calcium carbonate concentration of the circulating absorption liquid 5 is detected by the calcium carbonate concentration detector 16, and the detected value is used as a control amount to control the calcium carbonate concentration to a predetermined value by the controller 15 and the flow rate control valve 10. There is. The principle of the calcium carbonate concentration detector 16 is as disclosed in Japanese Patent Publication No. 3-52826. However, there is a problem in that the calcium carbonate concentration detector 16 is expensive.

【0009】そこで、本発明は上記技術水準に鑑み、高
価な炭酸カルシウム濃度検出器を使用せず、しかも、炭
酸カルシウム濃度を制御することができる湿式排煙脱硫
プラントの制御装置を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention intends to provide a controller for a wet flue gas desulfurization plant which does not use an expensive calcium carbonate concentration detector and can control the calcium carbonate concentration. It is a thing.

【0010】[0010]

【課題を解決するための手段】本発明は (1)亜硫酸ガスを含有する処理ガスを吸収塔内に導入
し、吸収剤を含有し吸収塔内を循環する吸収液と接触さ
せて脱硫する脱硫プラントにおいて、吸収塔入口SO2
濃度計と、吸収塔出口SO2 濃度計と、吸収塔処理ガス
流量計と、吸収塔内での落下液のpHを検出するpH計
と、吸収塔循環液流量計と、前記入口SO 2 濃度から前
記出口SO2 濃度を減算する減算器と、前記減算器の出
力と前記ガス流量とを乗算する第1の乗算器と、前記落
下液pHから水素イオン濃度を求める水素イオン濃度演
算器と、前記第1の乗算器の出力値を前記水素イオン濃
度演算器の出力値で除算する除算器と、前記除算器の出
力値と前記循環液流量とを乗算する第2の乗算器と、前
記第2の乗算器の出力値に定数をかける増巾器と、前記
増巾器の出力値を制御量として吸収剤供給配管に設置し
た流量調節弁の弁開度を調節する調節計を具備すること
を特徴とする湿式排煙脱硫プラントの制御装置。
Means for Solving the Problems According to the present invention, (1) a treatment gas containing sulfurous acid gas is introduced into an absorption tower.
Contact the absorbent that contains the absorbent and circulates in the absorption tower.
In the desulfurization plant for desulfurization, the absorption tower inlet SO2
Concentration meter and absorption tower outlet SO2Concentration meter and absorption tower process gas
A flow meter and a pH meter that detects the pH of the falling liquid in the absorption tower
And an absorption tower circulating liquid flowmeter, and the inlet SO 2From concentration to before
Exit SO2The subtractor for subtracting the concentration and the output of the subtractor
A first multiplier for multiplying the force by the gas flow rate;
Hydrogen ion concentration calculation to obtain hydrogen ion concentration from sewage pH
The output value of the calculator and that of the first multiplier are compared with the hydrogen ion concentration.
And the output of the divider.
A second multiplier for multiplying the force value by the circulating fluid flow rate;
A widening device for multiplying the output value of the second multiplier by a constant;
Installed in the absorbent supply pipe using the output value of the amplifier as a controlled variable.
Equipped with a controller for adjusting the valve opening of the flow control valve
A control device for a wet flue gas desulfurization plant.

【0011】(2)亜硫酸ガスを含有する処理ガスを吸
収塔内に導入し、吸収剤を含有し吸収塔内を循環する吸
収液と接触させて脱硫する脱硫プラントにおいて、吸収
塔入口SO2 濃度計と、吸収塔出口SO2 濃度計と、吸
収塔処理ガス流量計と、吸収塔内での落下液のpHを検
出するpH計と、前記入口SO2 濃度から前記出口SO
2 濃度を減算する減算器と、前記減算器の出力と前記ガ
ス流量とを乗算する乗算器と、前記落下液pHから水素
イオン濃度を求める水素イオン濃度演算器と、前記乗算
器の出力値を前記水素イオン濃度演算器の出力値で除算
する除算器と、前記除算器の出力値に定数をかける増巾
器と、前記増巾器の出力値を制御量として吸収剤供給配
管に設置した流量調節弁の弁開度を調節する調節計を具
備することを特徴とする湿式排煙脱硫プラントの制御装
置。である。
(2) Absorption of processing gas containing sulfurous acid gas
Introduced into the absorption tower, it contains an absorbent and circulates in the absorption tower.
Absorption in a desulfurization plant where desulfurization is performed by contacting the collected liquid
Tower entrance SO2Concentration meter and absorption tower outlet SO2Densitometer
Check the pH of the falling liquid in the absorption tower and the gas flow meter in the absorption tower.
PH meter to come out and the inlet SO2From the concentration to the outlet SO
2A subtractor for subtracting the concentration, an output of the subtractor and the
And a hydrogen flow rate from the falling liquid pH.
Hydrogen ion concentration calculator for obtaining ion concentration, and the multiplication
Divide the output value of the detector by the output value of the hydrogen ion concentration calculator
And a multiplier that multiplies the output value of the divider by a constant
And the absorbent supply distribution using the output value of the amplifier as a controlled variable.
Includes a controller that adjusts the valve opening of the flow control valve installed in the pipe
Control equipment for a wet flue gas desulfurization plant characterized by being equipped with
Place Is.

【0012】[0012]

【作用】湿式排煙脱硫プラントにおいて、前記(3)式
は下記(4)式、(5)式 CaCO3 +2H+ → Ca2++H2 O+CO2 ・・・(4) H2 SO4 +Ca2+ → CaSO4 +2H+ ・・・(5) の2つの化学反応式に分割される。(4)式はCaCO
3 の溶解反応であり、(5)式はH2 SO4 の中和反応
である。
In the wet flue gas desulfurization plant, the formula (3) is expressed by the following formulas (4) and (5) CaCO 3 + 2H + → Ca 2+ + H 2 O + CO 2 (4) H 2 SO 4 + Ca 2 It is divided into two chemical reaction formulas of + → CaSO 4 + 2H + (5). Formula (4) is CaCO
3 is a dissolution reaction, and formula (5) is a neutralization reaction of H 2 SO 4 .

【0013】(4)式のCaCO3 の溶解反応はほとん
どタンク内で起こっていると考えられ、その溶解反応量
は(A)式で定義される。 x=kn〔CaCO3 〕・〔H+ 〕・T ・・・・(A) ただし、 x:CaCO3 溶解反応量 kn:CaCO3 溶解反応定数 〔CaCO3 〕:タンク内炭酸カルシウム濃度 T:タンクの吸収液の滞留時間 〔H+ 〕:水素イオン濃度
It is considered that the dissolution reaction of CaCO 3 in the equation (4) almost occurs in the tank, and the amount of the dissolution reaction is defined by the equation (A). x = kn [CaCO 3 ] · [H + ] · T (A) where x: CaCO 3 dissolution reaction amount kn: CaCO 3 dissolution reaction constant [CaCO 3 ]: concentration of calcium carbonate in tank T: tank Time [H + ]: hydrogen ion concentration

【0014】また、上記(1)、(2)、(3)及び
(4)式から明らかなように、SO2とCaCO3 は当
モルで反応するため、(B)式が成立する。 S=x ・・・・(B) ただし S:SO2 吸収量
Further, as is clear from the above equations (1), (2), (3) and (4), SO 2 and CaCO 3 react with each other in equimolar amounts, so that the equation (B) is established. S = x ··· (B) However, S: SO 2 absorption amount

【0015】また、SO2 吸収量Sは(C)式で定義さ
れる。 S=G・(SO2 in−SO2 out) ・・・・(C) ただし、 G:処理ガス流量 SO2 in:入口SO2 濃度 SO2 out:出口SO2 濃度
The SO 2 absorption amount S is defined by the equation (C). S = G · (SO 2 in-SO 2 out) ··· (C) where G: processing gas flow rate SO 2 in: inlet SO 2 concentration SO 2 out: outlet SO 2 concentration

【0016】(A)(B)(C)式より G・(SO2 in−SO2 out)=kn〔CaCO3 〕・〔H+ 〕・T ・・・・(D) が導出される。ここで滞留時間Tは(E)式で決まるの
で、 T=V/L ・・・・(E) ただし、V:E;I内の吸収液体積 L:循環液流量 これを(D)式に代入し、〔CaCO3 〕を求める式に
変形する。 〔CaCO3 〕 =G・(SO2 in−SO2 out)/(kn・〔H+ 〕・V/L) =(1/kn・V)G・(SO2 in−SO2 out)・L/〔H+ 〕 ・・・・(F)
From the equations (A), (B) and (C), G. (SO 2 in-SO 2 out) = kn [CaCO 3 ]. [H + ] .T (D) is derived. Here, since the residence time T is determined by the formula (E), T = V / L ... (E) where V: E; volume of absorbing liquid in I; L: circulating liquid flow rate. Substituting and transforming into an equation for calculating [CaCO 3 ]. [CaCO 3] = G · (SO 2 in- SO 2 out) / (kn · [H +] · V / L) = (1 / kn · V) G · (SO 2 in-SO 2 out) · L / [H + ] ・ ・ ・ ・ (F)

【0017】また、〔H+ 〕はpHより次式で求まる。 〔H+ 〕=10-pH ・・・・(G) (G)式を(F)式に代入すると(H)式となる。 〔CaCO3 〕=K・G・(SO2 in−SO2 out)・L/10-pH ・・・・(H) ただし、K:定数(=1/Kn・V) (H)式のpHは、タンク内のpH、すなわち循環液p
Hで、吸収塔落下液pHとは強い因果関係がある。すな
わち、処理ガス中のSO2 (酸)は吸収塔を落下する間
に吸収されることにより、水素イオンが増え、(G)式
より落下液pHは下がる。例えば図4のようであり、高
負荷になるほどSO2 の吸収量が多くなるため吸収塔落
下液pHは高負荷時の方が低負荷時より低くなり一般に
タンク内吸収液pHと吸収塔落下液pH′とは次の関係
式で表わされる。 pH′=f(pH,W) ・・・・(I) ただし、W=ボイラ負荷 (H),(I)式より、タンク内の炭酸カルシウム濃度
が計算できることになり、この計算値を制御量として制
御する。
[H + ] can be calculated from pH by the following equation. [H + ] = 10 −pH ... (G) Substituting the expression (G) into the expression (F) yields the expression (H). [CaCO 3] = K · G · (SO 2 in-SO 2 out) · L / 10 -pH ···· (H) , however, K: constant (= 1 / Kn · V) (H) equation pH of Is the pH in the tank, that is, the circulating fluid p
With H, there is a strong causal relationship with the pH of the liquid in the absorption tower. That is, the SO 2 (acid) in the processing gas is absorbed while it falls through the absorption tower, so that the number of hydrogen ions increases and the pH of the falling liquid drops from the formula (G). For example, as shown in FIG. 4, the absorption amount of SO 2 increases as the load increases, so that the pH of the absorption liquid falling in the absorption tower becomes lower at the time of high load than at the time of low load. The pH 'is represented by the following relational expression. pH '= f (pH, W) ... (I) However, W = boiler load The calcium carbonate concentration in the tank can be calculated from the equations (H) and (I), and this calculated value is used as the control amount. Control as.

【0018】[0018]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。なお、図2に示す従来の装置と同一の機器等に
は同一の符号を付して説明を省略する。本発明に係る制
御装置において新たに設けられた機器は入口ダクト2に
設置された入口SO2 濃度計18、ガス流量計19、循
環配管7に設置された循環液流量計20、出口ダクト8
に設置された出口SO2 濃度計21、吸収塔1内の吸収
液の落下液のpHを測定するpH検出器29、それに、
前記入口SO2 濃度計18の検出値(SO2in)から前
記出口SO2 濃度計21の検出値(SO2 out)を減算す
る減算器22、前記減算器22の出力値(SO2 in−S
2 out)と前記ガス流量計19の検出値(G)とを乗算
する第1の乗算器23、吸収塔落下液のpH検出器29
の検出値(pH′)を入力して循環液pHを演算する演
算器30、前記演算器30の出力値(pH)を入力して
水素イオン濃度を演算する演算器24、前記第1の乗算
器23の出力値〔G×(SO2 in−SO2 out)〕を前記
演算器24の出力値(10-pH )で除算する除算器2
5、前記除算器25の出力値〔G×(SO2 in−SO2
out)/10-pH 〕と前記循環液流量計29(L)とを乗
算する第2の乗算器26、前記第2の乗算器の出力値
〔G×(SO2 in−SO2 out)×L/10-pH〕に定数
(K)をかける増巾器27、前記増巾器27の出力値を
制御量とし、吸収剤供給配管11に配置した流量調節弁
10の弁開度を操作量とする調節計28である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. It should be noted that the same devices and the like as the conventional device shown in FIG. The equipment newly provided in the control device according to the present invention includes an inlet SO 2 concentration meter 18 installed in the inlet duct 2, a gas flowmeter 19, a circulating liquid flowmeter 20 installed in the circulation pipe 7, and an outlet duct 8.
An outlet SO 2 concentration meter 21, a pH detector 29 for measuring the pH of the falling liquid of the absorbing liquid in the absorption tower 1, and
A subtractor 22 that subtracts the detection value (SO 2 out) of the outlet SO 2 concentration meter 21 from the detection value (SO 2 in) of the inlet SO 2 concentration meter 18, and the output value (SO 2 in−) of the subtractor 22. S
O 2 out) and the detection value (G) of the gas flowmeter 19 are multiplied by a first multiplier 23 and a pH detector 29 for the liquid falling in the absorption tower.
Of the circulating fluid pH by inputting the detected value (pH ') of the calculation unit, the calculation unit 24 of calculating the hydrogen ion concentration by inputting the output value (pH) of the calculation unit 30, and the first multiplication A divider 2 for dividing the output value [G × (SO 2 in-SO 2 out)] of the calculator 23 by the output value (10 −pH ) of the calculator 24.
5. Output value of the divider 25 [G × (SO 2 in-SO 2
out) / 10 −pH ] and the circulating fluid flow meter 29 (L), the second multiplier 26, the output value of the second multiplier [G × (SO 2 in-SO 2 out) × L / 10- pH ] by a constant (K), and the output value of the thickener 27 as a control amount, and the valve opening of the flow rate control valve 10 arranged in the absorbent supply pipe 11 is manipulated. And the controller 28.

【0019】この結果、前記増巾器27の出力値(y)
は下記式 y=K×G×(SO2 in−SO2 out)×L/10-pH で計算することができるようになり、この出力値(y)
は(H)式よりタンク内の炭酸カルシウム濃度と等価で
ある。したがって、タンク内の炭酸カルシウム濃度を所
定値に制御することが可能となる。
As a result, the output value (y) of the amplifier 27
Can be calculated by the following formula y = K × G × (SO 2 in-SO 2 out) × L / 10- pH , and this output value (y)
Is equivalent to the concentration of calcium carbonate in the tank according to the formula (H). Therefore, it becomes possible to control the concentration of calcium carbonate in the tank to a predetermined value.

【0020】なお、図1においては(H)式の右辺を演
算する一実施例を示したに過ぎず、演算の順序を変える
も勿論よい。また、循環スラリ流量が一定の場合などは
循環スラリ流量計20と第2の乗算器26を省略して、
増巾器の定数KをL/Kn・Vとすることでよい。本発
明の主旨である(H)式に従って炭酸カルシウム濃度を
演算する装置であればよい。
It should be noted that FIG. 1 shows only one embodiment for calculating the right side of the expression (H), and the order of calculation may be changed as a matter of course. When the circulation slurry flow rate is constant, the circulation slurry flow meter 20 and the second multiplier 26 are omitted,
The constant K of the amplifier may be L / Kn · V. Any device may be used as long as it calculates the calcium carbonate concentration according to the formula (H), which is the gist of the present invention.

【0021】[0021]

【発明の効果】本発明方法によれば、高価な炭酸カルシ
ウム濃度検出器を使用せず、しかも炭酸カルシウム濃度
を所定の値に制御できるので、生成される石こう品質を
良質に保持することが可能となる。
According to the method of the present invention, since the calcium carbonate concentration can be controlled to a predetermined value without using an expensive calcium carbonate concentration detector, the quality of the produced gypsum can be kept high. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の湿式排煙脱硫プラントの一実施例の説
明図。
FIG. 1 is an explanatory diagram of an embodiment of a wet flue gas desulfurization plant of the present invention.

【図2】従来の湿式排煙脱硫プラントの一態様の説明
図。
FIG. 2 is an explanatory diagram of one aspect of a conventional wet flue gas desulfurization plant.

【図3】従来の湿式排煙脱硫プラントの制御装置の他の
態様の説明図。
FIG. 3 is an explanatory diagram of another aspect of the control device of the conventional wet flue gas desulfurization plant.

【図4】タンク内のpHと吸収塔落下液のpHの相関を
示す図表。
FIG. 4 is a chart showing the correlation between the pH in the tank and the pH of the liquid falling in the absorption tower.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜硫酸ガスを含有する処理ガスを吸収塔
内に導入し、吸収剤を含有し吸収塔内を循環する吸収液
と接触させて脱硫する脱硫プラントにおいて、吸収塔入
口SO2 濃度計と、吸収塔出口SO2 濃度計と、吸収塔
処理ガス流量計と、吸収塔内での落下液のpHを検出す
るpH計と、吸収塔循環液流量計と、前記入口SO2
度から前記出口SO2 濃度を減算する減算器と、前記減
算器の出力と前記ガス流量とを乗算する第1の乗算器
と、前記落下液pHから水素イオン濃度を求める水素イ
オン濃度演算器と、前記第1の乗算器の出力値を前記水
素イオン濃度演算器の出力値で除算する除算器と、前記
除算器の出力値と前記循環液流量とを乗算する第2の乗
算器と、前記第2の乗算器の出力値に定数をかける増巾
器と、前記増巾器の出力値を制御量として吸収剤供給配
管に設置した流量調節弁の弁開度を調節する調節計を具
備することを特徴とする湿式排煙脱硫プラントの制御装
置。
The method according to claim 1] process gas containing sulfur dioxide is introduced into the absorption tower, the desulfurization plant for desulfurization in contact with the absorption liquid circulates containing absorbing tower the absorbent, the absorption tower inlet SO 2 concentration meter An absorption tower outlet SO 2 concentration meter, an absorption tower treatment gas flow meter, a pH meter for detecting the pH of the falling liquid in the absorption tower, an absorption tower circulating liquid flow meter, and the inlet SO 2 concentration A subtractor for subtracting the outlet SO 2 concentration, a first multiplier for multiplying the output of the subtractor by the gas flow rate, a hydrogen ion concentration calculator for obtaining a hydrogen ion concentration from the falling liquid pH, A divider for dividing the output value of the multiplier 1 by the output value of the hydrogen ion concentration calculator, a second multiplier for multiplying the output value of the divider and the circulating fluid flow rate, and the second An amplifier that multiplies the output value of the multiplier by a constant, and the output of the amplifier Absorbent controller wet flue gas desulfurization plant, characterized in that it comprises the controllers for adjusting the valve opening degree of the installed flow control valve to the supply pipe as a control amount.
【請求項2】 亜硫酸ガスを含有する処理ガスを吸収塔
内に導入し、吸収剤を含有し吸収塔内を循環する吸収液
と接触させて脱硫する脱硫プラントにおいて、吸収塔入
口SO2 濃度計と、吸収塔出口SO2 濃度計と、吸収塔
処理ガス流量計と、吸収塔内での落下液のpHを検出す
るpH計と、前記入口SO2 濃度から前記出口SO2
度を減算する減算器と、前記減算器の出力と前記ガス流
量とを乗算する乗算器と、前記落下液pHから水素イオ
ン濃度を求める水素イオン濃度演算器と、前記乗算器の
出力値を前記水素イオン濃度演算器の出力値で除算する
除算器と、前記除算器の出力値に定数をかける増巾器
と、前記増巾器の出力値を制御量として吸収剤供給配管
に設置した流量調節弁の弁開度を調節する調節計を具備
することを特徴とする湿式排煙脱硫プラントの制御装
置。
2. An SO 2 concentration meter at the inlet of an absorption tower in a desulfurization plant in which a treatment gas containing sulfurous acid gas is introduced into an absorption tower and is desulfurized by contacting with an absorbent containing an absorbent and circulating in the absorption tower. Absorption tower outlet SO 2 concentration meter, absorption tower processing gas flow meter, pH meter for detecting pH of falling liquid in absorption tower, subtraction for subtracting the outlet SO 2 concentration from the inlet SO 2 concentration , A multiplier that multiplies the output of the subtractor and the gas flow rate, a hydrogen ion concentration calculator that calculates the hydrogen ion concentration from the falling liquid pH, and an output value of the multiplier that is the hydrogen ion concentration calculator Of the flow control valve installed in the absorbent supply pipe with the output value of the divider as a controlled variable. Humidity controller characterized by having a controller for adjusting The control device of the flue gas desulfurization plant.
JP29009792A 1992-10-28 1992-10-28 Control system for wet flue gas desulfurization plant Expired - Lifetime JP3411597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29009792A JP3411597B2 (en) 1992-10-28 1992-10-28 Control system for wet flue gas desulfurization plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29009792A JP3411597B2 (en) 1992-10-28 1992-10-28 Control system for wet flue gas desulfurization plant

Publications (2)

Publication Number Publication Date
JPH06134252A true JPH06134252A (en) 1994-05-17
JP3411597B2 JP3411597B2 (en) 2003-06-03

Family

ID=17751759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29009792A Expired - Lifetime JP3411597B2 (en) 1992-10-28 1992-10-28 Control system for wet flue gas desulfurization plant

Country Status (1)

Country Link
JP (1) JP3411597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435066B2 (en) * 2005-09-29 2010-03-17 株式会社東芝 Hydrogen halide gas detector and hydrogen halide gas absorber

Also Published As

Publication number Publication date
JP3411597B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPH11104448A (en) Equipment and method for flue gas desulfurization
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
JP3411597B2 (en) Control system for wet flue gas desulfurization plant
JPH05309230A (en) Controller for wet flue gas desulfurization plant
JP2738750B2 (en) Control method of exhaust gas desulfurization equipment
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JPS59102425A (en) Supply method of adsorbent for wet type stack gas desulfurizer
JPH05228336A (en) Ph controller for desulfurizing device
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPS62227425A (en) So2 concentration control method for exhaust gas desulfurizing device
JPS61259734A (en) Apparatus for controlling ph of absorbing tower
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JPH05111615A (en) Ph control device for wet flue gas desulfurization plant
JPS62298427A (en) Controlling device for absorption tower in wet flue-gas desulfurization facility
JP3009190B2 (en) Control method and control device for wet exhaust gas desulfurization device
JPS59225724A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPS61259733A (en) Apparatus for controlling ph of absorbing tower
JPS61245824A (en) Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process
JPS61259732A (en) Apparatus for controlling ph of absorbing tower
JPS5855028A (en) Controlling method for wet type stack gas desulfurizer
JPS60118221A (en) Apparatus for controlling ph of absorbing tower in waste gas desulfurizing plant
JPS63294928A (en) Device for controlling wet exhaust gas desulfurizer
JPS62140625A (en) Device for controlling outlet so2 concentration in wet stack gas desulfurizer
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10