JPS61259733A - Apparatus for controlling ph of absorbing tower - Google Patents

Apparatus for controlling ph of absorbing tower

Info

Publication number
JPS61259733A
JPS61259733A JP60100980A JP10098085A JPS61259733A JP S61259733 A JPS61259733 A JP S61259733A JP 60100980 A JP60100980 A JP 60100980A JP 10098085 A JP10098085 A JP 10098085A JP S61259733 A JPS61259733 A JP S61259733A
Authority
JP
Japan
Prior art keywords
flow rate
absorbent
detector
absorption tower
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60100980A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Ichiro Toyoda
一郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60100980A priority Critical patent/JPS61259733A/en
Publication of JPS61259733A publication Critical patent/JPS61259733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To rapidly perform the control of pH by corresponding to the high speed change in load, by mounting a treating gas flow amount detector, a pH detector, a pH deviation operator, a multiplier, a pH regulator, an absorbent flow amount detector and an absorbent flow amount regulator. CONSTITUTION:The treating gas flow amount signal S21 from a treating gas flow amount detector 21 is inputted to a multiplier 23 and the pH detection signal S14 from a pH detector 14 is inputted to an operator 22 to operate pH deviation while the output thereof is inputted to the multiplier 23 to output a proportional sensitivity signal S23 to a pH regulator 15. The pH regulator outputs the absorbent flow amount set value signal S15 calculated from the proportional sensitivity signal S23, the pH detection signal and a preset pH set value to an absorbent flow amount regulator 16 to adjust the opening degree of a flow control valve 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は処理ガス中の亜硫酸ガス(S O2)を除去す
る脱硫プラントに関し、特に循環液のPHを制御する吸
収塔PH制御装置の改良に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a desulfurization plant for removing sulfur dioxide gas (S O2) from treated gas, and in particular to improvement of an absorption tower PH control device that controls the PH of circulating fluid. It depends.

〔従来の技術〕[Conventional technology]

脱硫プラント例えば炭酸ガスを吸収剤とする湿式石灰石
こう法廃煙脱硫プラントの概略構成を第5図に示す系統
図を参照して説明する。
The schematic structure of a desulfurization plant, for example a wet lime gypsum process waste smoke desulfurization plant using carbon dioxide as an absorbent, will be described with reference to the system diagram shown in FIG.

第5図において、吸収塔1には処理ガス導入ダクト2を
介して亜硫酸ガスを含有する処理ガス3が上方から導入
される。この吸収塔1下方に設けられたタンク4内には
循環液5が収容され、この循環液5は循環ポンプ6及び
循環配管7により吸収塔l内を循環されている。前記処
理ガス3は循環塔l内で循環液5と接触し、処理ガス3
中に含まれる亜硫酸ガスが除去される。すなわち、処理
ガス3中のSO2は次式CI)で示す反応によりH2S
O,を生成して流下する。このH2so3の一部は処理
ガス3中の酸素(02)により酸化され、次式(■)で
示すようにH2SO4となる。また、残りのH2SO,
はタンク4内で空気配管8から噴き込まれる空気中の酸
素により酸化されてH,304となる。
In FIG. 5, a processing gas 3 containing sulfur dioxide gas is introduced into the absorption tower 1 from above through a processing gas introduction duct 2. A circulating fluid 5 is contained in a tank 4 provided below the absorption tower 1, and this circulating fluid 5 is circulated within the absorption tower 1 by a circulation pump 6 and a circulation pipe 7. The processing gas 3 comes into contact with the circulating liquid 5 in the circulation tower 1, and the processing gas 3
The sulfur dioxide gas contained therein is removed. That is, SO2 in the processing gas 3 is converted to H2S by the reaction shown by the following formula CI).
O, is generated and flows down. A part of this H2so3 is oxidized by oxygen (02) in the processing gas 3, and becomes H2SO4 as shown by the following formula (■). Also, the remaining H2SO,
is oxidized to H, 304 in the tank 4 by oxygen in the air injected from the air pipe 8.

So2+H,O→H,SO,・・−CI)H2SO,+
−02→H,So、・・−・・(II)そして、吸収塔
lを通過し、亜硫酸ガスが除去された処理ガスは排気ダ
クト9を介して処理済ガスとして大気中に放出される。
So2+H, O→H, SO,...-CI) H2SO,+
-02→H, So, (II) Then, the treated gas that has passed through the absorption tower 1 and from which sulfur dioxide gas has been removed is discharged into the atmosphere as a treated gas through the exhaust duct 9.

以上のように吸収塔l内で処理ガス3との接触をつづけ
ると、前記循環液5中には上記(I)及び(If)で示
した吸収反応及び酸化反応により生成したH2SO,が
多量に含まれるため、何らかの措置をとらなければS0
2を吸収することが困難となる。そこで、タンク4内の
循環液5に流量検出器10及び流量調節弁11を介装し
た吸収剤供給配管12を介して吸収剤、例えば炭酸カル
シウム(Ca COs )を供給し、次式(I[I)に
示すように循環液5を中和して亜硫酸ガスを容易に吸収
し得るように再生している。
When the contact with the treated gas 3 continues in the absorption tower 1 as described above, a large amount of H2SO generated by the absorption reaction and oxidation reaction shown in (I) and (If) above is contained in the circulating liquid 5. Since it is included, it will be S0 unless some measures are taken.
2 becomes difficult to absorb. Therefore, an absorbent, such as calcium carbonate (Ca COs ), is supplied to the circulating fluid 5 in the tank 4 through an absorbent supply pipe 12 equipped with a flow rate detector 10 and a flow rate control valve 11, and the following formula (I[ As shown in I), the circulating fluid 5 is neutralized and regenerated so that sulfur dioxide gas can be easily absorbed.

H2SO4+CaCO3−+CaSO4+H20+C0
2j−(III)上記(I[I)式により生成したCa
5O,を含む循環液5の一部は移送配管13を介して図
示しない別の工程へ移送される。
H2SO4+CaCO3-+CaSO4+H20+C0
2j-(III) Ca produced by the above formula (I[I)
A part of the circulating fluid 5 containing 5O is transferred to another process (not shown) via the transfer piping 13.

以上の説明から示唆されるように、循環液5の802吸
収能力が脱硫プラントの性能に多大な影響を及ぼす、こ
の循環液5のS02吸収能力の指標となるのは、循環液
5のpHである。すなわち、循環液5中のCa COz
濃度が高<、pHが高いほどSO2吸収反応が促進され
る。
As suggested by the above explanation, the 802 absorption capacity of the circulating liquid 5 has a great influence on the performance of the desulfurization plant.The pH of the circulating liquid 5 is an indicator of the S02 absorption capacity of the circulating liquid 5. be. That is, Ca COz in the circulating fluid 5
The higher the concentration and the higher the pH, the more the SO2 absorption reaction is promoted.

単純には循環液のPHを高く維持するために多量の吸収
剤を供給することが考えられるが、これはコストの面か
ら好ましいことではない。
It is conceivable to simply supply a large amount of absorbent to maintain the pH of the circulating fluid high, but this is not preferable from the viewpoint of cost.

こうしたことから、所望の性能を維持できる程度のPH
で脱硫プラントの運転を行なうことが要望されている。
For these reasons, it is necessary to maintain a pH level that maintains the desired performance.
It is desired to operate a desulfurization plant in

これは、吸収塔1内での脱硫率。This is the desulfurization rate within the absorption tower 1.

ひいては大気中に放出する処理済ガス中の亜硫酸   
 □ガス濃度を所定値に安定に維持し、かついかなる 
   □負荷(吸収塔入口のS02量)の変化にも応答
性よく追従し得ることにつながる。
Sulfur dioxide in the treated gas that is eventually released into the atmosphere
□ Maintain the gas concentration stably at the specified value, and
□ This leads to being able to follow changes in load (S02 amount at the absorption tower inlet) with good responsiveness.

ところで、上述したように循環液のPHを低下させるの
は循環液中のH2S Oa濃度の増大であり、一方循環
液のpHを上昇させるのは循環液中のCa COz濃度
である。したがって、循環液のpHは吸収したS02量
とCaC0,濃度とのバランスにより決定される。
By the way, as described above, it is the increase in the H2S Oa concentration in the circulating fluid that lowers the pH of the circulating fluid, and on the other hand, it is the Ca COz concentration in the circulating fluid that increases the pH of the circulating fluid. Therefore, the pH of the circulating fluid is determined by the balance between the amount of absorbed S02 and the concentration of CaC0.

第5図図示の従来の脱硫プラントにおいては、循環液に
のpH制御装置は以下のようなものである。
In the conventional desulfurization plant shown in FIG. 5, the pH control device for the circulating fluid is as follows.

すなわち、前記循環配管7にはpH検出器14が取付け
られており、このpH検出器14からの出力信号S 1
4はPH調節器15に入力される。このPH調節器15
では、予め設定されたpH設定値とpH検出器14から
の出力信号とを比較して吸収剤流量設定値信号S SS
を出力する。この信号は流量検出器10の出力信号とと
もに吸収剤流量調節器16に入力され、流量調整弁it
の開度を調整する。このようにして、循環液5のpHか
所〔発明が解決すべき問題点〕 上述した従来のpH制御装置ではpHmm器15の比例
感度は脱硫負荷の変動に関係なく一定    □として
いる。また、このPH調箇器15の比例感度は低負荷時
に発振しないように設定されている。このため、低負荷
時には比例感度が最適な値であっても高負荷時には比例
感度が小さすぎることになり、負荷変動に対する即応性
が鈍く、循環液5のpHが大きく波打つ現象が生じてい
た。このような現象が生じると、SO2吸収反応に影響
が及び、更に吸収塔1出口における処理済ガスのS O
2濃度が不安定となり、規制値を逸脱してしまうおそれ
があった。
That is, a pH detector 14 is attached to the circulation pipe 7, and an output signal S 1 from this pH detector 14
4 is input to the PH regulator 15. This PH regulator 15
Then, the preset pH value and the output signal from the pH detector 14 are compared to determine the absorbent flow rate set value signal SSS.
Output. This signal is input to the absorbent flow regulator 16 together with the output signal of the flow rate detector 10, and the flow rate regulating valve it
Adjust the opening. In this way, the pH of the circulating fluid 5 [Problem to be solved by the invention] In the conventional pH control device described above, the proportional sensitivity of the pH mm meter 15 is kept constant regardless of fluctuations in the desulfurization load. Further, the proportional sensitivity of this PH regulator 15 is set so as not to oscillate at low loads. For this reason, even if the proportional sensitivity is an optimal value at low loads, the proportional sensitivity is too small at high loads, and the rapid response to load changes is slow, causing a phenomenon in which the pH of the circulating fluid 5 fluctuates greatly. If such a phenomenon occurs, the SO2 absorption reaction will be affected, and the SO2 absorption reaction of the treated gas at the outlet of the absorption tower 1 will be affected.
2 concentration became unstable and there was a risk that it would deviate from the regulation value.

また、このように処理済ガスのSo、9度が規制値を逸
脱するのを防止するためには、1i環液5のpH値を予
め必要以上に高くするという操作がとられるため、ラン
ニングコストを上昇させてしまうという不具合があった
In addition, in order to prevent the So, 9 degrees of the treated gas from deviating from the regulation value, the pH value of the 1i reflux liquid 5 must be made higher than necessary in advance, which reduces running costs. There was a problem in that it caused the temperature to rise.

本発明者らは、以上のような現象に対する原因ち、系内
における残留CaCO3量は、処理ガス流量と循環液の
PHとの関数である。これらの関係の一例を第6図に示
す、第6図は横軸を処理ガス流量、縦軸を系内の残留C
aCO3として両者の関係を循環液のpHをパラメータ
として示したものである。第6図から、負荷上昇を考え
た場合、増加する脱硫SO2当量分だけでなく、循環液
中の残留CaCO3量を増加させるために吸収剤を余分
に供給する必要があることがわかる。
The present inventors found that the cause of the above phenomenon, ie, the amount of CaCO3 remaining in the system, is a function of the processing gas flow rate and the PH of the circulating fluid. An example of these relationships is shown in Figure 6, where the horizontal axis represents the processing gas flow rate and the vertical axis represents the residual C in the system.
The relationship between the two is shown as aCO3 using the pH of the circulating fluid as a parameter. From FIG. 6, it can be seen that when considering the increase in load, it is necessary to supply an extra amount of absorbent not only to increase the desulfurized SO2 equivalent but also to increase the amount of CaCO3 remaining in the circulating fluid.

いま、負荷上昇率が小さい(1〜2%/分)場合には、
残留CaCO3最の変化率が小さいため、従来のpH制
御装置でも循環液のpHとpH設定値との偏差が大きく
なる以前に追従することができる。しかし、負荷上昇率
が大きい(3〜5%/分)場合には、残留CaCO3量
の変化率が大きいため、従来のpHf制御装置では追従
しきれない、このため、従来のpH制御装置では高速負
荷変化時の即応性が鈍い。
Now, if the load increase rate is small (1 to 2%/min),
Since the rate of change in residual CaCO3 is small, even a conventional pH control device can follow the deviation between the pH of the circulating fluid and the pH set value before it becomes large. However, when the load increase rate is large (3 to 5%/min), the rate of change in the amount of residual CaCO3 is large, so conventional pHf control devices cannot keep up with it. Immediate response to load changes is slow.

また、処理ガスの流量に対してpH偏差を例えば0.1
変化させる(例えばp H5,3からpH5,4まで)
のに必要な残留CaCO3量を調べた。その結果、第7
図に示すように、変化させるべきpH偏差が0.1と同
一であっても、処理ガスの流量が増加するにつれて残留
Ca CO3Jiを増加させなければならないことがわ
かった。このことは、高速負荷変化時の即応性を更に鈍
くする原因となる。
In addition, the pH deviation is set to 0.1, for example, with respect to the flow rate of the processing gas.
change (e.g. from pH 5.3 to pH 5.4)
The amount of residual CaCO3 required for this purpose was investigated. As a result, the seventh
As shown in the figure, it was found that even if the pH deviation to be changed was the same as 0.1, the residual Ca CO3Ji had to be increased as the flow rate of the process gas increased. This causes further slowing down of immediate response to high-speed load changes.

本発明は上記問題点を解消するためになされたものであ
り、高速負荷変化に対しても速やかに循環液のPHを設
定値に追従させることができ、ランニングコストを低減
し得る吸収塔PR制御装置を提供することを目的とする
ものである。
The present invention has been made to solve the above problems, and is an absorption tower PR control that can quickly make the pH of the circulating fluid follow the set value even in response to rapid load changes, and can reduce running costs. The purpose is to provide a device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題点を解決するためにpHW14
節器の比部器度としてpH偏差及び処理ガス流量に比例
する値を用いて制御することを考え1本発明をなすに至
った。つまり、pH偏差に関しては、比例感度をpH偏
差の増加関数とするとともに、処理ガス流量に関しても
、処理ガス流量が増加するにつれ、比例感度を増加させ
るような制御を行なう。
In order to solve the above-mentioned problems, the present inventors developed pHW14
The present invention was developed by considering the use of a value proportional to the pH deviation and the flow rate of the processing gas for control as the ratio of the moderator. That is, regarding the pH deviation, the proportional sensitivity is set as an increasing function of the pH deviation, and the processing gas flow rate is also controlled so that the proportional sensitivity increases as the processing gas flow rate increases.

すなわち、本発明の吸収塔pH制御装置は、吸収塔に導
入される処理ガスの流量を検出する処理ガス流量検出器
と、前記循環液のPHを検出するPH検出器と、前記p
H検出器の出力信号を入力し、PH設定値との差(pH
偏差)を演算する演算器と、前記処理ガス流量検出器の
出力信号と前記関数演算器の出力信号とを乗算する乗算
器と、前記pi(検出器の出力信号と前記乗算器の出力
信号とを入力し、吸収剤流量設定値信号を出力するpH
調節器と、前記吸収塔に供給する吸収剤流量を検出する
吸収剤流量検出器と、前記pH調節器の出力信号と前記
吸収剤流量検出器の出力信号とを入力して吸収剤調節弁
の開度を調節する吸収剤流量調節器とを具備したことを
特徴とするものである。
That is, the absorption tower pH control device of the present invention includes a processing gas flow rate detector that detects the flow rate of processing gas introduced into the absorption tower, a PH detector that detects the pH of the circulating liquid, and a pH detector that detects the pH of the circulating liquid.
Input the output signal of the H detector and check the difference (pH
a multiplier that multiplies the output signal of the processing gas flow rate detector by the output signal of the function calculator; and output the absorbent flow rate set value signal.
a regulator, an absorbent flow rate detector that detects the flow rate of absorbent supplied to the absorption tower, and an output signal of the pH adjuster and an output signal of the absorbent flow rate detector that are input to the absorbent control valve. It is characterized by comprising an absorbent flow rate regulator that adjusts the opening degree.

〔作用〕[Effect]

このような吸収塔pH制御装置によれば、pH偏差及び
処理ガス流量に比例してpHtJRWH器の比例感度を
制御し、これにより吸収剤の流量を変化させることがで
きる。このような制御を例えば第2図に示す、第2図は
pH偏差(pH設定値−循環液pH)と比例感度×制御
偏差(制御偏差=pH偏差/ p H計スパン)との関
係を示すものである。第2図かられかるように、本発明
の吸収塔PH制御装置では、pH偏差が小さいときには
穏やかな制御ができるとともに、pH偏差が大きくなる
ほど、また処理ガス流量が増加するほど従来の装置によ
る補正よりも大きな補正を行なうので速やかに循環液の
PHを設定値に追従させることができる。この結果6吸
収剤の供給量を必要以上に増加させなくてもよいので、
ランニングコストを低減することができる。
According to such an absorption tower pH control device, the proportional sensitivity of the pHtJRWH device can be controlled in proportion to the pH deviation and the flow rate of the treated gas, thereby changing the flow rate of the absorbent. Such control is shown in Figure 2, for example. Figure 2 shows the relationship between pH deviation (pH set value - circulating fluid pH) and proportional sensitivity x control deviation (control deviation = pH deviation / pH meter span). It is something. As can be seen from Fig. 2, the absorption tower PH control device of the present invention can perform gentle control when the pH deviation is small, and as the pH deviation increases or the processing gas flow rate increases, the correction by the conventional device is possible. Since a larger correction is performed than the above, it is possible to quickly make the pH of the circulating fluid follow the set value. As a result, there is no need to increase the supply amount of 6 absorbent more than necessary.
Running costs can be reduced.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図を参照して説明する。な
お1.第5図に示す従来の装置と同一の機器等には同一
の番号を付して説明を省略する0本発明に係る吸収塔p
H制御装置において新たに設けられた機器は、処理ガス
流量検出器21、演算器22及び乗算器23である。
An embodiment of the present invention will be described below with reference to FIG. Note 1. 0 Absorption tower according to the present invention p
Newly provided devices in the H control device are a processing gas flow rate detector 21, a calculator 22, and a multiplier 23.

第tmにおいて、処理ガス導入ダクト2の途中に設けら
れた処理ガス流量検出器21により検出された処理ガス
流量信号S 21は乗算器23に入力される。
At tm-th, the processing gas flow rate signal S 21 detected by the processing gas flow rate detector 21 provided midway through the processing gas introduction duct 2 is input to the multiplier 23 .

一方、pH検出@14により検出されたpH検出信号S
 14は演算器22に入力され、予め設定されたpH設
定値との差、すなわちPH偏差を演算し、その出力信号
は乗算器23に入力される。
On the other hand, pH detection signal S detected by pH detection @14
14 is input to the calculator 22 to calculate the difference from a preset pH setting value, that is, the pH deviation, and the output signal is input to the multiplier 23 .

乗算器23では処理ガス流量信号とpH偏差との積を演
算し、その結果である比例感度信号S23をPHH節器
15へ出力する。
The multiplier 23 calculates the product of the processing gas flow rate signal and the pH deviation, and outputs the resultant proportional sensitivity signal S23 to the PHH moderator 15.

pH調節器15はこの比例感度信号S−,pH検出信号
及び予め設定されたpH設定値から求められる吸収剤流
量設定値信号Sliを出力する。すなわち、pH1ll
ff器15は比例感度信号SnによりPI又はPID(
P:比例、I:積分、D:微分)制御を行ない、次式(
ff)で示すような演算を行なう。
The pH regulator 15 outputs an absorbent flow rate set value signal Sli determined from the proportional sensitivity signal S-, the pH detection signal, and a preset pH set value. That is, pH1ll
The ff unit 15 converts PI or PID (
P: proportional, I: integral, D: differential) control is performed, and the following formula (
ff) is performed.

ε= (pH設定値−pH)/pH,nここで、Sts
:pH調節器の出力信号(吸収剤流量設定値信号) F  :吸収剤流量最大値 la! S23:比例感度 @ −制御偏差 pi(:pH計ススパ ンpn TK二積分時間 TD:微分時間 この吸収剤流量設定値信号S1@は吸収剤流量調節器1
6に入力される。
ε= (pH setting value - pH)/pH, n where, Sts
: pH adjuster output signal (absorbent flow rate setting value signal) F : Absorbent flow rate maximum value la! S23: Proportional sensitivity @ - Control deviation pi (: pH meter span pn TK two integral time TD: Differential time This absorbent flow rate set value signal S1 @ is absorbent flow rate regulator 1
6 is input.

吸収剤流量調節器1Bはこの設定値信号S15及び流量
検出器10の出力信号をもとに流量調荀弁11の開度を
調整する。
The absorbent flow rate regulator 1B adjusts the opening degree of the flow rate regulating valve 11 based on this set value signal S15 and the output signal of the flow rate detector 10.

このような吸収塔pH制御装置によれば、pH偏差及び
処理ガス流量に比例してpai1節器1部器比例感度を
変えて吸収剤の流量を変化させるので、pH偏差が小さ
い場合には穏やかな制御ができ、高速負荷変化に対して
も従来よりも大きな補正を行なって速やかに循環液のP
Hを設定値に追従させることができる。このため、吸収
剤の供給量を必要以上に増加させなくてもよく、ランニ
ングコストを低減することが、できる。
According to such an absorption tower pH control device, the flow rate of the absorbent is changed by changing the proportional sensitivity of the pai1 regulator in proportion to the pH deviation and the flow rate of the process gas. It is possible to control the circulating fluid by making larger corrections than before even in response to high-speed load changes, and quickly adjusting the circulating fluid P.
H can be made to follow the set value. Therefore, it is not necessary to increase the amount of absorbent supplied more than necessary, and running costs can be reduced.

実際に従来のpH制御装置及び上記実施例のpH制御装
置により処理ガスの脱硫を行なった結果をそれぞれ第3
図及び第4rI!iに示す、なお、いずれの場合も負荷
変化率は5%/分とした。
The results of actually desulfurizing the treated gas using the conventional pH control device and the pH control device of the above example are shown in the third table.
Figure and 4th rI! In both cases, the load change rate was 5%/min.

第3図に示す従来の装置の場合には、高速負荷上昇時に
pH偏差が一時的に大きくなり、その結果吸収塔出口の
処理済ガス中のSO2濃度も一時的に大きくなっている
。これに対して第4図に示す上記実施例の装置の場合に
は、高速負荷上昇時でも応答性が良好でp)1偏差が小
さく抑えられ、その結果処理済ガス中のS02濃度も規
制値を超えないように維持できることがわかる。
In the case of the conventional apparatus shown in FIG. 3, the pH deviation becomes temporarily large during a high-speed load increase, and as a result, the SO2 concentration in the treated gas at the outlet of the absorption tower also becomes temporarily large. On the other hand, in the case of the apparatus of the above embodiment shown in Fig. 4, the response is good even when the load increases rapidly, and the p)1 deviation is suppressed to a small value, and as a result, the S02 concentration in the treated gas is also below the regulation value. It can be seen that it can be maintained so as not to exceed.

なお、上記実施例の吸収塔pH制御装置では。In addition, in the absorption tower pH control device of the said Example.

フィードバック制御により比例感度を変化させたが、本
発明はこれに限らずフィードフォワード制御を伴う場合
やpH設定値を変更する場合にも同Isζ8i153で
考ス戦のヤ島ス− 〔発明の効果〕 以上詳述した如く本発明によれば、高速負荷変化に対し
ても速やかに循環液のPHを設定値に追    □従さ
せることができ、必要以上の吸収剤を用いな    □
゛くてもすみ、ランニングコストを低減し得る吸収塔p
H制御装置を提供できるものである。
Although the proportional sensitivity is changed by feedback control, the present invention is not limited to this, and can also be applied when feedforward control is involved or when changing the pH setting value. [Effects of the Invention] As detailed above, according to the present invention, the pH of the circulating fluid can be made to quickly follow the set value □ even in response to rapid load changes, and an excessive amount of absorbent is not used □
Absorption tower p that can reduce running costs
H control device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にお也する吸収塔pH制御装置
の系統図、第2図は本発明の実施例及び従来の吸収塔p
H制御装置におけるPH偏差と比例    ゛感度×制
御偏差との関係を示す特性図、$3図は従来のpH制御
装置を用いた場合の高速負荷上昇時の循環液pH及び出
口SO2濃度の変化を示す特性図、第4図は本発明の実
施例におけるpH制御装置を用いた場合の高速負荷上昇
時の循環液    “pH及び出口S02濃度の変化を
示す特性図、第    5図は従来の吸収塔PHH御装
置の系統図、第6    ′図仕処理ガス流量と循環液
中の残留Ca C03量    □との関係を循環液の
PHをパラメータとして示す    ゛特性図、第7図
は処理ガス流量とpH偏差を0.1是正するのに必要な
残留CaCO3量との関係を示す特性図である。 l・・・吸収塔、2・・・処理ガス導入ダクト、3・・
・処理ガス、4・・・タンク、5・・・循環液、6・・
・循環ポンプ、7・・・循環配管、8・・・空気配管、
9・・・排気ダクト、10・・・流量検出器、11・・
・流量調整弁、12・・・吸収剤供給配管、13・・・
移送配管、14・−P H検出器、15・・・pHm節
器部器6・・・吸収剤流量調節器、21・・・処理ガス
流量検出器、22−・・演算器、23・・・乗算器。 出願人復代理人 弁理士 給圧 武彦 第2図 第3図 時間 (MIN)
Fig. 1 is a system diagram of an absorption tower pH control device according to an embodiment of the present invention, and Fig. 2 is a system diagram of an absorption tower pH control device according to an embodiment of the present invention and a conventional absorption tower p.
PH deviation and proportionality in H control device ゛Characteristic diagram showing the relationship between sensitivity x control deviation, Figure 3 shows the changes in circulating fluid pH and outlet SO2 concentration during high-speed load increase when using a conventional pH control device. Figure 4 is a characteristic diagram showing the changes in pH and outlet S02 concentration of the circulating liquid during a high-speed load increase when using the pH control device according to the embodiment of the present invention, and Figure 5 is a characteristic diagram showing changes in the pH and outlet S02 concentration of the circulating fluid when using the pH control device according to the embodiment of the present invention. System diagram of the PHH control device, Figure 6 shows the relationship between the process gas flow rate and the amount of residual Ca C03 in the circulating fluid using the PH of the circulating fluid as a parameter Characteristic diagram, Figure 7 shows the relationship between the process gas flow rate and the amount of residual Ca C03 in the circulating fluid It is a characteristic diagram showing the relationship with the amount of residual CaCO3 necessary to correct the deviation by 0.1. 1... Absorption tower, 2... Processing gas introduction duct, 3...
・Processing gas, 4...Tank, 5...Circulating fluid, 6...
・Circulation pump, 7... Circulation piping, 8... Air piping,
9...Exhaust duct, 10...Flow rate detector, 11...
・Flow rate adjustment valve, 12... Absorbent supply piping, 13...
Transfer piping, 14--PH detector, 15--pHm controller 6--absorbent flow rate regulator, 21--processing gas flow rate detector, 22--computer, 23-- - Multiplier. Applicant Sub-Agent Patent Attorney Supply Pressure Takehiko Figure 2 Figure 3 Time (MIN)

Claims (1)

【特許請求の範囲】[Claims] 亜硫酸ガスを含有する処理ガスを吸収塔内に導入し、吸
収剤を含有し、吸収塔内を循環する循環液と接触させて
脱硫する脱硫プラントにおいて、吸収塔に導入される処
理ガスの流量を検出する処理ガス流量検出器と、前記循
環液のpHを検出するpH検出器と、前記pH検出器の
出力信号を入力し、pH設定値との差を演算する演算器
と、前記処理ガス流量検出器の出力信号と前記関数演算
器の出力信号とを乗算する乗算器と、前記pH検出器の
出力信号と前記乗算器の出力信号とを入力し、吸収剤流
量設定値信号を出力するpH調節器と、前記吸収塔に供
給する吸収剤流量を検出する吸収剤流量検出器と、前記
pH調節器の出力信号と前記吸収剤流量検出器の出力信
号とを入力して吸収剤調節弁の開度を調節する吸収剤流
量調節器とを具備したことを特徴とする吸収塔pH制御
装置。
In a desulfurization plant that introduces a treated gas containing sulfur dioxide gas into an absorption tower and desulfurizes it by contacting it with a circulating liquid containing an absorbent that circulates within the absorption tower, the flow rate of the treated gas introduced into the absorption tower is a processing gas flow rate detector for detecting, a pH detector for detecting the pH of the circulating fluid, a calculator for inputting the output signal of the pH detector and calculating a difference from a pH set value, and the processing gas flow rate. a multiplier that multiplies the output signal of the detector and the output signal of the function calculator; and a pH multiplier that inputs the output signal of the pH detector and the output signal of the multiplier and outputs an absorbent flow rate set value signal. a regulator, an absorbent flow rate detector that detects the flow rate of absorbent supplied to the absorption tower, and an output signal of the pH adjuster and an output signal of the absorbent flow rate detector that are input to the absorbent control valve. An absorption tower pH control device comprising an absorbent flow rate regulator that adjusts the opening degree.
JP60100980A 1985-05-13 1985-05-13 Apparatus for controlling ph of absorbing tower Pending JPS61259733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100980A JPS61259733A (en) 1985-05-13 1985-05-13 Apparatus for controlling ph of absorbing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100980A JPS61259733A (en) 1985-05-13 1985-05-13 Apparatus for controlling ph of absorbing tower

Publications (1)

Publication Number Publication Date
JPS61259733A true JPS61259733A (en) 1986-11-18

Family

ID=14288486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100980A Pending JPS61259733A (en) 1985-05-13 1985-05-13 Apparatus for controlling ph of absorbing tower

Country Status (1)

Country Link
JP (1) JPS61259733A (en)

Similar Documents

Publication Publication Date Title
KR100235853B1 (en) Method of controlling oxidation in flue gas desulfurization
CN111905536B (en) Automatic control system for pH value of slurry passing through desulfurization absorption tower
JPS61259733A (en) Apparatus for controlling ph of absorbing tower
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
JPH0243473Y2 (en)
JPS61259734A (en) Apparatus for controlling ph of absorbing tower
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JPS61259731A (en) Apparatus for controlling ph of absorbing tower
JPS6150618A (en) Ph controller of absorbing tower
JPS63229126A (en) Control method for wet exhaust gas desulfurizer
JPH0579363B2 (en)
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JPS5932924A (en) Controlling method of desulfurizing ratio in waste gas desulfurizing apparatus applied with wet lime method
JPS62298427A (en) Controlling device for absorption tower in wet flue-gas desulfurization facility
JPS62140625A (en) Device for controlling outlet so2 concentration in wet stack gas desulfurizer
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPH1066825A (en) Desulfurization control apparatus
JPS60110322A (en) Ph controller for absorbing tower
JPH06134252A (en) Control device for wet flue gas desulfurization plant
JPS58177123A (en) Desulfurization apparatus for exhaust smoke
JPS59199021A (en) Controlling method of wet lime-gypsum desulfurization plant
JPS62136229A (en) Apparatus for controlling concentration of so2 at outlet of wet waste gas desulfurization equipment
JPS62136228A (en) Apparatus for controlling concentration of so2 at outlet of wet waste gas desulfurization equipment
JPS62191024A (en) Desulfurization equipment
JPS5855028A (en) Controlling method for wet type stack gas desulfurizer