JPS6150618A - Ph controller of absorbing tower - Google Patents

Ph controller of absorbing tower

Info

Publication number
JPS6150618A
JPS6150618A JP59171527A JP17152784A JPS6150618A JP S6150618 A JPS6150618 A JP S6150618A JP 59171527 A JP59171527 A JP 59171527A JP 17152784 A JP17152784 A JP 17152784A JP S6150618 A JPS6150618 A JP S6150618A
Authority
JP
Japan
Prior art keywords
flow rate
signal
absorbent
detector
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59171527A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Ichiro Toyoda
一郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59171527A priority Critical patent/JPS6150618A/en
Publication of JPS6150618A publication Critical patent/JPS6150618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hold the SO2-concn. and desulfurization ratio of exhaust gas to predetermined values, by controlling the pH-value of the absorbing solution of a desulfurization apparatus. CONSTITUTION:The flow amount of treating gas is detected by a treating gas flow amount detector 10 and the signal S11 thereof is inputted to a function calculator 21 to obtain a proportional sensitivity signal S21 which is, in turn, inputted to a pH regulator 22 along with the signal of a pH detector 13 to obtain proportional sensitivity to output a flow amount setting value signal S14. This signal S14 and the signal from an absorbent supply flow amount detector 17 are inputted to an absorbent flow amount regulator 15 to regulate the opening degree of an absorbent flow amount regulation valve 16.

Description

【発明の詳細な説明】 産業上の利用分野 本発明に、処理ガス中の亜硫酸ガス(8(h)(r除去
する脱硫プラントに係り、特に循環液のp Hを制御す
る吸収塔pH制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a desulfurization plant for removing sulfur dioxide gas (8(h)(r) from a process gas, and in particular an absorption tower pH control device for controlling the pH of a circulating liquid. Regarding.

従来の技術 脱硫プラント、例えば、炭酸力ルンウムまたは水酸化カ
ルシウムを吸収剤とする湿式石灰石こう法排煙脱硫プラ
ントにおいて、大メ中に放出する処理済ガス中の亜硫酸
ガス(S02 、)濃度あるいに吸収塔内での脱硫率ヲ
所定値に保持する為には、吸収塔全循環する循環液のp
Hが安定でかつ全負荷領域において、 pH設定値に応
答性工〈追従する必要がある。
In a conventional desulfurization plant, for example, a wet lime gypsum flue gas desulfurization plant using carbonate or calcium hydroxide as an absorbent, the concentration of sulfur dioxide gas (S02, In order to maintain the desulfurization rate in the absorption tower at a predetermined value, it is necessary to reduce the p of the circulating liquid that circulates throughout the absorption tower.
It is necessary to be responsive to the pH setting value when H is stable and in the entire load range.

そこで、第3図を参照して従来例を説明する。Therefore, a conventional example will be explained with reference to FIG.

第3図に、従来の脱硫プラントの概略構成會示す系統図
である。吸収塔1には、処理ガス導入ダクト2を介して
亜硫酸ガス(SO,ガス)を含有する処理ガスが上方か
ら導入される。−万、吸収塔1には循環液3が循環ポン
プ4お工び循環配管5にニジ循環し、この循環液3と上
記処理ガスを吸収塔1内で接触させて処理ガス中から亜
硫酸ガス全除去する構成である。すなわち、処理ガス中
のSO,は、次の式中で示すエラな反応?して液中にH
2SO,會生成して流下するーこのH,S O3の一部
は、処理ガス中の酸素(02)に工り次の式(I+1で
示す工9な反応をして酸化され、H2BO3となる。1
だ、吸収塔1内を通過した処理ガスは、排気ダクト6會
介して処理済ガスとして大気中に放出される。
FIG. 3 is a system diagram showing a schematic configuration of a conventional desulfurization plant. A processing gas containing sulfur dioxide gas (SO, gas) is introduced into the absorption tower 1 from above through a processing gas introduction duct 2 . - In the absorption tower 1, the circulating liquid 3 is continuously circulated through the circulation pump 4 and the circulation piping 5, and this circulating liquid 3 and the treated gas are brought into contact in the absorption tower 1 to completely remove the sulfur dioxide gas from the treated gas. This is the configuration to be removed. In other words, is SO in the processing gas an erroneous reaction shown in the following equation? H into the liquid
2SO, is formed and flows down - A part of this H,SO3 is converted to oxygen (02) in the processing gas and undergoes a reaction shown by the following formula (I + 1), and is oxidized to become H2BO3. .1
However, the treated gas that has passed through the absorption tower 1 is discharged into the atmosphere as treated gas through the exhaust duct 6.

S O2+Th O? E28 C3・・・・・(1)
H2BO3−1−−C2−÷I(! S L12・・・
・・([1)上記循環液3中には、上記式(I)および
(IT)で示した吸収反応お↓び酸化反応に、cv生成
したH2 S C3お工びH,804が多量に含ま扛て
おり、そのため、循」液5のpHが低下してし1う。そ
こで、吸収剤供給配管7を介して吸収塔1内に吸収剤、
例えば、炭酸カルシウム(OaO03)(その他、水酸
化カルシウムCa(OH)2  等アルカリ性のもの)
全供給して1次の式■に示す工うに循環液3を中和1〜
てpH制制御同図、SO2吸収容易な液に再生1.てい
る。
S O2+Th O? E28 C3...(1)
H2BO3-1--C2-÷I(! S L12...
([1) In the circulating fluid 3, a large amount of CV-generated H2 S C3 H, 804 is present in the absorption reaction and oxidation reaction shown in the above formulas (I) and (IT). As a result, the pH of the circulating fluid 5 decreases. Therefore, the absorbent,
For example, calcium carbonate (OaO03) (other alkaline substances such as calcium hydroxide Ca(OH)2)
Neutralize the sea urchin circulating fluid 3 by completely supplying it to the system shown in the first-order equation (■).
1. Regenerate the liquid to easily absorb SO2. ing.

H2BO3+CaO03→0aSO4+H,o+co、
↑ @−−−cmなお、循環液3の一部に配W8會介し
て図示しない別の工程に移送さ扛る。
H2BO3+CaO03→0aSO4+H,o+co,
↑ @---cm Note that a part of the circulating fluid 3 is transferred to another process (not shown) via W8.

一般に、S02吸収反応において、循環ff3のpHに
多大な影響全お工はし、p■lが高い程So2吸収反応
に促進される。pHk高く保持する為には、多量の吸収
剤全供給しなければならず、これは、コストの面から好
ましいことでにない。そこで、所望の性能を維持できる
程度のpHで運転?行なうCとが望1れている。また、
前述した工すに、循環W5のpHk低下させるのに、循
環液3中のH,803濃度あるいはH2S o4濃度の
増加であり、−万、pH會上昇させるのは、  0aO
03による中和量の増加、すなわち、循1液3中の0a
O03濃度である。そして、循環液のpHId、吸収し
たS02ととOa C03の中和量とのバランスにエリ
決定さ扛る。
Generally, in the S02 absorption reaction, the pH of the circulating ff3 has a great influence, and the higher the pl, the more the So2 absorption reaction is promoted. In order to maintain a high pHk, a large amount of absorbent must be completely supplied, which is not desirable from a cost standpoint. So, should we operate at a pH level that maintains the desired performance? It is hoped that C will be carried out. Also,
In the above-mentioned work, in order to decrease the pHk of the circulation W5, it is necessary to increase the H,803 concentration or the H2SO4 concentration in the circulating fluid 3, and to increase the pH value, it is 0aO.
Increase in the amount of neutralization due to 03, that is, 0a in circulating liquid 3
This is the O03 concentration. The pHId of the circulating fluid is determined by the balance between the absorbed S02 and the neutralization amount of Oa C03.

そこで、前述した従来の脱硫プラントにおけるpH制御
について説明する。
Therefore, pH control in the conventional desulfurization plant mentioned above will be explained.

前記循環配管5にはpH検出器13が取付けら扛ており
、このpH検出器13からの検出信号はpH調節器14
に入力さ扛る。pH調節器14では、あらかじめ股?さ
れたpH値と検出信号とを比較して、吸収剤流量設定値
信号814 k出力する。吸収剤供給流量調節器15は
、この設定値信号814 Kl”もとに吸収剤供給配管
7に介挿された流量調整5P16の開度を調整する。な
お、符号17は流量検出器である。
A pH detector 13 is attached to the circulation pipe 5, and a detection signal from this pH detector 13 is sent to a pH regulator 14.
Entered into. In pH regulator 14, crotch? The detected pH value is compared with the detection signal, and an absorbent flow rate set value signal 814k is output. The absorbent supply flow rate regulator 15 adjusts the opening degree of the flow rate adjustment 5P16 inserted in the absorbent supply pipe 7 based on this set value signal 814 Kl''. Note that reference numeral 17 is a flow rate detector.

上記pH制御でH,pH調節器14の比例感度は、脱硫
負荷の変化に関係なく一定である。
In the above pH control, the proportional sensitivity of the H and pH regulator 14 is constant regardless of changes in the desulfurization load.

そして、pH1liF1節器14の比例感度は、低負荷
で発振しない↓うに設定さ扛る為、低負荷時には最適な
値であっても、高負荷時には比例感度が小さすぎ、その
結果、pHの連応性が鈍く、循環ffpHが大きく波打
つ現象が生じていた。
The proportional sensitivity of the pH1liF1 moderator 14 is set so that it does not oscillate at low loads, so even if it is an optimal value at low loads, the proportional sensitivity is too small at high loads, and as a result, the pH linkage The response was slow, and a phenomenon in which the circulating ffpH fluctuated greatly occurred.

pHの変動は前述したように802吸収反応に多大な影
響?与えるものであり、上述した工9な現象が生ずると
、吸収塔1出口における処理済ガスのSO2濃度が安定
せず、変動してしまい、規?値?逸脱してし1う恐扛が
あった。″また、この工うなことを防止するために、循
環液3のpH値をあらかじめ必要以上に高くするという
操作がとられ、そのため、う/ニングコスト會上昇させ
てしまうという不具合があった。
Does pH fluctuation have a great effect on 802 absorption reaction as mentioned above? If the above-mentioned troublesome phenomenon occurs, the SO2 concentration of the treated gas at the outlet of the absorption tower 1 will not be stable and will fluctuate, leading to unregulated conditions. value? There was a fear of deviating. ``Furthermore, in order to prevent this problem, the pH value of the circulating fluid 3 is made higher than necessary in advance, which has the disadvantage of increasing the cleaning cost.

本発明者らは、上述の現象に対する原因を究明したとこ
ろ、以下のli’Jk見出した。
The present inventors investigated the cause of the above-mentioned phenomenon and found the following li'Jk.

すなわち、低負荷と高負荷とでは、吸収剤供給流量が弄
なるにもかかわらず、pH制御における比例感度全固足
しているため、同pH偏差に対して、吸収剤供給流量に
同量の補正しか行なわれないためである。
In other words, even though the absorbent supply flow rate varies between low and high loads, the proportional sensitivity in pH control remains constant, so the absorbent supply flow rate must be corrected by the same amount for the same pH deviation. This is because only one thing is done.

本発明者らに、pH制御系における比例感度を負荷に対
応しまた定常時での吸収剤供給流量に比例して変更すれ
ば、同pH偏差に対し吸収剤供給流量は、そのときの負
荷に対する定常時での吸収剤供給流量に比例すること、
すなわち、吸収剤供給流量に対し同一比率で補正される
ため、全負荷にわたって一足した安定なpH応答性が得
ら扛ること全見出した。
The inventors believe that if the proportional sensitivity in the pH control system is changed in accordance with the load and in proportion to the absorbent supply flow rate in steady state, the absorbent supply flow rate for the same pH deviation will be proportional to the load at that time. be proportional to the absorbent supply flow rate at steady state;
That is, it has been found that since the absorbent supply flow rate is corrected at the same ratio, stable pH responsiveness can be obtained over the entire load.

さらに、本発明者らは、処理ガス流量と足常時での吸収
剤供給流量とに第2図に示す関係全見出した。第2図は
、横軸に処理ガス流量[Nm3/H]’にとり、縦軸に
吸収剤供給流量(石灰スラリ流it ) (m3/H)
 ’?と9、処理ガス流量と吸収剤供給流量との具体例
會示した図である。処理ガス流量と吸収剤供給流量との
間には、第2図の工うな強い相関関係がある。
Furthermore, the present inventors have discovered the relationship shown in FIG. 2 between the processing gas flow rate and the constant absorbent supply flow rate. In Figure 2, the horizontal axis represents the processing gas flow rate [Nm3/H]', and the vertical axis represents the absorbent supply flow rate (lime slurry flow it) (m3/H).
'? and 9 are diagrams showing specific examples of processing gas flow rates and absorbent supply flow rates. There is a strong correlation between the processing gas flow rate and the absorbent supply flow rate as shown in FIG.

発明が解決するための問題点 本発明は、以上の点にもとづいてなさ7″したもので、
その目的とするところに、pH調節器の比例感度全処理
ガス流量の関数として変更可能なものとすることにエフ
、pH応答性を全負荷領域にわたってほぼ一足なものと
し、それによって処理済ガス中のSO2濃度の安定化を
図ると1   ともに、ランニングコストの低減を図る
ことが可能な吸収塔pH制御装置全提供することにある
Problems to be Solved by the Invention The present invention has been made based on the above points.
The aim is to make the proportional sensitivity of the pH controller variable as a function of the total process gas flow rate, and to make the pH response nearly constant over the entire load range, thereby making it possible to An object of the present invention is to provide an absorption tower pH control device that is capable of stabilizing the SO2 concentration and reducing running costs.

問題点を解決するための手段 本発明は、亜硫酸ガス全含有する処理ガス全吸収塔内に
導入し、吸収塔内全循環し、吸収剤全含有する循環液と
接触させて脱硫する脱硫プラントにおいて、吸収塔に導
入さ扛る処理ガス流量全検出する処理ガス流量検出器と
、この処理ガス流量検出器からの信号を入力し、この信
号に応じた比例感度信号を出力する関数演算器と、前記
循環液のpH全検出するpH検出器と、前記比例感度信
号全入力してこ7″LL全比度とし、上記pH検出器か
らの検出信号に応じた吸収剤供給流計設定値信号を出力
するpH調節器と、前記吸収塔に供給する吸収剤流t?
量検出る吸収剤供給流計検出器と、前記pH調節器から
の信号と、前記吸収剤供給流量検出器からの検出信号と
7人力して、吸収剤流量最大値の開度全調節する吸収剤
流量調節器と全具備したこと全特徴とする吸収塔pH制
御装置に関する。
Means for Solving the Problems The present invention provides a desulfurization plant in which a treated gas containing all sulfur dioxide gas is introduced into an absorption tower, circulated throughout the absorption tower, and brought into contact with a circulating liquid containing all absorbent to desulfurize. , a processing gas flow rate detector that detects the entire flow rate of the processing gas introduced into the absorption tower; a function calculator that inputs a signal from the processing gas flow rate detector and outputs a proportional sensitivity signal according to this signal; The pH detector that detects the entire pH of the circulating fluid and the proportional sensitivity signal are all inputted to the 7" LL total ratio, and an absorbent supply flowmeter set value signal is output in accordance with the detection signal from the pH detector. and an absorbent stream t? fed to the absorption column.
Absorbent supply flowmeter detects the absorbent flow rate, the signal from the pH adjuster, and the detection signal from the absorbent supply flow rate detector. The present invention relates to an absorption tower pH control device which is completely equipped with a reagent flow rate regulator.

以下、第1図全参照して本発明の一実施例による吸収塔
pH制御装置の構成について説明する。なお、第3図の
ものと同一の機器等については、同一の符号全村し、そ
の説明全省略する。
The configuration of an absorption tower pH control device according to an embodiment of the present invention will be described below with full reference to FIG. Note that the same equipment and the like as those shown in FIG. 3 are designated by the same reference numerals, and the explanation thereof will be omitted.

本発明にエフ新たに具備さnだ機器に、処理ガス流量検
出器10、関数演算器21.及びpI(調節器22であ
る。
The present invention newly includes a processing gas flow rate detector 10, a function calculator 21. and pI (regulator 22).

作用 処理ガス流計検出器10にエリ検出さf’L7j処理ガ
ス流量信号8.、 n、関数演算器21に入力される。
The processing gas flow rate signal f'L7j is detected by the processing gas flowmeter detector 10. , n are input to the function calculator 21.

関数演算器21では、前述したように、処理ガス流量に
対応した定常時での吸収剤流量に比例した信号全演算出
力するため、入力信号である処理ガス流量に対し第2図
で示した吸収剤供給流量と同等な信号全比例感度信号S
21 として出力する。pH調節器22は、この比例感
度信号sn b p■検出器13からの検出信号、およ
びあらかじめ設定され7(pH値エク吸収剤供給流量全
調節する。すなわち、pH調節器22は、比例感度信号
1h+に工9P(比例)、あるいはP工(比例、積分)
、あるいはPより(比例、積分、微分)制御7行ない、
仄の式(財)で示す工うな出力の循環液供給流量設定値
信号814 k吸収剤供給流量調節器15に出力する。
As mentioned above, the function calculator 21 outputs all calculation signals proportional to the absorbent flow rate in a steady state corresponding to the processing gas flow rate, so the absorption coefficient shown in FIG. Signal total proportional sensitivity signal S equivalent to agent supply flow rate
Output as 21. The pH regulator 22 uses this proportional sensitivity signal sn b p ■ The detection signal from the detector 13 and the preset pH value EX absorbent supply flow rate. In other words, the pH regulator 22 uses the proportional sensitivity signal 1h+ and 9P (proportional) or P (proportional, integral)
, or 7 lines of control (proportional, integral, differential) from P,
A circulating fluid supply flow rate set value signal 814 k is outputted to the absorbent supply flow rate regulator 15 as shown in the following equation.

ただし F ; pH調節器出力(吸収剤供給流量設定値)Fm
ax ;吸収剤流量最大値 pH5pn ; pH計ススパ ン;比例感度 TD;微分時間 gpH; pH偏差(pH設定値−pH)また、比例感
度(K)U処理ガス流1゛に工って変更するため、積分
ではに’5被積分内に含めた。
However, F; pH controller output (absorbent supply flow rate set value) Fm
ax; maximum absorbent flow rate pH5pn; pH meter span; proportional sensitivity TD; differential time gpH; pH deviation (pH set value - pH) Also, proportional sensitivity (K) U to be changed by adjusting the processing gas flow 1゛, in the integral, it was included in the '5 integrand.

吸収剤供給流量調節器15に、この設定値信号814を
もとに流量調整弁16の開度全調整する。
The absorbent supply flow rate regulator 15 fully adjusts the opening degree of the flow rate regulating valve 16 based on this set value signal 814.

このように、本発明による吸収塔pH制御装置によれば
、比例感度(5))全処理ガス流量に見合った吸収剤供
給流量に応じて変更するため、全負荷領域にわたってほ
ぼ一定の安定したpH応容性ケ得ることができるととも
に、処理済排ガス中の5o2I%度全安定に維持するこ
とができる。
As described above, according to the absorption tower pH control device according to the present invention, since the proportional sensitivity (5) is changed according to the absorbent supply flow rate commensurate with the total processing gas flow rate, it is possible to maintain an approximately constant and stable pH over the entire load range. Not only can the tolerability be obtained, but also the 5o2I% level in the treated exhaust gas can be maintained completely stable.

−七して、従来処理済排ガス中のSo2濃度が規?値を
逸脱すること全防市するために、pH設定値を必要以上
に高めておくという措置がとられていたが、この工うな
措置全不要とすることができ、ランニングコストの低減
全図ることが可能となる。
-7. Is the So2 concentration in conventionally treated exhaust gas regulated? In order to prevent deviations from the pH value, measures were taken to keep the pH set point higher than necessary, but this measure can be completely eliminated and running costs can be reduced completely. becomes possible.

本発明に、pH制御系でのフィードバック制御における
比例感度に関するものであるため、フィードフォワード
制御を伴う場合や、pH設定値全変更する場合にも、同
様に適応できるものである。
Since the present invention relates to proportional sensitivity in feedback control in a pH control system, it can be similarly applied to cases involving feedforward control or cases where the pH setting value is completely changed.

発明の効果 本発明の吸収塔pH制御装置によれば、全負荷領穢にわ
たってほぼ一定の安定したpH応答性か得ることができ
る。また、処理済排ガス中のSo、濃度全安定に維持す
ることができる。更には、pH設足値全必要以上に高め
る必要がないので、このための措置が不要となるため、
ランニングコストの低減を図ることができる。
Effects of the Invention According to the absorption tower pH control device of the present invention, it is possible to obtain a substantially constant and stable pH response over the entire load range. Further, the concentration of So in the treated exhaust gas can be maintained at a completely stable level. Furthermore, since there is no need to raise the pH value more than necessary, there is no need to take any measures for this purpose.
Running costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による吸収塔pH制御装竹の系統図で
あり、第2図は、処理ガス流針と定常時での吸収剤供給
流量との関係全示す図である。第6図は、従来の吸収塔
pu制御装置の系統図である。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 is a system diagram of the absorption tower pH control device according to the present invention, and FIG. 2 is a diagram showing the entire relationship between the process gas flow needle and the absorbent supply flow rate in a steady state. FIG. 6 is a system diagram of a conventional absorption tower PU control device. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 亜硫酸ガスを含有する処理ガスを吸収塔内に導入し、吸
収塔内を循環し、吸収剤を含有する循環液と接触させて
脱硫する脱硫プラントにおいて、吸収塔に導入される処
理ガス流量を検出する処理ガス流量検出器と、この処理
ガス流量検出器からの信号を入力し、その信号に応じた
比例感度信号を出力する関数演算器と、前記循環液のp
Hを検出するpH検出器と、前記比例感度信号を入力し
てこれを比例感度とし、上記pH検出器からの検出信号
に応じた吸収剤供給流量設定値信号を出力するpH調節
器と、前記吸収塔に供給する吸収剤流量を検出する吸収
剤供給流量検出器と、前記pH調節器からの信号と、前
記吸収剤供給流量検出器からの検出信号を入力して、吸
収剤流量調節弁の開度を調節する吸収剤流量調節器とを
具備したことを特徴とする吸収塔pH制御装置。
Detects the flow rate of the treated gas introduced into the absorption tower in a desulfurization plant that introduces the treated gas containing sulfur dioxide gas into the absorption tower, circulates it within the absorption tower, and desulfurizes it by contacting it with the circulating liquid containing the absorbent. a processing gas flow rate detector that inputs a signal from the processing gas flow rate detector and outputs a proportional sensitivity signal according to the signal;
a pH detector that detects H; a pH regulator that inputs the proportional sensitivity signal to make it proportional sensitivity and outputs an absorbent supply flow rate set value signal according to the detection signal from the pH detector; An absorbent supply flow rate detector that detects the flow rate of absorbent supplied to the absorption tower, a signal from the pH regulator, and a detection signal from the absorbent supply flow rate detector are inputted to control the absorbent flow rate control valve. An absorption tower pH control device comprising an absorbent flow rate regulator that adjusts the opening degree.
JP59171527A 1984-08-20 1984-08-20 Ph controller of absorbing tower Pending JPS6150618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171527A JPS6150618A (en) 1984-08-20 1984-08-20 Ph controller of absorbing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171527A JPS6150618A (en) 1984-08-20 1984-08-20 Ph controller of absorbing tower

Publications (1)

Publication Number Publication Date
JPS6150618A true JPS6150618A (en) 1986-03-12

Family

ID=15924772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171527A Pending JPS6150618A (en) 1984-08-20 1984-08-20 Ph controller of absorbing tower

Country Status (1)

Country Link
JP (1) JPS6150618A (en)

Similar Documents

Publication Publication Date Title
KR100235853B1 (en) Method of controlling oxidation in flue gas desulfurization
JPH0824566A (en) Method for controlling oxidation of sulfite
CN111905536B (en) Automatic control system for pH value of slurry passing through desulfurization absorption tower
JPS6150618A (en) Ph controller of absorbing tower
JPH0243473Y2 (en)
JPS61259733A (en) Apparatus for controlling ph of absorbing tower
JPS5932924A (en) Controlling method of desulfurizing ratio in waste gas desulfurizing apparatus applied with wet lime method
JPS61433A (en) Waste gas desulfurization
JPS62140625A (en) Device for controlling outlet so2 concentration in wet stack gas desulfurizer
JPS61259734A (en) Apparatus for controlling ph of absorbing tower
JPS62298427A (en) Controlling device for absorption tower in wet flue-gas desulfurization facility
JPS61259731A (en) Apparatus for controlling ph of absorbing tower
JPS62191024A (en) Desulfurization equipment
JPS62136228A (en) Apparatus for controlling concentration of so2 at outlet of wet waste gas desulfurization equipment
JPS61157330A (en) Method for supplying absorbent of waste gas desulfurization apparatus
JPS60118221A (en) Apparatus for controlling ph of absorbing tower in waste gas desulfurizing plant
JPS61259732A (en) Apparatus for controlling ph of absorbing tower
JPS61234913A (en) Controlling method for wet stack gas desulfurization facility
JPS5826073Y2 (en) water treatment equipment
SU685627A1 (en) Method of controlling the process of ammonia absorption in soda production unit
JPS62136229A (en) Apparatus for controlling concentration of so2 at outlet of wet waste gas desulfurization equipment
JPH06134252A (en) Control device for wet flue gas desulfurization plant
JPS6244733Y2 (en)
SU333371A1 (en) AYANTO-SHNICHEONARI
SU1637847A1 (en) Method for controlling process of absorption of sulphurous anhydride