JPS6244733Y2 - - Google Patents

Info

Publication number
JPS6244733Y2
JPS6244733Y2 JP5281082U JP5281082U JPS6244733Y2 JP S6244733 Y2 JPS6244733 Y2 JP S6244733Y2 JP 5281082 U JP5281082 U JP 5281082U JP 5281082 U JP5281082 U JP 5281082U JP S6244733 Y2 JPS6244733 Y2 JP S6244733Y2
Authority
JP
Japan
Prior art keywords
desulfurization
tower
liquid level
liquid
oxidation tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5281082U
Other languages
Japanese (ja)
Other versions
JPS58156524U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5281082U priority Critical patent/JPS58156524U/en
Publication of JPS58156524U publication Critical patent/JPS58156524U/en
Application granted granted Critical
Publication of JPS6244733Y2 publication Critical patent/JPS6244733Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【考案の詳細な説明】 本考案は湿式石灰法による排煙脱硫装置に関
し、特にその脱硫塔および酸化塔における液面制
御システムの改良に係る。
[Detailed Description of the Invention] The present invention relates to a flue gas desulfurization device using a wet lime method, and particularly relates to an improvement of a liquid level control system in a desulfurization tower and an oxidation tower.

湿式石灰法による排煙脱硫法は、排ガスを石灰
スラリーと接触させることにより排ガス中に含ま
れる亜硫酸ガス(以下SO2ガスという)を主に亜
硫酸カルシウム(CaSO2・1/2H2O)として、また 一部は亜硫酸水素カルシウム(Ca(HSO32とし
て固定し、除去するものである。そして、生成し
たCaSO3・1/2H2OおよびCa(HSO32は安定な硫酸 塩(CaSO4)に酸化され、有用な副生物である石
膏として、回収されている。従つて、湿式石灰法
による排煙脱硫装置には上記SO2ガスの固定を行
なう脱硫塔と、CaSO3・1/2H2O等を酸化するため の酸化塔と、石膏を分離回収するための後処理装
置が含まれている。
The flue gas desulfurization method using the wet lime method converts the sulfur dioxide gas (hereinafter referred to as SO 2 gas) contained in the flue gas into mainly calcium sulfite (CaSO 2 1/2H 2 O) by bringing the flue gas into contact with lime slurry. A part of it is fixed as calcium bisulfite (Ca(HSO 3 ) 2 ) and removed.The generated CaSO 3 1/2H 2 O and Ca(HSO 3 ) 2 are converted into stable sulfate (CaSO 3 ) 2 . 4 ) and is recovered as gypsum, which is a useful by-product.Therefore, the flue gas desulfurization equipment using the wet lime method includes a desulfurization tower that fixes the above-mentioned SO 2 gas, and CaSO 3.1 / It includes an oxidation tower for oxidizing 2H 2 O, etc., and a post-treatment device for separating and recovering gypsum.

第1図は、従来の湿式石灰法による排煙脱硫装
置を示すフローチヤートである。同図において、
1は脱硫塔、2は酸化塔、3は後処理装置であ
る。脱硫塔1の底部には排ガス中のSO2ガスを吸
収固定する脱硫液が貯溜される脱硫液溜4が形成
されている。該脱硫液溜4に貯溜された脱硫液は
ポンプ5により抜き出され、ライン6および図示
しないその分岐ラインを通つて脱硫塔1の頂部か
ら脱硫塔内部にスプレーされる。スプレーされた
脱硫液は入口ダクト7から脱硫塔1に導入した排
ガスと向流接触し、排ガス中に含まれるSO2ガス
を吸収固定して脱硫液溜4に帰還する。従つて、
脱硫液溜4に貯溜されている脱硫液には石灰
(CaCO3)の他にCaSO3・1/2H2OおよびCa (HSO32が含まれている。
FIG. 1 is a flowchart showing a conventional wet lime method flue gas desulfurization device. In the same figure,
1 is a desulfurization tower, 2 is an oxidation tower, and 3 is a post-treatment device. A desulfurization liquid reservoir 4 is formed at the bottom of the desulfurization tower 1 in which a desulfurization liquid for absorbing and fixing SO 2 gas in the exhaust gas is stored. The desulfurization liquid stored in the desulfurization liquid reservoir 4 is extracted by a pump 5 and sprayed from the top of the desulfurization tower 1 into the inside of the desulfurization tower through a line 6 and its branch line (not shown). The sprayed desulfurization liquid comes into countercurrent contact with the exhaust gas introduced into the desulfurization tower 1 from the inlet duct 7, absorbs and fixes SO 2 gas contained in the exhaust gas, and returns to the desulfurization liquid reservoir 4. Therefore,
The desulfurization liquid stored in the desulfurization liquid reservoir 4 contains CaSO 3 1/2H 2 O and Ca (HSO 3 ) 2 in addition to lime (CaCO 3 ).

他方、SO2ガスを除去された排ガスは出口ダク
トに設けられたミストセパレータ8でミストを分
離された後、系外に放出される。そして、ミスト
セパレータ8で分離されたミストはミストドレン
管9を通つて脱硫液溜4に帰還する。また、脱硫
液溜4に貯溜されている脱硫液を撹拌して脱硫液
からスラリーが分離沈降するのを防止するために
撹拌機10が設けられている。この撹拌機10の
設置部分は通常密閉されず、脱硫塔1はこの部分
を通して開方系になつている。このため、、排ガ
スがこの部分から系外に放出されるのを防止する
ために仕切板11によるガスシール構造が採用さ
れている。即ち、仕切板11は脱硫塔1内部の上
部空間を撹拌器10設置側と排ガス入口側として
分割するように設置され、しかもその下端部が脱
硫液中に浸漬されるように設置されている。従つ
て、導入された排ガスは仕切板11および脱硫液
にシールされ、撹拌器10側の液室12への漏れ
が防止される。脱硫塔1には石灰液供給ライン1
3から新しい石灰液が供給される一方、SO2ガス
の吸収で生成されたCaSO3・1/2H2Oを含む脱硫液 はポンプ5により抜き取られ、ライン7および流
量調節弁14を経て酸化塔2の頂部へ導入され
る。これとは別に酸化塔2には硫酸(H2SO4)が
供給されると共に空気の吹込みが行なわれ、導入
された脱硫液中に含まれるCaSO3・1/2H2O,Ca (HSO32および未反応のCaCO3はH2SO4および酸
素の作用によりCaSO4に酸化される。こうして生
成したCaSO4を含むスラリー(以下石膏液とい
う)は酸化塔2の底部からライン15により抜き
取られ、流量調節弁16を経て後処理装置3に導
入される。後処理装置3では石膏液からの石膏の
分離回収が行なわれる。なお、酸化塔2から抜き
取られた石膏液の一部はライン17により分岐さ
れ、脱硫塔1内でスケールが生成するのを防止す
るための種晶として脱硫塔1に再循環される。こ
の再循環量はライン17に設けられた流量調節弁
18およびその開度を調節する流量調節計19に
よつて制御されている。
On the other hand, the exhaust gas from which the SO 2 gas has been removed is discharged to the outside of the system after the mist is separated by a mist separator 8 provided in the outlet duct. The mist separated by the mist separator 8 returns to the desulfurization reservoir 4 through the mist drain pipe 9. Further, a stirrer 10 is provided to stir the desulfurization liquid stored in the desulfurization liquid reservoir 4 and to prevent the slurry from separating and settling from the desulfurization liquid. The part where the stirrer 10 is installed is usually not sealed, and the desulfurization tower 1 is an open system through this part. For this reason, a gas seal structure using the partition plate 11 is adopted to prevent the exhaust gas from being released from this part to the outside of the system. That is, the partition plate 11 is installed so as to divide the upper space inside the desulfurization tower 1 into the agitator 10 installation side and the exhaust gas inlet side, and is installed so that its lower end is immersed in the desulfurization liquid. Therefore, the introduced exhaust gas is sealed by the partition plate 11 and the desulfurization liquid, and leakage to the liquid chamber 12 on the stirrer 10 side is prevented. The desulfurization tower 1 has a lime liquid supply line 1
Fresh lime liquid is supplied from 3, while the desulfurization liquid containing CaSO 3 1/2 H 2 O generated by absorption of SO 2 gas is extracted by pump 5 and sent to the oxidation tower via line 7 and flow control valve 14. Introduced to the top of 2. Separately, sulfuric acid (H 2 SO 4 ) is supplied to the oxidation tower 2, and air is blown into the oxidation tower 2. CaSO 3 1/2H 2 O, Ca (HSO 3 ) 2 and unreacted CaCO 3 are oxidized to CaSO 4 by the action of H 2 SO 4 and oxygen. The slurry containing CaSO 4 thus generated (hereinafter referred to as gypsum liquid) is extracted from the bottom of the oxidation tower 2 through a line 15 and introduced into the aftertreatment device 3 via a flow rate control valve 16 . In the post-processing device 3, gypsum is separated and recovered from the gypsum solution. A portion of the gypsum liquid extracted from the oxidation tower 2 is branched off through a line 17 and recycled to the desulfurization tower 1 as seed crystals to prevent scale from forming within the desulfurization tower 1. The amount of recirculation is controlled by a flow rate control valve 18 provided in the line 17 and a flow rate control meter 19 that adjusts its opening degree.

ところで、上記のような排煙脱硫装置では脱硫
装置1、酸化塔2および後処理装置3での反応お
よび処理が所定の良好な状態で行なわれるように
前記脱硫液および石膏液の抜取り量を制御しなけ
ればならず、この制御は脱硫塔1における脱硫液
の液面高さおよび酸化塔2における石膏液の液面
高さに基づき、両者の液面が所定のレベルに維持
されるように行なわれている。そして、脱硫塔1
における脱硫液溜4の容積は一般に酸化塔2の容
積よりも大容量で液面レベルの変動がゆるやかで
あることから、この制御には脱硫塔1の液面レベ
ル制御を主体とした制御システムが従来採用され
ている。これを第1図の例について説明すれば次
の通りである。まず、脱硫塔1の液面レベル制御
は液室12の側壁に設けられた液面検出計20
と、該液面検出計20からの信号に従つて液室1
2内の液レベルが所定の高さになるように流量調
節弁14の開度を制御する脱硫塔液レベル調節計
21によつて制御されている。また、酸化塔2の
液レベルは酸化塔、側壁に設けられた液面検出計
22と、該液面検出計22からの信号に従つて酸
化塔2の液レベルが所定の高さになるように流量
調節弁16の開度を制御する酸化塔液レベル調節
計23によつて制御されている。即ち、両者とも
夫々独立した自己制御ループでの制御が行なわれ
ており、上流側にある脱硫塔1の液面レベル変動
が小さければこの制御システムで安定な運転が可
能である。
By the way, in the flue gas desulfurization apparatus as described above, the amount of the desulfurization liquid and the gypsum liquid to be extracted is controlled so that the reactions and treatments in the desulfurization apparatus 1, oxidation tower 2, and post-treatment apparatus 3 are carried out in a predetermined good condition. This control is based on the liquid level of the desulfurizing liquid in the desulfurizing tower 1 and the liquid level of the gypsum liquid in the oxidizing tower 2, and is performed so that both liquid levels are maintained at a predetermined level. It is. And desulfurization tower 1
Since the volume of the desulfurization liquid reservoir 4 is generally larger than the volume of the oxidation tower 2 and the liquid level fluctuates more slowly, this control requires a control system that mainly controls the liquid level of the desulfurization tower 1. Traditionally used. This will be explained with reference to the example shown in FIG. 1 as follows. First, the liquid level of the desulfurization tower 1 is controlled by a liquid level detector 20 installed on the side wall of the liquid chamber 12.
and the liquid chamber 1 according to the signal from the liquid level detector 20.
It is controlled by a desulfurization tower liquid level controller 21 that controls the opening degree of the flow rate control valve 14 so that the liquid level in the desulfurization tower 2 reaches a predetermined height. The liquid level in the oxidation tower 2 is determined by a liquid level detector 22 installed on the side wall of the oxidation tower and a signal from the liquid level detector 22 so that the liquid level in the oxidation tower 2 reaches a predetermined level. It is controlled by an oxidation tower liquid level controller 23 which controls the opening degree of the flow rate control valve 16. That is, both of them are controlled by independent self-control loops, and if fluctuations in the liquid level of the upstream desulfurization tower 1 are small, stable operation is possible with this control system.

ところが、実際には脱硫塔1における前述のガ
スシール構造により液室12の液面レベルは排ガ
ス流量に従つて頻繁に変動する。即ち、排ガス流
量が変化すると脱硫塔1内のガスシールされた空
間および液室12内の空間の間に内圧差が生じ、
従つて仕切板11の両側でのこの内圧差に相当す
る液面レベル差が生じるから、液室12内の液面
レベルは入口ダクト7から導入される排ガスの圧
力に追従して変動することになる。そして、排ガ
ス圧力が低下して液室12内の液レベルが低下し
た場合、脱硫塔液レベル調節計21は流量調節弁
14の開度を絞つて酸化塔2へ送給される脱硫液
の量を減少させる。これに対して、酸化塔2でも
前記の液面レベル制御機構22,23,16によ
る制御が働きはするが、この制御とは無関係にラ
イン17からは常に一定量の石膏スラリーが種晶
として脱硫塔1へ再循環される。従つて、このと
き酸化塔2の液面レベルは低下する。しかも酸化
塔2の容積が脱硫塔液溜4の容量に比較して極め
て小さいから一時的には酸化塔2の液面レベルが
大幅に低下する異常現象が生じ、酸化機能が低下
するといつた問題を生じる。
However, in reality, due to the aforementioned gas seal structure in the desulfurization tower 1, the liquid level in the liquid chamber 12 frequently fluctuates in accordance with the flow rate of the exhaust gas. That is, when the exhaust gas flow rate changes, an internal pressure difference occurs between the gas-sealed space in the desulfurization tower 1 and the space in the liquid chamber 12,
Therefore, since a liquid level difference corresponding to this internal pressure difference occurs on both sides of the partition plate 11, the liquid level in the liquid chamber 12 fluctuates in accordance with the pressure of the exhaust gas introduced from the inlet duct 7. Become. When the exhaust gas pressure decreases and the liquid level in the liquid chamber 12 decreases, the desulfurization tower liquid level controller 21 reduces the opening degree of the flow rate control valve 14 to reduce the amount of desulfurization liquid sent to the oxidation tower 2. decrease. On the other hand, control by the liquid level control mechanisms 22, 23, and 16 works in the oxidation tower 2 as well, but regardless of this control, a certain amount of gypsum slurry is always supplied from the line 17 as a seed crystal for desulfurization. Recirculated to column 1. Therefore, at this time, the liquid level in the oxidation tower 2 decreases. Moreover, since the volume of the oxidizing tower 2 is extremely small compared to the capacity of the desulfurizing tower liquid reservoir 4, an abnormal phenomenon occurs in which the liquid level of the oxidizing tower 2 temporarily drops significantly, resulting in a decrease in the oxidizing function. occurs.

これと反対に入口ダクト7から導入される排ガ
スの圧力が増大して液室12の液面レベルが上昇
した場合には、脱硫塔の液面レベル制御機構2
0,21,14により酸化塔2へ送給される脱硫
液の量が増大する。このとき制御機構22,2
3,16は後処理装置23への石膏液の送給量を
急増させるから、酸化塔2では導入された脱硫液
の帯溜時間が短かくなつて酸化が不充分になると
いつた問題が生じる。また、後処理装置3では負
荷が急増して石膏分離能力等に問題が生じること
になる。
On the contrary, when the pressure of the exhaust gas introduced from the inlet duct 7 increases and the liquid level in the liquid chamber 12 rises, the liquid level control mechanism 2 of the desulfurization tower
0, 21, and 14, the amount of desulfurization liquid fed to the oxidation tower 2 increases. At this time, the control mechanism 22, 2
3 and 16 rapidly increase the amount of gypsum liquid fed to the post-processing device 23, which shortens the residence time of the desulfurization liquid introduced in the oxidation tower 2, causing problems such as insufficient oxidation. . Moreover, the load on the post-processing device 3 increases rapidly, causing problems in the gypsum separation ability and the like.

本考案は上記事情に鑑みてなされたもので、酸
化塔に導入される脱硫液および酸化塔から抜き取
られて後処理装置へ導入される石膏液の流量を安
定して制御でき、もつて酸化塔の高効率化および
後処理装置の裕度向上を達成し得る制御システム
を備えた排煙脱硫装置を提供するものである。
The present invention was developed in view of the above circumstances, and it is possible to stably control the flow rate of the desulfurization liquid introduced into the oxidation tower and the gypsum liquid extracted from the oxidation tower and introduced into the post-treatment equipment, and thereby The present invention provides a flue gas desulfurization device equipped with a control system that can achieve high efficiency and improved tolerance of the after-treatment device.

即ち、本考案は、液面検出計を備えた脱硫塔
と、該脱硫塔に脱硫液供給ラインを介して接続さ
れた酸化塔と、該脱硫液供給ラインに取付けられ
た脱硫液流量調節弁と、前記酸化塔に取付けられ
た酸化塔液面検出計と、前記酸化塔に脱硫処理液
供給ラインを介して接続された後処理装置と、該
脱硫処理液供給ラインに取付けられた処理液流量
調節弁と、前記酸化塔液面検出計の出力を受けて
所定の弁開度信号を前記脱硫液流量調節弁に供給
する酸化塔液レベル調節計と、前記液面検出計の
出力を受けて所定の弁開度信号を前記処理液流量
調節弁に供給する脱硫塔液レベル調節計とを具備
する排煙脱硫装置である。
That is, the present invention includes a desulfurization tower equipped with a liquid level detector, an oxidation tower connected to the desulfurization tower via a desulfurization liquid supply line, and a desulfurization liquid flow rate control valve attached to the desulfurization liquid supply line. , an oxidation tower liquid level detector attached to the oxidation tower, a post-treatment device connected to the oxidation tower via a desulfurization treatment liquid supply line, and a treatment liquid flow rate adjustment installed on the desulfurization treatment liquid supply line. an oxidation tower liquid level controller that receives the output of the oxidation tower liquid level detector and supplies a predetermined valve opening degree signal to the desulfurization liquid flow rate control valve; and a desulfurization tower liquid level controller that supplies a valve opening degree signal to the treated liquid flow rate control valve.

以下第2図〜第5図を参照して本考案の実施列
を説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 5.

第2図は本考案の一実施例になる排煙脱硫装置
を示すフローチヤートである。同図において、第
1図と同じ部分には、同一の参照番号を付してあ
る。第2図から明らかなように、この実施例の排
煙脱硫装置の構成はそのフロー制御システムを除
いて総て第1図のものと同じである。即ち、この
実施例では脱硫塔1の液面検出計20に接続され
た脱硫塔液レベル調節計21が後処理装置3へ導
入される石膏スラリーの供給量を調節する流量調
節弁16に接続されてその開度を制御している点
で第1図の場合と相違している。また、酸化塔2
の液面検出計22に接続された酸化塔液レベル調
節計23は酸化塔に導入される脱硫液の量を調節
するための流量調節弁14に接続されてその開度
を制御しており、この点でも第1図の場合と相違
している。この結果、酸化塔2においては液面レ
ベル制御機構22,23,14によつて液面の自
己制御ループが形成されているが、脱硫塔1にお
ける液面レベル制御機構20,21,23は自己
制御ループを形成していない。つまり、脱硫塔1
の液面レベルは、まず流量調節弁16の開度調節
により酸化塔2からの石膏液の抜き取り量を制御
し、この影響により酸化塔2の液面レベル制御機
構22,23,14を動作させて脱硫塔1から酸
化塔2へ供給される脱硫液流量を制御するといつ
た制御ループ、即ち酸化塔2の自己制御ループを
介在した連鎖制御ループで行なわれる。
FIG. 2 is a flowchart showing a flue gas desulfurization device according to an embodiment of the present invention. In this figure, the same parts as in FIG. 1 are given the same reference numbers. As is clear from FIG. 2, the structure of the flue gas desulfurization apparatus of this embodiment is the same as that of FIG. 1 except for its flow control system. That is, in this embodiment, a desulfurization tower liquid level controller 21 connected to a liquid level detector 20 of the desulfurization tower 1 is connected to a flow rate control valve 16 that adjusts the supply amount of gypsum slurry introduced into the aftertreatment device 3. This is different from the case shown in FIG. 1 in that the opening degree is controlled by the lever. In addition, oxidation tower 2
The oxidation tower liquid level controller 23 connected to the liquid level detector 22 is connected to a flow rate adjustment valve 14 for adjusting the amount of desulfurization liquid introduced into the oxidation tower, and controls its opening degree. This point also differs from the case shown in FIG. As a result, in the oxidation tower 2, a self-control loop for the liquid level is formed by the liquid level control mechanisms 22, 23, and 14, but the liquid level control mechanisms 20, 21, and 23 in the desulfurization tower 1 are self-controlled. No control loop is formed. In other words, desulfurization tower 1
The liquid level is determined by first controlling the amount of gypsum liquid extracted from the oxidation tower 2 by adjusting the opening of the flow rate control valve 16, and by this influence, the liquid level control mechanisms 22, 23, and 14 of the oxidation tower 2 are operated. The flow rate of desulfurization liquid supplied from the desulfurization tower 1 to the oxidation tower 2 is controlled by a control loop, that is, a chain control loop with a self-control loop of the oxidation tower 2 interposed therebetween.

上記第2図の実施例において、脱硫塔1に導入
される排ガスの圧力(即ち、排ガス量)が減少し
て液室12の液面レベルが低下したとすると、ま
ず脱硫塔1の液面レベル制御機構20,21が流
量調節弁16の開度を制御し、酸化塔2の抜出し
液流量を調節する。つまり、脱硫塔液レベル調節
計21は、積分動作機能を有する調節計を設け、
脱硫塔液室12の液レベルが急激に変化した場合
も、流量調節弁16を徐々に開閉することによ
り、酸化塔2の抜き出流量と供給量の急変と大巾
な変動を制御する。その結果、酸化塔2の供給量
を安定にして酸化効率の向上と安定化を図り、酸
化塔2を小形にして必要空気量を減少してコスト
ダウンを達成できる。
In the embodiment shown in FIG. 2 above, if the pressure of the exhaust gas introduced into the desulfurization tower 1 (that is, the amount of exhaust gas) decreases and the liquid level in the liquid chamber 12 decreases, first the liquid level in the desulfurization tower 1 decreases. Control mechanisms 20 and 21 control the opening degree of the flow rate control valve 16 to adjust the flow rate of liquid extracted from the oxidation tower 2. In other words, the desulfurization tower liquid level controller 21 is provided with a controller having an integral operation function,
Even when the liquid level in the desulfurization tower liquid chamber 12 changes suddenly, sudden changes and large fluctuations in the extraction flow rate and supply amount of the oxidation tower 2 can be controlled by gradually opening and closing the flow rate control valve 16. As a result, the supply amount of the oxidation tower 2 can be stabilized to improve and stabilize the oxidation efficiency, and the oxidation tower 2 can be made smaller to reduce the amount of air required, thereby achieving cost reduction.

第3図は、本考案の他の実施例の概略構成を示
す説明図である。なお、第2図に示す排煙脱硫装
置と同じ部分には、同一の参照番号を付してあ
る。この排煙脱硫装置は、第3図から明らかなよ
うに、脱硫塔1,1′を2台設けたことに起因し
て、フロー制御システムに偏差変換器31と演算
器21及び選択器30を設けた点を除いて、総て
第2図に示すものと同様の構成を有している。即
ち、この実施例のフロー制御システムは、2台の
脱硫塔1,1′の液面検出計20,20′の出力信
号を受けて所定の弁開度信号を脱硫塔液レベル調
節計21に供給する選択器30を有している。ま
た、このフロー制御システムは、これらの液面検
出計20,20′からの出力信号によつて液面レ
ベル差を検出する偏差変換器31と、この偏差変
換器31及び酸化塔液レベル調節計23の出力信
号を受けて、所定の弁開度信号を流量調節弁1
4,14′に供給する演算器32とを有してい
る。
FIG. 3 is an explanatory diagram showing a schematic configuration of another embodiment of the present invention. Note that the same parts as in the flue gas desulfurization apparatus shown in FIG. 2 are given the same reference numbers. As is clear from FIG. 3, this flue gas desulfurization equipment is equipped with a deviation converter 31, a calculator 21, and a selector 30 in the flow control system due to the provision of two desulfurizers 1 and 1'. All of them have the same structure as that shown in FIG. 2 except for the points provided. That is, the flow control system of this embodiment receives output signals from the liquid level detectors 20 and 20' of the two desulfurization towers 1 and 1', and sends a predetermined valve opening signal to the desulfurization tower liquid level controller 21. It has a selector 30 for supplying. This flow control system also includes a deviation converter 31 that detects a liquid level difference based on output signals from these liquid level detectors 20 and 20', and this deviation converter 31 and an oxidation tower liquid level controller. 23, a predetermined valve opening signal is sent to the flow control valve 1.
4 and 14'.

而して、脱硫塔1,1′の液面レベル偏差を検
出する偏差変換器31は、例えば第4図に示す偏
差信号ΔLを演算器32に供給する。
The deviation converter 31 that detects the liquid level deviation in the desulfurization towers 1 and 1' supplies, for example, a deviation signal ΔL shown in FIG. 4 to the calculator 32.

ここで、偏差信号ΔLは、〔(第1脱硫塔1から
の液面レベル信号)−(第2脱硫塔1′からの液面
レベル信号)〕の偏差を意味し、偏差信号ΔLに
対応する任意の液レベル偏差出力X1は、液レベ
ル偏差が零時にX1=50%を出力し、第2脱硫塔
1′の液面レベルが低い場合には液レベル偏差出
力X1は大きくなり、第1脱硫塔1の液面レベル
が低い場合は、液レベル偏差出力X1が小さくな
ることを意味する。また、演算器32は酸化塔液
面制御信号を主入力とし、偏差信号ΔLを分配信
号として入力、演算するものであり、第5図に示
す特性演算と、演算値Y1,Y1′のそれぞれに酸化
塔液面制御信号を乗算して脱硫液抜出し量信号を
出力する演算機能を有する。第5図実線(太線)
は第1脱硫塔1の演算値Y1、破線は第2脱硫塔
1′の演算値Y1′の演算出力特性線を示す。
Here, the deviation signal ΔL means the deviation of [(liquid level signal from the first desulfurization tower 1)−(liquid level signal from the second desulfurization tower 1')], and corresponds to the deviation signal ΔL. The arbitrary liquid level deviation output X 1 outputs X 1 =50% when the liquid level deviation is zero, and when the liquid level of the second desulfurization tower 1' is low, the liquid level deviation output X 1 becomes large. When the liquid level of the first desulfurization tower 1 is low, it means that the liquid level deviation output X 1 becomes small. Further, the calculator 32 receives the oxidation tower liquid level control signal as the main input and inputs the deviation signal ΔL as the distribution signal to perform calculations, and performs the characteristic calculations shown in FIG. 5 and the calculated values Y 1 and Y 1 '. It has an arithmetic function that multiplies each by an oxidation tower liquid level control signal and outputs a desulfurization liquid withdrawal amount signal. Figure 5 Solid line (thick line)
indicates the calculated value Y 1 of the first desulfurization tower 1, and the broken line represents the calculated output characteristic line of the calculated value Y 1 ' of the second desulfurization tower 1'.

なお分配演算器と乗算演算器を個別に設置した
場合も同等の機能を有する。
It should be noted that the same function can be obtained even when the distribution arithmetic unit and the multiplication arithmetic unit are installed separately.

従つて、第2脱硫塔1′の液レベルが第1脱硫
塔1側より高い液レベル偏差出力X1′の場合、第
1脱硫塔1側は所定の演算値Y1′を出力し乗算す
るので脱硫液抜出量信号はこの演算値Y1′の比率
だけ酸化塔22の液面制御信号を抑制して調節弁
14に供給され、開度調節を行う。一方レベルの
高い第2脱硫塔1′は演算値Y1′=100%を出力し
乗算するので制御信号がそのまま流量調節弁1
4′に供給され、開度調節を行う。又第1脱硫塔
1側の液レベルが高い液レベル偏差出力X1″の場
合、脱硫液の抜出量信号は、演算値Y1″=100%
により制御信号と同一となり、調節弁14は酸化
塔液レベル調節計23で直接制御するのと同等の
動作をする。又第2脱硫塔1′は演算値X1″の偏
差信号ΔLより演算値Y1″を演算出力し、制御信
号を乗算することにより、制御信号をこの演算値
Y1″比率相当抑制して流量調節弁14′を調節す
る。
Therefore, when the liquid level of the second desulfurization tower 1' is higher than that of the first desulfurization tower 1 side, the first desulfurization tower 1 side outputs a predetermined calculated value Y1 ' and multiplies it. Therefore, the desulfurization liquid withdrawal amount signal suppresses the liquid level control signal of the oxidation tower 22 by the ratio of this calculated value Y 1 ', and is supplied to the control valve 14 to adjust the opening degree. On the other hand, the second desulfurization tower 1', which has a high level, outputs the calculated value Y1 '=100% and multiplies it, so the control signal is sent directly to the flow rate control valve 1.
4' and adjusts the opening. In addition, when the liquid level on the first desulfurization tower 1 side is high and the liquid level deviation output is X 1 ″, the desulfurization liquid withdrawal amount signal is calculated value Y 1 ″ = 100%.
This becomes the same as the control signal, and the control valve 14 operates in the same way as if it were directly controlled by the oxidation tower liquid level controller 23. In addition, the second desulfurization tower 1' calculates and outputs the calculated value Y 1 '' from the deviation signal ΔL of the calculated value X 1 '', and multiplies it by the control signal to convert the control signal to this calculated value.
The flow control valve 14' is adjusted by suppressing the Y 1 '' ratio.

すなわち、常に脱硫塔液レベルが高い方の流量
調節弁14,14′を100%調節し低い方は偏差比
率に比例して調節弁開度を抑制制御する作用を持
つ。抑制比率は、第5図の偏差信号ΔLと液レベ
ル偏差出力X1の変換勾配により定まり第1脱硫
塔1と第2脱硫塔1′の液レベル差は、偏差信号
ΔLの範囲内に自動制御される。
That is, the flow control valve 14, 14' whose desulfurization tower liquid level is higher is always 100% controlled, and the flow control valve 14, 14' whose desulfurization tower liquid level is lower has the effect of suppressing and controlling the opening degree of the control valve in proportion to the deviation ratio. The suppression ratio is determined by the conversion gradient of the deviation signal ΔL and liquid level deviation output be done.

一方、脱硫塔液レベル調節計21は、選択器3
0により常に第1脱硫塔1又は第2脱硫塔1′の
いずれか高い方のレベル信号を受信して酸化塔2
の抜出流量調節弁16を制御し、酸化塔2の抜出
量及び脱硫塔1,1′の脱硫液抜出量を制御する
もので、第1脱硫塔1、第2脱硫塔1′の液レベ
ル差を解消しつつ脱硫液を後処理工程に送る。
On the other hand, the desulfurization tower liquid level controller 21
0, the oxidation tower 2 always receives the level signal from either the first desulfurization tower 1 or the second desulfurization tower 1', whichever is higher.
The control valve 16 controls the amount of extraction from the oxidation tower 2 and the amount of desulfurization liquid from the desulfurization towers 1 and 1'. The desulfurization liquid is sent to the post-treatment process while eliminating the liquid level difference.

また、本システムによると後処理工程への抜出
し量の最大値を流量調節弁16の弁口径寸法で規
制して、脱硫塔液溜4,4′を脱硫液のクツシヨ
ンタンクとして使用し酸化塔供給量及び抜出し流
量を抑制することが出来酸化塔2及び後処理工程
の処理効率の向上、コストダウンに寄与するもの
である。
In addition, according to this system, the maximum amount of extraction to the post-treatment process is regulated by the valve diameter of the flow rate control valve 16, and the desulfurization tower reservoirs 4 and 4' are used as a cushion tank for the desulfurization liquid. The supply amount and the withdrawal flow rate can be suppressed, which contributes to improving the processing efficiency of the oxidation tower 2 and the post-treatment process and reducing costs.

以上説明した如く、本考案に係る排煙脱硫装置
によれば、酸化塔に導入される脱硫液および酸化
塔から抜き取られて後処理装置へ導入される石膏
液の液量の制御を安定して行い、もつて酸化塔の
高効率化および後処理装置への裕度向上を達成で
きる等顕著な効果を奏するものである。
As explained above, according to the flue gas desulfurization device according to the present invention, the amount of the desulfurization liquid introduced into the oxidation tower and the gypsum liquid extracted from the oxidation tower and introduced into the post-treatment device can be stably controlled. When carried out, remarkable effects can be achieved, such as increasing the efficiency of the oxidation tower and improving the margin for the after-treatment equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の排煙脱硫装置の概略構成を示
す説明図、第2図は、本考案の一実施例の概略構
成を示す説明図、第3図は、本考案の他の実施例
の概略構成を示す説明図、第4図は、液レベル偏
差出力と脱硫塔液レベル偏差の関係を示す特性
図、第5図は、演算出力と液レベル偏差出力の関
係を示す特性図である。 1……脱硫塔、2……酸化塔、3……後処理装
置、4……脱硫液溜、5……ポンプ、6……ライ
ン、7……入口ダクト、8……ミストセパレー
タ、9……ミストドレイン管、10……撹拌機、
11……仕切板、12……液室、13……石灰液
供給ライン、14……流量調節弁、15……ライ
ン、16……流量調節弁、17……ライン、18
……流量調節弁、19……流量調節計、20……
液面検出計、21……脱硫塔液レベル調節計、2
2……液面検出計、23……酸化塔液レベル調節
計、30……選択器、31……偏差変換器、32
……演算器。
FIG. 1 is an explanatory diagram showing a schematic configuration of a conventional flue gas desulfurization device, FIG. 2 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention. 4 is a characteristic diagram showing the relationship between the liquid level deviation output and the desulfurization tower liquid level deviation, and FIG. 5 is a characteristic diagram showing the relationship between the calculation output and the liquid level deviation output. . DESCRIPTION OF SYMBOLS 1... Desulfurization tower, 2... Oxidation tower, 3... After-treatment device, 4... Desulfurization liquid reservoir, 5... Pump, 6... Line, 7... Inlet duct, 8... Mist separator, 9... ...Mist drain pipe, 10...Agitator,
11... Partition plate, 12... Liquid chamber, 13... Lime liquid supply line, 14... Flow rate control valve, 15... Line, 16... Flow rate control valve, 17... Line, 18
...Flow rate control valve, 19...Flow rate controller, 20...
Liquid level detector, 21... Desulfurization tower liquid level controller, 2
2... Liquid level detector, 23... Oxidation tower liquid level controller, 30... Selector, 31... Deviation converter, 32
...Arithmetic unit.

Claims (1)

【実用新案登録請求の範囲】 (1) 液面検出計を備えた脱硫塔と、該脱硫塔に脱
硫液供給ラインを介して接続された酸化塔と、
該脱硫液供給ラインに取付けられた脱硫液流量
調節弁と、前記酸化塔に取付けられた酸化塔液
面検出計と、前記酸化塔に脱硫処理液供給ライ
ンを介して接続された後処理装置と、該脱硫処
理液供給ラインに取付けられた処理液流量調節
弁と、前記酸化塔液面検出計の出力を受けて所
定の弁開度信号を前記脱硫液流量調節弁に供給
する酸化塔液レベル調節計と、前記液面検出計
の出力を受けて所定の弁開度信号を前記処理液
流量調節弁に供給する脱硫塔液レベル調節計と
を具備することを特徴とする排煙脱硫装置。 (2) 脱硫塔が複数個あり、各々の該脱硫塔に取付
けられた液面検出計の出力信号の偏差を算出し
て所定の出力信号を脱硫塔液レベル調節計に供
給する選択器が設けられている実用新案登録請
求の範囲第1項記載の排煙脱硫装置。
[Claims for Utility Model Registration] (1) A desulfurization tower equipped with a liquid level detector, an oxidation tower connected to the desulfurization tower via a desulfurization liquid supply line,
A desulfurization liquid flow rate control valve attached to the desulfurization liquid supply line, an oxidation tower liquid level detector attached to the oxidation tower, and a post-treatment device connected to the oxidation tower via a desulfurization treatment liquid supply line. , a processing liquid flow control valve attached to the desulfurization processing liquid supply line, and an oxidation tower liquid level that receives the output of the oxidation tower liquid level detector and supplies a predetermined valve opening signal to the desulfurization liquid flow control valve. A flue gas desulfurization apparatus comprising: a controller; and a desulfurization tower liquid level controller that receives the output of the liquid level detector and supplies a predetermined valve opening degree signal to the treated liquid flow rate control valve. (2) There are multiple desulfurization towers, and there is a selector that calculates the deviation of the output signal of the liquid level detector attached to each desulfurization tower and supplies a predetermined output signal to the desulfurization tower liquid level controller. The flue gas desulfurization device according to claim 1 of the registered utility model.
JP5281082U 1982-04-12 1982-04-12 Flue gas desulfurization equipment Granted JPS58156524U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281082U JPS58156524U (en) 1982-04-12 1982-04-12 Flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281082U JPS58156524U (en) 1982-04-12 1982-04-12 Flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPS58156524U JPS58156524U (en) 1983-10-19
JPS6244733Y2 true JPS6244733Y2 (en) 1987-11-27

Family

ID=30063507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281082U Granted JPS58156524U (en) 1982-04-12 1982-04-12 Flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPS58156524U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242378B2 (en) * 2019-03-28 2023-03-20 三菱重工業株式会社 Separation and recovery system and separation and recovery method

Also Published As

Publication number Publication date
JPS58156524U (en) 1983-10-19

Similar Documents

Publication Publication Date Title
CN1088389C (en) Method for separating SO2 from waste gas
US6041272A (en) Desulfurization process for flue gases
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPS6244733Y2 (en)
JPH1085549A (en) Wet exhaust gas desulfurization device and exhaust gas desulfutization
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
US4618482A (en) Method for controlling a concentration of slurry in wet flue gas desulfurization apparatus
JPH11197450A (en) Wet desulfurization equipment and its operation method
JPH10128053A (en) Stack gas treating device and treatment of stack gas
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPS585846B2 (en) Wet lime plaster method flue gas desulfurization method
JP2933664B2 (en) Absorbent PH control unit for wet flue gas desulfurization unit
JPS5932924A (en) Controlling method of desulfurizing ratio in waste gas desulfurizing apparatus applied with wet lime method
JP2004243169A (en) Desulfurization method for waste gas by double decomposition method
JP3532028B2 (en) Exhaust gas desulfurization method
JP2798973B2 (en) Exhaust gas desulfurization equipment
JPS6018449B2 (en) Method for removing sulfur oxides from exhaust gas
JPH11244648A (en) Control of absorbent slurry flow rate of wet stack gas desulfurizer and device therefor
JPS59160519A (en) Wet type waste gas desulfurizer
JPS6121720A (en) Control apparatus of wet waste gas desulfurization apparatus
JPH0147215B2 (en)
JPS631090B2 (en)
JPS5852685B2 (en) Desulfurization method for flue gas with large fluctuations in SO↓2 concentration
JPH09271631A (en) Desulfurization of exhaust gas
JP2000015051A (en) Control method for absorption tower bleed liquid flow rate in flue gas desulfurization apparatus