JPS60110322A - Ph controller for absorbing tower - Google Patents

Ph controller for absorbing tower

Info

Publication number
JPS60110322A
JPS60110322A JP58219077A JP21907783A JPS60110322A JP S60110322 A JPS60110322 A JP S60110322A JP 58219077 A JP58219077 A JP 58219077A JP 21907783 A JP21907783 A JP 21907783A JP S60110322 A JPS60110322 A JP S60110322A
Authority
JP
Japan
Prior art keywords
signal
flow rate
detector
absorption tower
supply flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58219077A
Other languages
Japanese (ja)
Inventor
Ichiro Toyoda
一郎 豊田
Kengo Hamanaka
浜中 健吾
Susumu Kono
進 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58219077A priority Critical patent/JPS60110322A/en
Publication of JPS60110322A publication Critical patent/JPS60110322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To make pH response characteristics substantially constant over the entire desulfurization load range and to stabilize SO2 concentration in a gas being treated, by a method wherein the proportional sensitivity of a pH adjustor can be varied in relation with desulfurization load. CONSTITUTION:The flow rate and the SO2 concentration of the gas being treated are detected by detectors 10, 9, are input into a multiplier 11, and a desulfurization load signal S11 by a constant on the basis of the relationship between the desulfurization load and the flow rate of an absorbing agent supplied, and outputs a proportional sensitivity signal S21 to the pH adjustor 22. The adjustor 22 outputs an absorbing agent supply flow rate correcting signal S22 to a coefficient adder 12, based on the signal S21, a detection signal from a pH adjustor 13 and a preset pH value. The adder 12 outputs an absorbing agent supply flow rate set point signal S12 to an absorbing agent supply flow rate adjustor 15, based on the signals S22 and S11, and the opening of a flow control valve 16 is adjusted on the basis of the signal S12.

Description

【発明の詳細な説明】 本発明は処理ガス中の亜硫酸ガス(802)を除去する
脱硫プラントに係シ特に循環液の−・を制御する吸収塔
戸制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a desulfurization plant for removing sulfur dioxide gas (802) from a process gas, and particularly to an absorption tower door control device for controlling circulating fluid.

脱硫プラント例えば炭酸カルシウムまたは水酸化カルシ
ウムを吸収剤とする湿式石灰石こう法排煙脱硫プラント
において、大気中に放出する処理済ガス中の亜硫酸ガス
(S02)濃度あるいは吸収塔内での脱硫率を所定値に
保持する為には吸収塔を循環する循環液のpl(+が安
定でかつ全負荷領域において14を設定値に応答性よく
追従する必要がある。
In a desulfurization plant, for example, in a wet lime gypsum flue gas desulfurization plant using calcium carbonate or calcium hydroxide as an absorbent, the concentration of sulfur dioxide gas (S02) in the treated gas released into the atmosphere or the desulfurization rate in the absorption tower is determined. In order to maintain this value, it is necessary that pl (+) of the circulating liquid circulating through the absorption tower is stable and that 14 follows the set value with good responsiveness in the entire load range.

そこで第1図を参照して従来例を説明する。Therefore, a conventional example will be explained with reference to FIG.

第1図は従来の脱硫プラントの概略構成を示す系統図で
ある。図中符号1は吸収塔を示し、この吸収塔1には処
理ガス導入ダクト2を介して亜硫酸ガス(S02ガス)
を含有する処理ガスが上方から導入される。一方吸収塔
1には循環液3が循環月?ンf4および循環配管5によ
り循壊し、この循環液3と上記処理ガスを吸収塔1内で
接触させて処理ガス中から亜硫酸ガスを除去する構成で
ある。すなわち処理ガス中のs02は次の式(I)で示
すような反応をして液中にH2SO3を生成して流下す
る。とのH2SO3の一部は処理ガス中の酸素(02)
によシ次の式(II)で示すような反応をして酸化され
H2SO4となる。まだ、吸収塔1内を通過した処理ガ
スは排気ダクト6を介して処理済ガスとして大気中に放
出される。
FIG. 1 is a system diagram showing a schematic configuration of a conventional desulfurization plant. Reference numeral 1 in the figure indicates an absorption tower, and sulfur dioxide gas (S02 gas) is supplied to this absorption tower 1 through a processing gas introduction duct 2.
A processing gas containing is introduced from above. On the other hand, circulating fluid 3 is circulating in absorption tower 1? The circulating liquid 3 and the treated gas are brought into contact with each other in the absorption tower 1 to remove sulfur dioxide gas from the treated gas. That is, s02 in the processing gas reacts as shown in the following formula (I) to generate H2SO3 in the liquid and flows down. A part of H2SO3 with is oxygen (02) in the processing gas
Then, it undergoes a reaction as shown in the following formula (II) and is oxidized to become H2SO4. The treated gas that has still passed through the absorption tower 1 is discharged into the atmosphere through the exhaust duct 6 as treated gas.

S02+H2o−一→H2SO3・曲面(I)H2SO
3+ −!o −一→H2SO4・・・・・・・・・(
■)2 上記循環液3中には上記式(1)および(II)で示し
た吸収反応および酸化反応にょj生成したH2SO3お
よびH2SO4が多量に含まれておりそのため循環液3
のメー1が低下してしまう恐れがある。そこで吸収剤供
給配管7を介して吸収塔1内に吸収剤例えば炭酸カルシ
ウム(caco3) (その低水酸化カルシウムCa 
(O)()2等アルカリ性のもの)を供給して次の式ω
υに示すように循環液3を中和して戸制御を図シS02
吸収容易な液に再生している。
S02+H2o-1 → H2SO3・Curved surface (I) H2SO
3+ -! o -1→H2SO4・・・・・・・・・(
■)2 The circulating fluid 3 contains a large amount of H2SO3 and H2SO4 produced by the absorption reactions and oxidation reactions shown in formulas (1) and (II) above.
There is a risk that the Me1 value of Therefore, an absorbent such as calcium carbonate (caco3) (low calcium hydroxide Ca
(O) (2 iso-alkaline) is supplied and the following formula ω
As shown in υ, the circulating fluid 3 is neutralized and door control is performed as shown in figure S02.
It is regenerated into a liquid that is easily absorbed.

H2SO4+CaCO3→caso4+H2o+co2
↑・・川・(ト)なお循環液3の一部は配管8を介して
図示しない別の工程に移送される。
H2SO4+CaCO3→caso4+H2o+co2
↑...River (G) Note that a part of the circulating fluid 3 is transferred to another process (not shown) via piping 8.

一般にS02吸収反応において循環液3のPIIは多大
な影響をおよぼし−が高い程S02吸収反応は促進され
る。PHを高く保持する為には多量の吸収剤を供給しな
ければならずこれはコストの面から好ましいことではな
い。そこで所望の性能を維持できる程度の声で運転を行
なうことが望まれている。また前述したように循環液3
0声を低下させるのは循環液3中のH2SO3濃度ある
いはH2SO4濃度の増加であシ、−男声を上昇させる
のはCaCO5による中和量の増加すなわち循環液3中
のCa CO3源度でめる。そして循環液のpHは吸収
したS02景とCa CO3の中和量とのバランスによ
シ決定される。
Generally, the PII of the circulating fluid 3 has a great effect on the S02 absorption reaction, and the higher the PII, the more the S02 absorption reaction is promoted. In order to maintain a high pH, a large amount of absorbent must be supplied, which is not desirable from a cost standpoint. Therefore, it is desired to operate the vehicle with a voice that is loud enough to maintain the desired performance. In addition, as mentioned above, the circulating fluid 3
What lowers the 0 voice is an increase in the H2SO3 concentration or H2SO4 concentration in the circulating fluid 3, and what increases the male voice is an increase in the amount of neutralization by CaCO5, that is, the source level of CaCO3 in the circulating fluid 3. . The pH of the circulating fluid is determined by the balance between the amount of absorbed SO2 and the amount of CaCO3 neutralized.

そこで前述した従来の脱硫プラントにおける戸制御につ
いて説明する。
Therefore, door control in the conventional desulfurization plant mentioned above will be explained.

前記処理ガス導入ダクト2には亜硫酸ガス濃度検出器9
および処理ガス流量検出器1oが介挿されておシ、これ
ら亜硫酸ガス濃度検出器9および処理ガス流量検出器1
oがらの信号は乗算器1ノに大刀され乗算されて脱硫負
荷信号811として係数加算器12に出力される。一方
前記循環配管5には声検出器13が取付けられておシ、
この…検出器13がらの検出信号は声調筒器14に大刀
される。声調筒器14ではあらかじめ設定された一部と
検出信号とを比較して偏差信号S□4を上記係数加算器
12に出力する。係数加算器12はこれら脱硫負荷信号
s0□および偏差信号S14をもとに吸収剤供給流量調
節器15に設定値信号St2を出方する。吸収材供給流
量調節器15はこの設定値信号81gをもとに吸収剤供
給配管7に介挿された流量調整弁16の開度を調整する
。なお符号17は流量検出器である。
A sulfur dioxide gas concentration detector 9 is installed in the processing gas introduction duct 2.
and a processing gas flow rate detector 1o are inserted, and these sulfur dioxide gas concentration detector 9 and processing gas flow rate detector 1
The output signal is sent to a multiplier 1, multiplied, and output as a desulfurization load signal 811 to a coefficient adder 12. On the other hand, a voice detector 13 is attached to the circulation pipe 5.
This detection signal from the detector 13 is sent to the tone tone generator 14. The tone generator 14 compares a preset portion with the detection signal and outputs a deviation signal S□4 to the coefficient adder 12. The coefficient adder 12 outputs a set value signal St2 to the absorbent supply flow rate regulator 15 based on the desulfurization load signal s0□ and the deviation signal S14. The absorbent supply flow rate regulator 15 adjusts the opening degree of the flow rate regulating valve 16 inserted in the absorbent supply pipe 7 based on this set value signal 81g. Note that the reference numeral 17 is a flow rate detector.

上記構成によるといわゆるフィー・ドパツク制御による
中和剤供給量の調節はPH偏差信号S14によってのみ
行なわれており丑たpH調節器14の比例感度は脱硫負
荷の変化に関係なく一定である。そしてpH調節器14
の比例感度は低負荷で発振しないように設定される為、
低負荷時には最適な値であっても高負荷時には比例感度
が小さすぎその結果PHの連応性が鈍く大きく波打つ現
象が生じていた。声の変動は前述したようにS02吸収
反応に多大な影響を与えるものであシ、上述したような
現象が生ずると吸収塔1出口における処理済ガスのSO
□碌反が安定せず変動してしまい規定値を逸脱してしま
う恐れがあった。またこのようなことを防止するために
循環液3のpli値をあらかじめ必袈以上に高くすると
いう操作がとられそのためランニングコストを上昇させ
てしまうという不具合があった。
According to the above configuration, the neutralizing agent supply amount is adjusted by so-called feed pack control only by the pH deviation signal S14, and the proportional sensitivity of the pH regulator 14 is constant regardless of changes in the desulfurization load. and pH regulator 14
The proportional sensitivity of is set so as not to oscillate at low loads, so
Even if the value is optimal at low loads, the proportional sensitivity is too small at high loads, and as a result, the PH response is slow and a phenomenon of large waves occurs. As mentioned above, fluctuations in the voice have a great influence on the SO2 absorption reaction, and when the above-mentioned phenomenon occurs, the SO2 of the treated gas at the outlet of the absorption tower 1
□The yield was unstable and fluctuated, and there was a risk that it would deviate from the specified value. In addition, in order to prevent such a situation, the pli value of the circulating fluid 3 is made higher than necessary in advance, resulting in an increase in running costs.

本発明は以上の点にもとづいてなされたものでその目的
とするところはp’l Vr> 筒器の比例感度を脱硫
負荷の関数として変更可能なものとすることによシ、一
応答性を全脱硫負荷領域にわたっては#了一定なものと
しそれによって処理済ガス中の502fA度の安定化を
図るとともにランニングコストの低減を図ることが可能
な吸収塔PII制御装置を提供するととにある。
The present invention has been made based on the above points, and its purpose is to improve the response by making it possible to change the proportional sensitivity of the cylinder as a function of the desulfurization load. It is an object of the present invention to provide an absorption tower PII control device that makes it possible to keep the temperature constant over the entire desulfurization load range, thereby stabilizing the 502 fA degree in the treated gas and reducing running costs.

すなわち本発明による吸収塔内制御装置は、亜硫酸ガス
を含有する処理ガスを吸収塔内に導入し吸収塔内を循現
し吸収材を含有する循環液と接触させて脱硫する脱硫プ
ラントにおいて、吸収塔に導入される処理ガス流量を検
出する処理ガス流量検出器と、吸収塔に導入される処理
ガス中の亜硫酸ガス温度を検出する亜硫酸ガス濃度検出
器と、この亜硫酸ガス濃度検出器からの信号および上記
処理ガス流量検出器からの信号を入力し乗算する乗算器
と、この乗算器からの信号を入力しその信号に応じた比
例感度信号を出力する関数演算器と、前記循環液の声を
検出するpH検出器と、前記比例感度信号を入力してこ
れを比例感度とし上記pi(検出器からの検出信号に応
じた吸収剤供給流量補正信号を出力する一1!lA1節
器と、このp)I調節器からの信号および前記乗算器か
らの信号を入力して吸収剤供給流量設定値信号を出力す
る係数加算器とを具備した構成である。
That is, the absorption tower internal control device according to the present invention can be used in a desulfurization plant in which a process gas containing sulfur dioxide gas is introduced into the absorption tower, circulated within the absorption tower, and is brought into contact with circulating liquid containing an absorbent to desulfurize the absorption tower. A processing gas flow rate detector detects the processing gas flow rate introduced into the absorption tower, a sulfur dioxide gas concentration detector detects the sulfur dioxide gas temperature in the processing gas introduced into the absorption tower, and a signal from the sulfur dioxide gas concentration detector and A multiplier that inputs and multiplies the signal from the processing gas flow rate detector, a function calculator that inputs the signal from this multiplier and outputs a proportional sensitivity signal according to the signal, and detects the voice of the circulating fluid. a pH detector that inputs the proportional sensitivity signal and uses it as a proportional sensitivity, and outputs an absorbent supply flow rate correction signal according to the detection signal from the pi (detector); ) A coefficient adder that inputs the signal from the I regulator and the signal from the multiplier and outputs an absorbent supply flow rate setting value signal.

以下第2図および第3図を参照して本発明の一実施例を
説明する。まず本実施例による吸収塔P[■制御装量の
構成を説明する前に脱硫負荷と吸収剤供給流量との関係
について第2図を参照して説明する。第2図は横軸に脱
硫負荷(処理ガス流量の入口S02濃度) (Nm3/
H)をとシ、縦軸に吸収剤供給流量(石灰スラリ流量)
 (m3//H)(系内での中和量(吸収材消費量)と
略一致する)をとシ脱硫負荷と吸収剤供給流量との関係
を示した図である。この第2図からも明らかなように吸
収剤供給流量は脱硫負荷と当量供給されるため脱硫負荷
と比例関係にある。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. First, before explaining the configuration of the absorption tower P [1] control loading according to this embodiment, the relationship between the desulfurization load and the absorbent supply flow rate will be explained with reference to FIG. In Figure 2, the horizontal axis shows the desulfurization load (inlet S02 concentration of process gas flow rate) (Nm3/
H), the vertical axis shows the absorbent supply flow rate (lime slurry flow rate)
(m3//H) (approximately the same as the amount of neutralization (absorbent consumption) in the system) is a diagram showing the relationship between the desulfurization load and the absorbent supply flow rate. As is clear from FIG. 2, the absorbent supply flow rate is proportional to the desulfurization load because it is supplied in an amount equivalent to the desulfurization load.

次に第3図を参照して本実施例による吸収塔pH制御装
置の構成について説明する。すなわち関数演算器21を
設けこの関数演算器21に乗算器11からの脱硫負荷信
号S11を入力させる。
Next, the configuration of the absorption tower pH control device according to this embodiment will be explained with reference to FIG. That is, a function calculator 21 is provided, and the desulfurization load signal S11 from the multiplier 11 is inputted to the function calculator 21.

関数演算器2ノは第2図に示した脱硫負荷と吸収剤供給
流量との関係によシ上記脱硫負荷信号S8□を定数倍し
てμ調節器22に比例感度信号821として出力する。
The function calculator 2 multiplies the desulfurization load signal S8□ by a constant according to the relationship between the desulfurization load and the absorbent supply flow rate shown in FIG.

声調筒器22はとの比例感度信号S21、−検出器13
からの検出信号およびあらかじめ設定された2値よシ吸
収剤供給流量を調節する。すなわちPHH節器22は比
例感度信号S2□によりP(比例)、PI(比例、積分
)、PID (比例、積分、微分)制御を行ない次の式
動で示すような出力の循環液供給流量補正信号822を
係数加算器12に出力する。
The tone cylinder 22 has a proportional sensitivity signal S21, - the detector 13.
The absorbent supply flow rate is adjusted based on the detection signal from the sensor and a preset binary value. That is, the PHH moderator 22 performs P (proportional), PI (proportional, integral), and PID (proportional, integral, differential) control using the proportional sensitivity signal S2□, and corrects the circulating fluid supply flow rate of the output as shown in the following equation. A signal 822 is output to the coefficient adder 12.

・・・・・・・・・・・・に) ただし F;pH調節器圧力 Fm1LX ”吸収剤流量最大値 PH;PH計ススパ ンpn K;比例感度 T、;積分時間 TD;微分時間 ε、H;−偏差(pH設定値−一() また比例感度(匂は脱硫負荷によって変更するため積分
ではKを被積分内に含めた。そして係数加算器12はこ
の吸収剤供給流量補正信号S0と前記脱硫負荷信号St
Sをもとに吸収剤供給流量調節器15に吸収材供給流量
設定値信号S1.を出力する。吸収剤。
・・・・・・・・・・・・) However, F; pH controller pressure Fm1LX ``Maximum absorbent flow rate PH; PH meter span pn K; Proportional sensitivity T,; Integral time TD; Derivative time ε, H ; - deviation (pH setting value - 1 ()) Also, proportional sensitivity (because the odor changes depending on the desulfurization load, K is included in the integral in the integration.Then, the coefficient adder 12 uses this absorbent supply flow rate correction signal S0 and the above Desulfurization load signal St
An absorbent supply flow rate setting value signal S1.S is sent to the absorbent supply flow rate regulator 15 based on S1. Output. absorbent.

供給流量調節器15はこの設定値信号811をもとに流
量調整弁16の開度を調整する。
The supply flow rate regulator 15 adjusts the opening degree of the flow rate adjustment valve 16 based on this set value signal 811.

このように本実施例による吸収塔PI−1制御装置によ
れば比例感度(鉛を脱硫負荷に比例して適宜変更するこ
とができ、また定常時、脱硫負荷に対して吸収剤供給流
量は比例関係にあるため全負荷領域にわたって同じ割合
で吸収剤供給流量の補正を行なうことができこれによっ
てほぼ一定の声応答性を得ることができるとともに処理
済排ガス中のSO2濃度を安定に維持することができる
。そして従来処理済排ガス中のSO2濃度が規定値を逸
脱することを防止するためにPH設定値を必要以上に高
めておくという措置がとられていたが、このような措置
を不要とすることができランニングコストの低減を図る
ことが可能となる。
As described above, the absorption tower PI-1 control device according to this embodiment has a proportional sensitivity (lead can be changed as appropriate in proportion to the desulfurization load, and in steady state, the absorbent supply flow rate is proportional to the desulfurization load). Because of this relationship, it is possible to correct the absorbent supply flow rate at the same rate over the entire load range, which makes it possible to obtain almost constant voice response and maintain a stable SO2 concentration in the treated exhaust gas. In addition, conventional measures were taken to keep the pH setting value higher than necessary to prevent the SO2 concentration in treated exhaust gas from deviating from the specified value, but such measures are no longer necessary. This makes it possible to reduce running costs.

以上詳述したように本発明による吸収塔−制御装置は、
亜硫酸ガスを含有する処理ガスを吸収塔内に導入し吸収
塔内を循環し吸収剤を含有する循環液と接触させて脱硫
する脱硫プラントにおいて、吸収塔に導入される処理ガ
ス流量を検出する処理ガス流量検出器と、吸収塔に導入
される処理ガス中の亜硫酸ガス濃度を検出する亜硫酸ガ
ス湿度検出器と、この亜硫酸ガス濃度検出器からの信号
および上記処理ガス流量検出器からの信号を入力し乗算
する乗算器と、この乗算器からの信号を入力しその信号
に応じた比例感度信号を出力する関数演算器と、前記循
環液のP+1を検出するPH検出器と、前記比例感度信
号を入力してこれを比例感度とし上記声検出器からの検
出信号に応じた吸収剤供給流量補正信号を出力するp)
1調節器と、この−脚筒器からの信号および前記乗算器
からの信号を入力して吸収剤供給流量設定値信号を出力
する係数加算器とを具備した構成である。
As detailed above, the absorption tower control device according to the present invention has the following features:
A process for detecting the flow rate of the treated gas introduced into the absorption tower in a desulfurization plant that introduces a treated gas containing sulfur dioxide gas into an absorption tower, circulates it through the absorption tower, and desulfurizes it by contacting it with a circulating liquid containing an absorbent. A gas flow rate detector, a sulfur dioxide gas humidity detector that detects the sulfur dioxide gas concentration in the treated gas introduced into the absorption tower, and a signal from this sulfur dioxide gas concentration detector and a signal from the above-mentioned treated gas flow rate detector are input. a multiplier that multiplies the signal, a function calculator that inputs the signal from the multiplier and outputs a proportional sensitivity signal according to the signal, a PH detector that detects P+1 of the circulating fluid, and a PH detector that detects P+1 of the circulating fluid; Input this as a proportional sensitivity and output an absorbent supply flow rate correction signal according to the detection signal from the voice detector p)
1 regulator, and a coefficient adder which inputs the signal from this leg cylinder and the signal from the multiplier and outputs an absorbent supply flow rate setting value signal.

しだがって全負荷領域にわたってほぼ一定のpH応答性
を得ることができ処理済排ガス中のso2濃度の安定化
を図るどとができるとともに不必要に−を高める必要が
ないのでコストとシわけランニングコストの低減を図る
ことができる。
Therefore, a nearly constant pH response can be obtained over the entire load range, making it possible to stabilize the SO2 concentration in the treated exhaust gas, and eliminating the need to unnecessarily increase the SO2 concentration. Running costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸収塔Pl(制御装置の系統図、第2図
および第3図は本発明の一実施例を説明する図で第2図
は脱硫負荷と吸収側供給流量との関係を示す図、第3図
は吸収塔pli制御装置の系統図である。 1・・・吸収塔、2・・・処理ガス導入ダクト、3・・
・循環液、9・・・亜硫酸ガス濃度検出器、10・・・
処理ガス流量検出器、11・・・乗算器、12・・・係
数加算器、13・・・−検出器、14・・・pH調節器
、21・・・関数演算器、S□・・・比例感度信号、S
!!・・・吸収剤供給流量補正信号、S、・・・吸収剤
供給流量設定値信号。 第1閃 ′XgZ図 0 200 400 600 80O
Fig. 1 is a system diagram of the conventional absorption tower Pl (control device), Figs. 2 and 3 are diagrams explaining an embodiment of the present invention, and Fig. 2 shows the relationship between the desulfurization load and the absorption side supply flow rate. The diagram shown in FIG. 3 is a system diagram of the absorption tower pli control device. 1... Absorption tower, 2... Processing gas introduction duct, 3...
・Circulating fluid, 9...Sulfur dioxide gas concentration detector, 10...
Processing gas flow rate detector, 11... Multiplier, 12... Coefficient adder, 13...-detector, 14... pH regulator, 21... Function calculator, S□... Proportional sensitivity signal, S
! ! ...Absorbent supply flow rate correction signal, S, ...Absorbent supply flow rate setting value signal. 1st flash 'XgZ figure 0 200 400 600 80O

Claims (1)

【特許請求の範囲】[Claims] 亜硫酸ガスを含有する処理ガスを吸収塔内に導入し吸収
塔内を循環し吸収材を含有する循環液と接触させて脱硫
する脱硫プラントにおいて、吸収塔に導入される処理ガ
ス流片を検出する処理ガス流量検出器と、吸収塔に導入
される処理ガス中の亜硫酸ガス濃度を検出する亜硫酸ガ
ス濃度検出器と、この亜硫酸ガス濃度検出器からの信号
および上記処理ガス流量検出器からの信号を入力し乗算
する乗算器と、この乗算器からの信号を入力しその信号
に応じた比例感度信号を出力する関数演算器と、前記K
Jh復液のpHを検出するPH検出器と、前記比例感度
信号を入力してこれを比例感度とし上記pi(検出器か
らの検出信号に応じた吸収剤供給流量補正信号を出力す
る一1調節器と、この−1調節器からの42号および前
記乗算器からの信号を入力して吸収剤供給流量設定値信
号を出力する係数加算器とを具備したことを特徴とする
吸収塔−゛制御装置。
In a desulfurization plant that introduces a treated gas containing sulfur dioxide gas into an absorption tower, circulates it through the absorption tower, and desulfurizes it by contacting it with a circulating liquid containing an absorbent, detecting the treated gas flow fragments introduced into the absorption tower. A processing gas flow rate detector, a sulfur dioxide gas concentration detector that detects the sulfur dioxide gas concentration in the processing gas introduced into the absorption tower, and a signal from this sulfur dioxide gas concentration detector and a signal from the processing gas flow rate detector. a multiplier that inputs and multiplies; a function calculator that inputs a signal from the multiplier and outputs a proportional sensitivity signal according to the signal;
Jh A PH detector that detects the pH of the condensate; and a PH detector that inputs the proportional sensitivity signal and uses it as a proportional sensitivity; and a coefficient adder which inputs signals from the -1 regulator and the multiplier and outputs an absorbent supply flow rate set value signal. Device.
JP58219077A 1983-11-21 1983-11-21 Ph controller for absorbing tower Pending JPS60110322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219077A JPS60110322A (en) 1983-11-21 1983-11-21 Ph controller for absorbing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219077A JPS60110322A (en) 1983-11-21 1983-11-21 Ph controller for absorbing tower

Publications (1)

Publication Number Publication Date
JPS60110322A true JPS60110322A (en) 1985-06-15

Family

ID=16729897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219077A Pending JPS60110322A (en) 1983-11-21 1983-11-21 Ph controller for absorbing tower

Country Status (1)

Country Link
JP (1) JPS60110322A (en)

Similar Documents

Publication Publication Date Title
ES2236659T3 (en) METHOD TO CONTROL OXIDATION IN RESIDUAL GAS DESULFURATION.
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
JPS60110322A (en) Ph controller for absorbing tower
JPS60110321A (en) Control of exhaust gas desulfurizing plant
JPH0355171B2 (en)
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JPH0359731B2 (en)
JPH0243473Y2 (en)
JPS61259733A (en) Apparatus for controlling ph of absorbing tower
JPH1066825A (en) Desulfurization control apparatus
JP3411597B2 (en) Control system for wet flue gas desulfurization plant
JPS59199021A (en) Controlling method of wet lime-gypsum desulfurization plant
JPS61259734A (en) Apparatus for controlling ph of absorbing tower
JPS5855028A (en) Controlling method for wet type stack gas desulfurizer
JPS60118221A (en) Apparatus for controlling ph of absorbing tower in waste gas desulfurizing plant
JPS61234913A (en) Controlling method for wet stack gas desulfurization facility
JPS6150618A (en) Ph controller of absorbing tower
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPS62191024A (en) Desulfurization equipment
JPS61259732A (en) Apparatus for controlling ph of absorbing tower
JPS61259731A (en) Apparatus for controlling ph of absorbing tower
JPS62298427A (en) Controlling device for absorption tower in wet flue-gas desulfurization facility
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization
JPS62140625A (en) Device for controlling outlet so2 concentration in wet stack gas desulfurizer
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production