JPS6140724B2 - - Google Patents

Info

Publication number
JPS6140724B2
JPS6140724B2 JP14864684A JP14864684A JPS6140724B2 JP S6140724 B2 JPS6140724 B2 JP S6140724B2 JP 14864684 A JP14864684 A JP 14864684A JP 14864684 A JP14864684 A JP 14864684A JP S6140724 B2 JPS6140724 B2 JP S6140724B2
Authority
JP
Japan
Prior art keywords
composite
aluminum
fiber
mixed
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14864684A
Other languages
Japanese (ja)
Other versions
JPS6130608A (en
Inventor
Nobuyuki Suzuki
Kenichi Tanaka
Masanao Yamanashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Kako KK
Original Assignee
Nikkei Kako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Kako KK filed Critical Nikkei Kako KK
Priority to JP14864684A priority Critical patent/JPS6130608A/en
Priority to US06/755,148 priority patent/US4617979A/en
Priority to GB08517880A priority patent/GB2162104B/en
Priority to KR1019850005057A priority patent/KR910006069B1/en
Priority to CA000487036A priority patent/CA1227616A/en
Priority to FR8511207A priority patent/FR2567803B1/en
Priority to IT21640/85A priority patent/IT1201432B/en
Priority to DE19853525872 priority patent/DE3525872A1/en
Publication of JPS6130608A publication Critical patent/JPS6130608A/en
Publication of JPS6140724B2 publication Critical patent/JPS6140724B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、無機質短繊維材をアルミニウムまた
はアルミニウム合金(以下、アルミニウムとい
う。)中に複合含有させた粒状物の製造方法に関
するものである。 近時、炭素質、炭化けい素質、アルミナ質など
の無機質短繊維材を強化材とし、これをマトリツ
クス材としてのアルミニウム中に分散含有させた
複合材が、その高温における優れた機械的性質に
着目され、高温特性を必要とする機械部材その他
に使用することが試みられている。 従来、このような無機質短繊維材をマトリツク
ス材としてのアルミニウム中に複合分散させる方
法として、アルミニウム溶湯中に繊維材を撹拌混
合する方法が知られているが、このような撹拌法
によつた場合は、溶湯中に混入させ得る繊維材に
量的制約があり、殊にアルミニウム溶湯に濡れ難
い繊維材を使用した場合において、繊維材が局所
的に偏在し勝ちであつて、均整に多量の繊維材を
分散した複合材を得ることが難しかつた。 本発明者らは、先に、溶融アルミニウム中に無
機質短繊維材を遠心混合し、この混合物を適宜粒
状化した後、この粒状複合物を溶融ないし半溶融
状に加熱した状態で圧縮成型するか、または粒状
複合物を加熱したアルミニウム溶湯中に混合し、
この混合溶融物を鋳型内に鋳造することによつて
比較的多量の繊維材を均整に分散した複合成形体
を得ることに成功した。(特願昭58−50504号、特
願昭59−65690号) 上記の方法によつて製られた複合成形体は、そ
のままの状態でも優れた機械的性質を有するの
で、直接機械部品のごとき成形体として使用する
こともできるが、ビレツトないしはスラブ状に成
形された複合体は、これに押出、圧延などの熱間
塑性加工を施すことが可能であつて、押出材や圧
延材に加工して広い分野に使用し得るのであつ
た。 しかしながら、上記従来の方法は、いずれも、
無機質短繊維材をマトリツクスとしてのアルミニ
ウム溶湯に加圧混合して得た複合凝固物を微細に
砕解して中間原料としての複合粒状物とし、この
粒状物を溶融ないし半溶融状に加熱した状態で加
圧成形するか、または、加熱したアルミニウム溶
湯中に混合溶解して、これを鋳型内に鋳造して成
形体とするのであるが、この場合、繊維材をアル
ミニウム溶湯に加圧混合して得た複合凝固物は、
その中に含まれている繊維材によつて強固に凝固
しているので、これを砕解して粒状度の整つた微
細な粒状物とするためには著しく長時間を要し、
能率よく多量の粒状物を得るには、かなりの困難
を伴うものであつた。 上記実情に鑑み、本発明者らは、特願昭58−
50504号および特願昭59−65690号の方法による複
合成形体の製造に使用する中間原料としての繊維
材とアルミニウムの複合粒状物をより能率よく多
量生産し得る方法を確立すべくさらに研究を重ね
た結果、強化材としての無機質短繊維材を、あら
かじめ容器内において撹拌混合するとき、繊維材
が互いに絡み合つて凝集し多数の微細な毛玉状の
凝集粒となること、このようにして微粒状化した
繊維材に極く微細の無機質粉末をまぶした後、こ
れに溶融アルミニウムを加圧混合して得られた複
合凝固物は、きわめて砕解され易いものであつて
容易に粒状度の整つた微細粒子に砕解し得るこ
と、さらに、このようにして製られた繊維材とア
ルミニウムからなる複合粒状物は、上記特願昭58
−50504号、特願昭59−65690号の方法における複
合粒と同様に、溶融ないし半溶融状態に加熱して
おいて加圧成形するか、または、これを加熱した
アルミニウム溶湯中に混合溶融した状態で鋳型に
鋳造することによつて、熱間塑性加工の可能な複
合成形体となし得ることなどを見出した。 本発明は、上記のごとき知見に基づいてなされ
たものである。 すなわち、本発明は、無機質短繊維材をあらか
じめ多数の毛玉状の凝集粒とし、この凝集粒に少
量の無機質微細粉末を添加し付着混入せしめた
後、これに溶融アルミニウムを加圧混合して得ら
れた凝固物を粒状に砕解することを特徴とする無
機質短繊維材とアルミニウムの複合粒状物の製造
方法である。 以下、本発明の方法について、さらに具体的に
説明する。 本発明の複合粒状物の製造に使用するアルミニ
ウムマトリツクス材としては、1000系の工業用普
通純度のアルミニウム、4000系の鋳物用アルミニ
ウム合金などを適宜使用することができる。ま
た、6000系や7000系の熱処理型展伸合金などを使
用してもよい。繊維材としては、炭素質繊維、炭
化けい素質繊維、アルミナ質繊維その他適宜の無
機質短繊維材を使用し得る。 本発明の方法においては、まず、上記したよう
な無機質短繊維材を凝集化して多数の毛玉状の凝
集粒とするのであるが、この凝集化は、繊維材を
撹拌機付の混合容器、回転混合機、V型混合機な
どの装置に収容し、暫時撹拌混合することによつ
て行わせることができる。例えば、繊維材を撹拌
翼付の混合容器内に収容し5〜30分程度撹拌を続
けると、容器内の繊維材は適度に切断粉砕されな
がら互いに絡み合つて、繊維材の種類によつて幾
分の違いはあるが、径0.1〜5mm程度の粒状の整
つた多数の毛玉状の凝集粒となる。 次いで、このように調整された繊維材の毛玉状
凝集粒に無機質微粉末を添加混合するのである
が、無機質微粉末としては、酸化アルミニウム、
酸化チタニウム、ちつ化けい素のようなアルミニ
ウム溶湯に反応し難いものであつて、可及的に微
細なものがよく、粉末の種類によつても幾分の違
いはあるが、径1μ以下好ましくは0.1μないし
それ以下のものを使用することが望ましい。この
ような粉末として、例えば市販の“アルミニウム
オキサイドC”(西独デグサ社製品)などが好適
に使用し得る。 繊維凝集粒と無機質微粉末と混合は、粉末を添
加した繊維凝集粒を十分にかき混ぜてまぶす方
法、繊維凝集粒をかき混ぜながらこれに粉末を水
またはアルコールのような分散媒中に分散させた
状態でスプレー散布する方法、粉末を懸濁させた
懸濁液中に繊維凝集粒を浸漬した後、別する方
法、その他適宜の方法によつて行うことができ
る。このようにして無機質粉末を混入付着した繊
維凝集粒を、必要に応じて乾燥し、これに溶融ア
ルミニウムを加圧混合して複合凝固物とする。 上記のように、繊維凝集粒に無機質微粉末を混
合することは、これによつて繊維凝集粒と溶融ア
ルミニウムとの複合凝固物に好ましい砕解性を与
えるためである。このような効果を発揮させるた
めに凝集粒に添加する微粉末の量は、きわめて微
量であつてよい。繊維凝集粒に大過量の粉末が付
着し混入していると、そのため凝集粒に対するア
ルミニウム溶湯の濡れ性が阻害され、次の溶湯混
合に際して、凝集粒内部への溶湯の浸入が妨げら
れるにとになるので避けることが望ましい。この
ような理由から、繊維凝集粒に対する無機質粉末
の混合割合は、使用する粉末の種類によつても多
少異なるが、混合によつて得られた凝集粒に付着
し混入している粉末量が、凝集粒を形成する繊維
材に対して体積比で0.5〜20%程度の範囲、好ま
しくは5〜10%程度となるように行うことが望ま
しい。 次に、上記のようにして無機質微粉末を添加し
た繊維凝集粒に溶融アルミニウムを加圧混合して
繊維粒内の空隙にアルミニウムを含浸させるので
あるが、この混合は高圧プレスのごときを使用し
て行うこともできるが、繊維粒内部にまで十分に
溶湯を浸透させるために遠心装置を使用して遠心
加圧下に混合することが望ましい。繊維凝集粒に
混合する溶融アルミニウムの量は、繊維凝集粒の
内部にまで十分に溶湯を含浸させるに必要な量で
あるが、著しく過剰の使用は避けることが望まし
い。 次いで、繊維凝集粒と溶融アルミニウムとの混
合物を冷却凝固させた後、凝固物を砕解してこれ
を粒状化する。この凝固物の砕解は、きわめて容
易であつて僅かの力によつて粒径0.1〜3mm程度
の粒状物に砕解することができる。この砕解に
は、圧砕機、叩解機、インペラのごときを使用す
ることができる。このようにして得られた粒状物
の繊維含有率は、通常は10〜20容量%程度のもの
であるが、繊維凝集粒と溶融アルミニウムの混合
に際して、繊維凝集粒を圧縮状態としておいて溶
湯を加圧混合することによつて、繊維含有率30容
量%程度までの複合粒状物を得ることができる。
砕解粒は、必要に応じて篩分けして粒状度を整え
る。 上記のようにして、本発明の方法によつて製ら
れた無機質短繊維材とアルミニウムの複合粒状物
は、必要に応じて酸またはアルカリ液によつて表
面を清浄化した後、特願昭58−50504号または特
願昭59−65690号に記載されている方法と同様の
方法によつて、溶融ないし半溶融状態に加熱して
おいて、直接加圧成形するか、または、これを加
熱したアルミニウム溶湯中に混合溶融して鋳型内
に重力鋳造、ダイカスト鋳造、または加圧鋳造し
て、所望形状の複合成形体とすることができる。
また、上記の方法によつてビレツトまたはスラブ
状に成形された複合粒状物は、これを通常のアル
ミニウム合金材の押出しまたは圧延におけると同
様にして熱間塑性加工を施すことによつて、無機
質短繊維材によつて複合強化された棒状または板
状の複合アルミニウム展伸材に成形することがで
きる。 上述のように、本発明は、無機質短繊維材をあ
らかじめ多数の毛玉状の繊維凝集粒とし、これに
無機質微細粉末を添加混合した後、この混合粒に
溶融アルミニウムを加圧混入して得られた凝固物
を砕解することによつて、特願昭58−50504号お
よび特願昭59−65690号に記載されているような
アルミニウム−繊維複合成形体の製造原料として
の繊維材を包含したアルミニウム複合粒状物の製
造方法であつて、本発明の方法によるときは、均
整な粒状度をもつた複合粒状物を容易に多量生産
し得るので、これを中間原料として製られたアル
ミニウム−繊維複合成形体の品質向上と生産コス
トの低減に著しく貢献し得るものである。 次に、本発明の実施例を掲げる。 実施例 1 マトリツクス材として2017Al合金を使用し、
強化材の無機質繊維材としてアルミナ短繊維(径
3μ×平均長さ約120μ)を使用した。 20部のアルミナ繊維材を容量5の撹拌翼付容
器内に容れ、約20分間撹拌混合を続けたところ、
容器内の繊維材は平均粒径約0.6mmの多数の凝集
粒状物となつた。 この凝集粒に粉末度約0.02μの微細酸化アルミ
ニウム粉末(西独デグサ社製“アルミニウムオキ
サイドC”)2部を添加しながら、さらに約15分
間十分な撹拌を継続した。 このようにして得た繊維凝集粒22部を遠心容器
内に収容し、これに加熱溶融したアルミニウム
100部を注加して遠心混合した後、凝固物をハン
マーミルを使用して砕解して、径0.1〜3mmの粒
度の整つた複合粒状物100部を得た。 砕解はきわめて容易に行われた。 上記複合粒状物を使用し、次のごとくして押出
材試料AおよびBを作製した。 試料A 複合粒状物を約700℃に加熱し、これを円筒形
金型に収容しプランヂヤをもつて径50mm×長さ
120mmのビレツト状に押し固めた後、これを押出
機のコンデンサ中に収容し、径10mmの丸棒状に熱
間押出成形(温度500℃)を施した。 試料B 複合粒状物50部を750℃に加熱溶融したアルミ
ニウム溶湯(2017Al合金)80部中に投入し、暫
時混合撹拌した後、径100mm×長さ140mmの円筒金
型にビレツト状に鋳込み、得られた複合鋳造体を
径10mmの丸棒状に熱間押出成形(温度450℃)を
施した。 実施例 2 実施例1と同様に、マトリツクス材として
6061Al合金を、繊維材としてアルミナ短繊維材
を使用した。 アルミナ繊維材を、実施例1と同様に、撹拌混
合して平均粒径約0.6mmの凝集粒状物とした。 上記繊維凝集粒状物15部を撹拌しながら、これ
に微細酸化アルミニウム粉末(西独デグサ社製
“アルミニウムオキサイドC”)の4.5%水性スラ
リー22.5部を少量宛スプレー散布して、十分に混
合した後、120℃に加熱乾燥した。 このようにして得た繊維凝集粒16.5部を遠心容
器に収容し、これに加熱溶融アルミニウム95部を
注加して遠心混合した後、凝固物をハンマーミル
によつて砕解して0.1〜3mmの粒度の整つた複合
粒状物約100部を得た。砕解はきわめて容易に行
われた。 上記複合粒状物を使用し、次のごとくして押出
材試料CおよびDを作製した。 試料C 複合粒状物を約700℃に加熱し、実施例1にお
ける試料Aと同様にして、径50mm×長さ120mmの
ビレツト状に押し固めた後、径10mmの丸棒状に熱
間押出成形(温度550℃)を施した。 試料D 複合粒状物50部を750℃に加熱したアルミニウ
ム溶湯(6061Al合金)50部中に投入し、暫時混
合撹拌した後、径100mm×長さ120mmの円筒金型に
ビレツト状に加圧鋳造(圧力150Kg/cm2)した。得
られた複合鋳造体に径10mmの丸棒状に熱間押出成
形(温度450℃)を施した。 実施例1および2によつて得られた押出成形試
料A、B、CおよびDについて、それぞれ常温お
よび高温における機械的特性を測定した結果は、
次のごとくであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing granules in which an inorganic short fiber material is compositely contained in aluminum or an aluminum alloy (hereinafter referred to as aluminum). Recently, attention has been focused on composite materials in which short inorganic fibers such as carbon, silicon carbide, and alumina are used as reinforcing materials and dispersed in aluminum as a matrix material due to their excellent mechanical properties at high temperatures. Attempts have been made to use it in mechanical parts and other products that require high-temperature properties. Conventionally, as a method for compositely dispersing such an inorganic short fiber material in aluminum as a matrix material, a method of stirring and mixing the fiber material into molten aluminum is known. However, there is a quantitative restriction on the amount of fibers that can be mixed into the molten metal, and especially when using fibers that are difficult to wet with the molten aluminum, the fibers tend to be locally unevenly distributed, and it is difficult to distribute the fibers evenly in large amounts. It was difficult to obtain a composite material in which the materials were dispersed. The present inventors first centrifugally mixed an inorganic short fiber material in molten aluminum, granulated the mixture appropriately, and then compression-molded the granular composite while heating it to a molten or semi-molten state. , or by mixing the granular composite into heated molten aluminum;
By casting this mixed melt into a mold, we succeeded in obtaining a composite molded article in which a relatively large amount of fiber material was uniformly dispersed. (Japanese Patent Application No. 58-50504, Patent Application No. 59-65690) The composite molded product produced by the above method has excellent mechanical properties even in its original state, so it can be directly molded into mechanical parts. However, composites formed into billets or slabs can be subjected to hot plastic working such as extrusion or rolling, and can be processed into extruded or rolled materials. It could be used in a wide range of fields. However, all of the above conventional methods
A composite coagulated product obtained by pressurizing and mixing an inorganic short fiber material with molten aluminum as a matrix is finely crushed to produce composite granules as an intermediate raw material, and the granules are heated to a molten or semi-molten state. The fibrous material is pressurized and mixed into the molten aluminum, or mixed and melted into heated molten aluminum and cast into a mold to form a molded body.In this case, the fiber material is mixed under pressure into the molten aluminum. The obtained composite coagulate is
Because it is solidified by the fibrous material contained in it, it takes an extremely long time to crush it into fine granules with uniform granularity.
It was quite difficult to efficiently obtain a large amount of granules. In view of the above-mentioned circumstances, the inventors of the present invention have proposed
50504 and Japanese Patent Application No. 59-65690 in order to establish a more efficient method for mass-producing composite granules of fibrous material and aluminum as an intermediate raw material used in the production of composite molded bodies. As a result, when the inorganic short fiber material used as a reinforcing material is stirred and mixed in a container in advance, the fiber material becomes entangled with each other and aggregates to form a large number of fine fluff-like agglomerated particles. The composite coagulate obtained by sprinkling ultra-fine inorganic powder on the fiber material and then mixing it with molten aluminum under pressure is extremely easy to crush and is easily made into fine particles with uniform granularity. It is possible to crush into particles, and furthermore, the composite granular material made of fiber material and aluminum produced in this way is disclosed in the above-mentioned patent application filed in 1983.
Similar to the composite grains in the method of No.-50504 and Japanese Patent Application No. 59-65690, the composite grains are heated to a molten or semi-molten state and then pressure molded, or mixed and melted in heated molten aluminum. It has been discovered that by casting the composite material into a mold in this state, it is possible to create a composite molded product that can be subjected to hot plastic processing. The present invention has been made based on the above findings. That is, in the present invention, an inorganic short fiber material is made into a large number of fluff-like aggregates in advance, a small amount of inorganic fine powder is added to the aggregates, and the mixture is adhered and mixed, and then molten aluminum is mixed under pressure. This is a method for producing a composite granular material of an inorganic short fiber material and aluminum, which is characterized by crushing a solidified material into granules. The method of the present invention will be explained in more detail below. As the aluminum matrix material used in the production of the composite granules of the present invention, 1000 series industrial ordinary purity aluminum, 4000 series aluminum alloy for casting, etc. can be used as appropriate. Further, heat-treated wrought alloys such as 6000 series and 7000 series may also be used. As the fiber material, carbonaceous fibers, silicon carbide fibers, alumina fibers, and other appropriate inorganic short fiber materials can be used. In the method of the present invention, first, the above-mentioned inorganic short fiber material is agglomerated into a large number of fluff-like aggregate particles. This can be carried out by placing the mixture in a device such as a machine or a V-type mixer and stirring and mixing for a while. For example, if fibrous materials are placed in a mixing container equipped with stirring blades and stirred for about 5 to 30 minutes, the fibrous materials in the container will be appropriately cut and crushed and intertwined with each other, depending on the type of fibrous materials. The result is a large number of fluff-like agglomerated particles with a diameter of about 0.1 to 5 mm, although the size varies. Next, inorganic fine powder is added and mixed with the fluff-like aggregated particles of the fiber material prepared in this way. As the inorganic fine powder, aluminum oxide, aluminum oxide,
It is a material that does not easily react with molten aluminum, such as titanium oxide or silicon nitride, and is preferably as fine as possible, with a diameter of 1μ or less, although it varies somewhat depending on the type of powder. It is preferable to use 0.1μ or less. As such a powder, for example, commercially available "Aluminum Oxide C" (product of Degussa, West Germany) can be suitably used. The fiber aggregates and inorganic fine powder are mixed by thoroughly stirring and sprinkling the fiber aggregates to which the powder has been added, or by dispersing the powder in a dispersion medium such as water or alcohol while stirring the fiber aggregates. It can be carried out by a method of spraying, a method of immersing the fiber aggregates in a suspension of powder and then separating the particles, or any other suitable method. The fiber aggregates to which the inorganic powder has been mixed and adhered in this manner are dried as necessary, and molten aluminum is mixed under pressure to form a composite coagulate. As mentioned above, the purpose of mixing the inorganic fine powder with the fiber aggregates is to impart preferable crushability to the composite solidified product of the fiber aggregates and molten aluminum. The amount of fine powder added to the agglomerated grains in order to exhibit such an effect may be extremely small. If a large amount of powder adheres to and mixes with the fiber agglomerated grains, the wettability of the molten aluminum to the agglomerated grains will be inhibited, and the next time the molten metal is mixed, the molten metal will be prevented from penetrating into the inside of the agglomerated grains. Therefore, it is desirable to avoid it. For these reasons, the mixing ratio of inorganic powder to fiber aggregates varies somewhat depending on the type of powder used, but the amount of powder attached to and mixed in the aggregates obtained by mixing is It is desirable to carry out the treatment so that the volume ratio of the fiber material forming the agglomerated grains is approximately 0.5 to 20%, preferably approximately 5 to 10%. Next, molten aluminum is mixed under pressure into the fiber aggregates to which the inorganic fine powder has been added as described above to impregnate the voids within the fiber grains, but this mixing is done using a high-pressure press. However, in order to sufficiently penetrate the molten metal into the inside of the fiber particles, it is preferable to use a centrifugal device and mix under centrifugal pressure. The amount of molten aluminum mixed into the fiber agglomerates is the amount necessary to sufficiently impregnate the inside of the fiber agglomerates with the molten metal, but it is desirable to avoid using a significantly excessive amount. Next, the mixture of fiber aggregates and molten aluminum is cooled and solidified, and then the solidified material is crushed and granulated. This coagulated material can be crushed very easily into granules having a particle size of about 0.1 to 3 mm with a small amount of force. For this crushing, a crusher, a refiner, an impeller, etc. can be used. The fiber content of the granules obtained in this way is usually about 10 to 20% by volume, but when mixing the fiber agglomerates and molten aluminum, the fiber agglomerates are compressed and the molten metal is mixed. By pressurized mixing, composite granules with a fiber content of up to about 30% by volume can be obtained.
The crushed grains are sieved to adjust the granularity, if necessary. As described above, after cleaning the surface of the inorganic short fiber material and aluminum composite particles produced by the method of the present invention with an acid or alkaline solution as necessary, the -50504 or Japanese Patent Application No. 59-65690, it is heated to a molten or semi-molten state and then directly pressure molded, or this is heated. It can be mixed and melted in molten aluminum and then gravity cast, die cast, or pressure cast into a mold to form a composite molded body in a desired shape.
In addition, the composite granules formed into a billet or slab shape by the above method can be subjected to hot plastic working in the same manner as in extrusion or rolling of ordinary aluminum alloy materials to form inorganic short particles. It can be formed into a rod-shaped or plate-shaped composite aluminum wrought material reinforced with fiber material. As described above, in the present invention, an inorganic short fiber material is prepared in advance into a large number of fluff-like fiber agglomerated particles, an inorganic fine powder is added and mixed therein, and then molten aluminum is mixed under pressure into the mixed particles. By crushing the solidified material, aluminum containing fiber material can be produced as a raw material for producing aluminum-fiber composite molded bodies as described in Japanese Patent Application No. 58-50504 and Japanese Patent Application No. 59-65690. In the method of manufacturing composite granules, when the method of the present invention is used, composite granules with uniform granularity can be easily produced in large quantities. This can significantly contribute to improving body quality and reducing production costs. Next, examples of the present invention are listed. Example 1 Using 2017Al alloy as the matrix material,
Alumina short fibers (diameter 3 μm x average length approximately 120 μm) were used as the inorganic fiber material of the reinforcing material. When 20 parts of alumina fiber material was placed in a container with a capacity of 5 and equipped with stirring blades, stirring and mixing were continued for about 20 minutes.
The fibrous material in the container became a large number of agglomerated particles with an average particle size of about 0.6 mm. Sufficient stirring was continued for about 15 minutes while adding 2 parts of fine aluminum oxide powder ("Aluminum Oxide C" manufactured by Degussa AG, West Germany) having a fineness of about 0.02 μm to the agglomerated particles. 22 parts of the fiber aggregates obtained in this way were placed in a centrifugal container, and heated and molten aluminum was added to the container.
After adding 100 parts and centrifugally mixing, the coagulated material was crushed using a hammer mill to obtain 100 parts of composite granules with a uniform particle size of 0.1 to 3 mm in diameter. Disintegration was extremely easy. Using the above composite granules, extruded material samples A and B were produced as follows. Sample A Composite granules were heated to approximately 700°C, placed in a cylindrical mold, and molded with a plunger to a diameter of 50 mm x length.
After compacting into a billet shape of 120 mm, this was placed in a condenser of an extruder and hot extrusion molded (temperature: 500°C) into a round bar shape of 10 mm in diameter. Sample B: 50 parts of composite granules were poured into 80 parts of molten aluminum (2017Al alloy) heated to 750°C, mixed and stirred for a while, and then cast into a billet shape into a cylindrical mold with a diameter of 100 mm and a length of 140 mm. The resulting composite cast body was hot extruded (temperature: 450°C) into a round bar shape with a diameter of 10 mm. Example 2 Similar to Example 1, as a matrix material
6061Al alloy was used, and alumina short fiber material was used as the fiber material. The alumina fiber material was stirred and mixed in the same manner as in Example 1 to form agglomerated particles with an average particle size of about 0.6 mm. While stirring 15 parts of the above fiber agglomerated granules, 22.5 parts of a 4.5% aqueous slurry of fine aluminum oxide powder ("Aluminum Oxide C" manufactured by Degussa AG, West Germany) was sprayed onto a small amount and thoroughly mixed. It was dried by heating at 120°C. 16.5 parts of the fiber aggregates thus obtained were placed in a centrifugal container, 95 parts of heated molten aluminum was added thereto, centrifugally mixed, and the coagulated material was crushed with a hammer mill to 0.1 to 3 mm Approximately 100 parts of composite granules with uniform particle size were obtained. Disintegration was extremely easy. Using the above composite granules, extruded material samples C and D were produced as follows. Sample C The composite granules were heated to about 700°C and compacted into a billet shape with a diameter of 50 mm and a length of 120 mm in the same manner as Sample A in Example 1, and then hot extruded into a round bar shape with a diameter of 10 mm ( Temperature: 550°C). Sample D 50 parts of composite granules were put into 50 parts of molten aluminum (6061Al alloy) heated to 750°C, mixed and stirred for a while, and then pressure cast into a billet shape ( The pressure was 150Kg/cm 2 ). The obtained composite cast body was subjected to hot extrusion molding (temperature: 450°C) into a round bar shape with a diameter of 10 mm. The mechanical properties of extruded samples A, B, C, and D obtained in Examples 1 and 2 at room temperature and high temperature were measured, respectively.
It was as follows. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 無機質短繊維材をあらかじめ多数の毛玉状の
凝集粒とし、この凝集粒に少量の無機質微細粉末
を添加し付着混入せしめた後、これに溶融アルミ
ニウムを加圧混合して得られた凝固物を粒状に砕
解することを特徴とする無機質短繊維材とアルミ
ニウムの複合粒状物の製造方法。
1. Inorganic short fiber material is made into a large number of fluff-like aggregates in advance, a small amount of inorganic fine powder is added to the aggregates, and the mixture is adhered to the aggregates, and then molten aluminum is mixed under pressure to form the resulting coagulate into granules. A method for producing a composite granular material of inorganic short fiber material and aluminum, characterized by crushing the material into granules.
JP14864684A 1984-07-19 1984-07-19 Manufacture of composite granule consisting of inorganic short fiber and aluminum Granted JPS6130608A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14864684A JPS6130608A (en) 1984-07-19 1984-07-19 Manufacture of composite granule consisting of inorganic short fiber and aluminum
US06/755,148 US4617979A (en) 1984-07-19 1985-07-15 Method for manufacture of cast articles of fiber-reinforced aluminum composite
GB08517880A GB2162104B (en) 1984-07-19 1985-07-16 Fibre-reinforced aluminium composite material
KR1019850005057A KR910006069B1 (en) 1984-07-19 1985-07-16 Method for manufacture of cast articles of fiber-reinforced aluminium composite
CA000487036A CA1227616A (en) 1984-07-19 1985-07-18 Method for manufacture of cast articles of fiber- reinforced aluminum composite
FR8511207A FR2567803B1 (en) 1984-07-19 1985-07-19 PROCESS FOR PRODUCING MOLDED OBJECTS BASED ON FIBER REINFORCED ALUMINUM COMPOSITE
IT21640/85A IT1201432B (en) 1984-07-19 1985-07-19 METHOD FOR THE MANUFACTURE OF ARTICLES OBTAINED BY CASTING FROM A COMPOSITE ALUMINUM MATERIAL REINFORCED WITH FIBERS
DE19853525872 DE3525872A1 (en) 1984-07-19 1985-07-19 METHOD FOR THE PRODUCTION OF MOLDED ITEMS FROM A FIBER REINFORCED COMPOSITE ALUMINUM PRODUCT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14864684A JPS6130608A (en) 1984-07-19 1984-07-19 Manufacture of composite granule consisting of inorganic short fiber and aluminum

Publications (2)

Publication Number Publication Date
JPS6130608A JPS6130608A (en) 1986-02-12
JPS6140724B2 true JPS6140724B2 (en) 1986-09-10

Family

ID=15457450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14864684A Granted JPS6130608A (en) 1984-07-19 1984-07-19 Manufacture of composite granule consisting of inorganic short fiber and aluminum

Country Status (1)

Country Link
JP (1) JPS6130608A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157647A (en) * 1984-12-28 1986-07-17 Nippon Light Metal Co Ltd Manufacture of aluminum quality strengthened composite material
JPS6314828A (en) * 1986-07-04 1988-01-22 Nikkei Kako Kk Manufacture of fiber-reinforced aluminum composite body
JPS63192830A (en) * 1987-02-04 1988-08-10 Nippon Light Metal Co Ltd Manufacture of fiber-reinforced composite casting
JPH01113162A (en) * 1987-10-26 1989-05-01 Ee M Technol:Kk Production for fiber reinforced composite casting body

Also Published As

Publication number Publication date
JPS6130608A (en) 1986-02-12

Similar Documents

Publication Publication Date Title
US4617979A (en) Method for manufacture of cast articles of fiber-reinforced aluminum composite
JPS6223642B2 (en)
RU99108122A (en) METHOD FOR PRODUCING A CLEANING AND CLEANING AGENT IN THE FORM OF FILLED PARTICLES
US1951133A (en) Compositions of matter and process of preparing same
JPS6140724B2 (en)
JP3640432B2 (en) Method for producing fluid tungsten / copper composite powder
JPS642178B2 (en)
JP2685893B2 (en) Manufacturing method of iron powder with high packing density
KR20030003804A (en) An Al alloy materal for foaming by waste Al and Al alloy scrap, and a method of thereof
DE69523036T2 (en) Process for the production of flowable tungsten / copper composite powder
JPS61270347A (en) Manufacture of aluminum composite cast body reinforced with fiber
JP3164986B2 (en) Method for producing potassium titanate sintered body
JP4382937B2 (en) Method for producing coal-ash quality artificial aggregate
JPS6153419B2 (en)
DE2212311A1 (en) Process for the production of oxide abrasives with a defined crystal size
JPS593511B2 (en) Method for producing small pellets using fine coke
JPS63130733A (en) Manufacture of copper-base composite material
JPH0143822B2 (en)
JPS6186064A (en) Production of composite metallic body compounded with inorganic fibers
RU2100131C1 (en) Method of producing granulated slag-forming mixture
JPH06170206A (en) Spherical granulation method
JPH0364575B2 (en)
JPH0421740B2 (en)
RU2097348C1 (en) Method for producing glass-based moulding powders
CN114855018A (en) Preparation method of nano hard alloy