JP3164986B2 - Method for producing potassium titanate sintered body - Google Patents

Method for producing potassium titanate sintered body

Info

Publication number
JP3164986B2
JP3164986B2 JP30732994A JP30732994A JP3164986B2 JP 3164986 B2 JP3164986 B2 JP 3164986B2 JP 30732994 A JP30732994 A JP 30732994A JP 30732994 A JP30732994 A JP 30732994A JP 3164986 B2 JP3164986 B2 JP 3164986B2
Authority
JP
Japan
Prior art keywords
potassium
powder
amorphous
sintered body
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30732994A
Other languages
Japanese (ja)
Other versions
JPH08165168A (en
Inventor
健司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP30732994A priority Critical patent/JP3164986B2/en
Publication of JPH08165168A publication Critical patent/JPH08165168A/en
Application granted granted Critical
Publication of JP3164986B2 publication Critical patent/JP3164986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐火耐熱材,断熱材,
摩擦材等として有用なチタン酸カリウム焼結体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for producing a potassium titanate sintered body useful as a friction material or the like.

【0002】[0002]

【従来の技術】六チタン酸カリウム(K2 Ti6 13
に代表されるチタン酸カリウムは、耐熱性,断熱性,耐
摩耗性,機械的強度、化学的安定性等を備えた合成無機
化合物であり、耐火耐熱材,断熱材,摩擦材,その他の
広範な用途に亘り構造材料,機能材料としての応用が試
みられている。チタン酸カリウムからなる焼結体は、例
えば六チタン酸カリウム結晶の粉末を焼結原料とし、こ
れに有機バインダ(成形助剤)を適量添加し、その混練
物を粉末成形体としたうえ焼結処理することにより製造
される(例えば、特公平2−10793号公報)
2. Description of the Related Art Potassium hexatitanate (K 2 Ti 6 O 13 )
Is a synthetic inorganic compound with heat resistance, heat insulation, abrasion resistance, mechanical strength, chemical stability, etc. Applications as structural materials and functional materials have been attempted for various applications. For a sintered body made of potassium titanate, for example, potassium hexatitanate crystal powder is used as a sintering raw material, an appropriate amount of an organic binder (forming aid) is added thereto, and the kneaded product is formed into a powder compact and then sintered. It is manufactured by processing (for example, Japanese Patent Publication No. 2-10793).

【0003】[0003]

【発明が解決しようとする課題】従来のチタン酸カリウ
ム焼結体の製造方法では、六チタン酸カリウム結晶の粉
末を焼結原料として予め合成しておく必要があり、それ
だけ処理操作工数が多く、コストも高くつく。また、得
られる焼結製品の緻密性や機械強度にも改善の余地があ
る。本発明は上記に鑑み、簡素な工程で効率よく、かつ
高緻密性で機械強度に優れたチタン酸カリウム焼結体を
製造する方法を提供するものである。
In the conventional method of manufacturing a potassium titanate sintered body, it is necessary to synthesize potassium hexatitanate crystal powder in advance as a sintering raw material, which requires a large number of processing operations. Costs are high. There is also room for improvement in the denseness and mechanical strength of the resulting sintered product. In view of the above, the present invention provides a method for efficiently producing a potassium titanate sintered body having high density, excellent mechanical strength and simple steps.

【0004】[0004]

【課題を解決するための手段】本発明のチタン酸カリウ
ム焼結体の製造方法は、二チタン酸カリウム相当の化学
組成を有する非晶質粉末と、酸化チタン粉末とからなる
微細粉末混合物を、加圧成形したうえ、温度1100〜
1400℃で焼結処理することを特徴としている。
According to the present invention, there is provided a method for producing a potassium titanate sintered body, comprising: mixing a fine powder mixture comprising an amorphous powder having a chemical composition equivalent to potassium dititanate and a titanium oxide powder; After pressure molding, temperature 1100
The sintering process is performed at 1400 ° C.

【0005】[0005]

【作用】二チタン酸カリウム(K2 Ti2 5 )相当の
化学組成を有する非晶質粉末(以下、「非晶質二チタン
酸カリウム粉末」)と酸化チタン粉末とからなる粉末成
形体の焼結処理において、非晶質二チタン酸カリウム粒
子と酸化チタン粒子との反応により、チタン酸カリウム
の微細な繊維状結晶が生成すると共に、繊維状結晶が相
互に絡みあって結合した緻密性の高い焼結体が形成され
る。焼結原料として使用される非晶質二チタン酸カリウ
ム粉末は、六チタン酸カリウム結晶等の製造過程での中
間生成物として安価に収得でき、しかもその非晶質粉末
に酸化チタン粉末を添加した粉末混合物(焼結原料)
は、六チタン酸カリウム等の結晶質粉末を焼結原料とす
る場合に比べて、焼結反応が生じ易い(六チタン酸カリ
ウム結晶同士の焼結処理では約1100℃以上の加熱を
要するのに対し、約800〜900℃の低温度域から反
応を生起する)ので、焼結体の均質性・緻密性を確保す
ることが容易である。
The present invention provides a powder compact comprising an amorphous powder having a chemical composition equivalent to potassium dititanate (K 2 Ti 2 O 5 ) (hereinafter, “amorphous potassium dititanate powder”) and a titanium oxide powder. In the sintering process, the reaction between the amorphous potassium dititanate particles and the titanium oxide particles generates fine fibrous crystals of potassium titanate, and the fibrous crystals are entangled with each other and bonded together. A high sintered body is formed. Amorphous potassium dititanate powder used as a sintering raw material can be obtained at low cost as an intermediate product in the production process of potassium hexatitanate crystals and the like, and titanium oxide powder is added to the amorphous powder. Powder mixture (sintering raw material)
Is more likely to cause a sintering reaction than a case where a crystalline powder such as potassium hexatitanate is used as a sintering raw material (the sintering process of potassium hexatitanate crystals requires heating of about 1100 ° C. or more. On the other hand, a reaction occurs from a low temperature range of about 800 to 900 ° C.), so that it is easy to ensure homogeneity and denseness of the sintered body.

【0006】以下、本発明について詳しく説明する。 〔非晶質二チタン酸カリウム粉末の製造〕非晶質二チタ
ン酸カリウム粉末は、例えば、酸化チタン(TiO2
と酸化カリウム(K2 O)との混合粉末を加熱溶融し、
溶融生成物を急冷凝固して得られる非晶質物を使用する
ことができる。その非晶質物は、酸化チタンもしくは加
熱による酸化チタンを生成するチタン化合物と、酸化カ
リウムもしくは加熱により酸化カリウムを生成するカリ
ウム化合物を、 TiO2 /K2 O (モル比)が1.5〜2.
5となる割合に混合した混合粉末を加熱溶融した後、そ
の溶融生成物を急冷凝固することにより製造される。
Hereinafter, the present invention will be described in detail. [Production of Amorphous Potassium Dititanate Powder] Amorphous potassium dititanate powder is, for example, titanium oxide (TiO 2 ).
And heat mixed powder of potassium oxide (K 2 O)
An amorphous material obtained by rapidly solidifying a molten product can be used. The amorphous material includes titanium oxide or a titanium compound that produces titanium oxide by heating, and potassium oxide or a potassium compound that produces potassium oxide by heating, wherein TiO 2 / K 2 O (molar ratio) is 1.5 to 2; .
It is manufactured by heating and melting a mixed powder mixed at a ratio of 5 and then rapidly solidifying the molten product.

【0007】加熱溶融原料の酸化チタンと酸化カリウム
の混合割合( TiO2 /K2 O のモル比)を1.5〜2.5
としているのは、この範囲において、加熱溶融処理を比
較的低温域(温度約950〜1150℃)で達成できる
と共に、溶融生成物の急冷凝固で、非晶質二チタン酸カ
リウムを効率よく収得できるからである。加熱溶融生成
物の急冷凝固処理は、例えば金属双ロール法を適用し、
高速回転する金属ロールのロール間隙に溶融物を流下さ
せることにより行われる。この場合の非晶質凝固物はフ
レーク(薄片)として得られる。。
The mixing ratio (molar ratio of TiO 2 / K 2 O) of titanium oxide and potassium oxide as the raw material for heating and melting is 1.5 to 2.5.
In this range, the heating and melting treatment can be achieved in a relatively low temperature range (temperature of about 950 to 1150 ° C.), and the amorphous potassium dititanate can be efficiently obtained by rapid solidification of the molten product. Because. The rapid solidification treatment of the heated molten product, for example, applying a metal twin roll method,
This is performed by flowing the melt down into the gap between the metal rolls rotating at high speed. The amorphous coagulated material in this case is obtained as flakes (flakes). .

【0008】〔焼結原料の調製〕非晶質二チタン酸カリ
ウム粉末に酸化チタン粉末を混合して焼結原料を調製す
る。粉末粒径は、最終製品焼結体の均質・緻密性を高め
るために、粒径約10μm以下の微細粉であるのが好ま
しい。上記フレーク状非晶質凝固物を使用する場合は、
酸化チタン粉末と混合したうえ、ボールミル等で混練お
よび微粉化するとよい。フレーク状凝固片は、粒状ない
し繊維状の粉末にと異なって、ボールミル等による微粉
砕化が容易である。混練・粉砕処理に際しては、適量の
解膠剤(例えば、ポリカルボン酸塩)や、成形助剤(メ
チルセルロース溶液等の有機バインダ)が適宜添加され
る。更に、微粉砕処理の後、スプレードライヤ等で造粒
(例えば粒径約10〜100μm)して使用するとよ
い。
[Preparation of Sintering Raw Material] A sintering raw material is prepared by mixing a titanium oxide powder with an amorphous potassium dititanate powder. The powder particle size is preferably a fine powder having a particle size of about 10 μm or less in order to enhance the homogeneity and denseness of the final product sintered body. When using the flake-like amorphous coagulated product,
It is advisable to mix the powder with a titanium oxide powder, knead and pulverize it with a ball mill or the like. The flake-like solidified pieces are easily pulverized by a ball mill or the like, unlike granular or fibrous powders. During the kneading and pulverizing treatment, an appropriate amount of a deflocculant (for example, a polycarboxylate) and a molding aid (an organic binder such as a methylcellulose solution) are appropriately added. Further, after the pulverization treatment, it is preferable to granulate (for example, a particle size of about 10 to 100 μm) using a spray dryer or the like before use.

【0009】非晶質二チタン酸カリウム粉末と酸化チタ
ン粉末の混合比率は、目的とする焼結体のチタン酸カリ
ウム結晶の種類に応じて調整される。六チタン酸カリウ
ム結晶(K2 Ti6 13)からなる焼結体を製造する場
合は、その組成に対応して、TiO2 /K2 O (モル比)が
約5.8〜6.2となるように配合するとよい。この範
囲を外れると、焼結反応効率が悪くなり、また六チタン
酸カリウム結晶以外の異相(TiO2 結晶相など)の生
成を付随するからである。
The mixing ratio of the amorphous potassium dititanate powder and the titanium oxide powder is adjusted according to the kind of potassium titanate crystals of the target sintered body. When producing a sintered body composed of potassium hexatitanate crystals (K 2 Ti 6 O 13 ), TiO 2 / K 2 O (molar ratio) is about 5.8 to 6.2 in accordance with the composition. It is good to mix so that it becomes. If the ratio is out of this range, the efficiency of the sintering reaction is deteriorated, and the formation of a different phase (such as a TiO 2 crystal phase) other than the potassium hexatitanate crystal is accompanied.

【0010】〔焼結原料粉末の加圧成形および焼結処
理〕焼結原料粉末混合物は、適宜形状の粉末成形体に加
圧成形され、焼結処理に付される。粉末成形体の加圧成
形は、例えば冷間静水圧加圧成形(ラバープレス)を適
用し、適当な加圧力(例えば10〜100MPa)を適
当時間(例えば0.5〜3分間)作用させることにより
行われる。焼結処理は、温度約1100〜1400℃
に、適当時間(例えば1〜3Hr)保持することにより
行われ、非晶質二チタン酸カリウム粒子と酸化チタン粒
子との反応によるチタン酸カリウムの微細な繊維状結晶
の生成、および結晶同士の結合を生じる。この焼結反応
は、比較的低温度域(約800〜900℃)でも生起す
るが、処理温度を1100℃以上としたのは、焼結反応
による高緻密質焼結体の形成を効率よく達成するためで
ある。他方、処理温度の上限を1400℃としているの
は、それを越えると生成するチタン酸カリウム結晶の一
部に溶融を生じ、溶融相は非晶質相を生じて焼結体の靱
性や強度等の品質を損なう原因となるからである。
[Press molding and sintering process of sintering raw material powder] The sintering raw material powder mixture is press-formed into an appropriately shaped powder compact and subjected to a sintering process. For the compacting of the powder compact, for example, cold isostatic pressing (rubber press) is applied, and a suitable pressing force (for example, 10 to 100 MPa) is applied for a proper time (for example, 0.5 to 3 minutes). It is performed by The sintering process is performed at a temperature of about 1100 to 1400 ° C.
For a suitable time (eg, 1 to 3 hours) to form fine fibrous crystals of potassium titanate by the reaction between the amorphous potassium dititanate particles and the titanium oxide particles, and to bond the crystals together. Is generated. Although this sintering reaction occurs even in a relatively low temperature range (approximately 800 to 900 ° C.), the treatment temperature of 1100 ° C. or more is effective in efficiently forming a high-density sintered body by the sintering reaction. To do that. On the other hand, the reason why the upper limit of the treatment temperature is 1400 ° C. is that if the temperature exceeds that, a part of the potassium titanate crystal generated is melted, and the molten phase forms an amorphous phase, and the toughness and strength of the sintered body are increased. This is because it causes the quality of the product to deteriorate.

【0011】[0011]

【実施例】 (1)非晶質二チタン酸カリウムの製造 (1.1)加熱溶融原料および加熱溶融:精製酸化チタン粉
末(純度99.8%)と、工業用炭酸カリウム粉末(純度99.5
%)とを混合。TiO 2 /K2 O (モル比):1.8。粉末混
合物を白金坩堝に入れ加熱溶融する(1100℃×40
min)。 (1.2)溶融物の急冷凝固:溶融物を金属双ロール法によ
り急冷凝固させ、フレーク状凝固物を得る。該凝固物は
完全非晶質体(X線回折)である。
EXAMPLES (1) Production of amorphous potassium dititanate (1.1) Heat-melting raw material and heat-melting: Purified titanium oxide powder (purity 99.8%) and industrial potassium carbonate powder (purity 99.5%)
%). TiO 2 / K 2 O (molar ratio): 1.8. The powder mixture is put into a platinum crucible and melted by heating (1100 ° C. × 40
min). (1.2) Rapid solidification of a melt: The melt is rapidly solidified by a metal twin roll method to obtain a flake solid. The solidified product is a completely amorphous material (X-ray diffraction).

【0012】(2)焼結原料の調製:上記非晶質凝固物
170gに、精製酸化チタン粉末(純度99.8%)230gを混合す
る(TiO2 /K2 O =6)。これに、成形助剤(メチルセ
ルロース2%溶液)400ml および解膠剤(ポリカルボン酸
塩40%溶液)4gを加えてスラリーとする。スラリーをボ
ールミルで混練 (24Hr) し、微粉化(粒径10μm以下)
した後、スプレードライヤで乾燥し、造粒する(造粒径
約50μm)。 (3)加圧成形 造粒粉を冷間静水圧加圧成形(ラバープレス)に付し粉
末成形体とする(加圧力:150MPa, 加圧時間:30秒) 。
(2) Preparation of sintering raw material: the above-mentioned amorphous solidified product
230 g of purified titanium oxide powder (purity 99.8%) is mixed with 170 g (TiO 2 / K 2 O = 6). To this, 400 ml of a molding aid (2% solution of methylcellulose) and 4 g of a deflocculant (40% solution of polycarboxylate) are added to form a slurry. The slurry is kneaded (24Hr) with a ball mill and pulverized (particle size 10μm or less)
After that, it is dried by a spray dryer and granulated (particle size: about 50 μm). (3) Press molding The granulated powder is subjected to cold isostatic pressing (rubber press) to obtain a powder compact (pressing force: 150 MPa, pressurizing time: 30 seconds).

【0013】(4)焼結処理 粉末成形体を電気炉内で焼結処理(温度:1250℃,
時間:2Hr,雰囲気:大気)する。処理後、炉中冷却
する。この焼結体を供試材Aとする。焼結体は、六チタ
ン酸カリウム結晶からなり(X線回折)、微細な繊維状
結晶が絡み合った構造を有している(走査型電子顕微
鏡)。
(4) Sintering process The powder compact is sintered in an electric furnace (temperature: 1250 ° C.,
(Time: 2 hours, atmosphere: air). After the treatment, cool in a furnace. This sintered body is referred to as a test material A. The sintered body is composed of potassium hexatitanate crystals (X-ray diffraction) and has a structure in which fine fibrous crystals are entangled (scanning electron microscope).

【0014】〔比較例〕六チタン酸カリウム結晶粉末
(後記参考例による)400gに、成形助剤(ポリビニルア
ルコール5%溶液)100gを添加し十分混合した後、冷間
静水圧加圧成形(加圧力:150MPa, 加圧時間:30秒) に
付し粉末成形体とし、ついで電気炉内で焼結処理温度:
1250℃,時間:2Hr,雰囲気:大気)して焼結体
を得る。この焼結体を供試材Bとする。供試材Aと同じ
く、六チタン酸カリウム結晶からなり(X線回折)、微
細な繊維状結晶が絡み合った構造を有している(走査型
電子顕微鏡)。
[Comparative Example] To 400 g of potassium hexatitanate crystal powder (according to the following Reference Example), 100 g of a molding aid (5% polyvinyl alcohol solution) was added and mixed well, followed by cold isostatic pressing. (Pressure: 150MPa, pressurization time: 30 seconds) to obtain a powder compact, and then sintering temperature in an electric furnace:
(1250 ° C., time: 2 hr, atmosphere: air) to obtain a sintered body. This sintered body is referred to as a test material B. Like the test material A, it is composed of potassium hexatitanate crystals (X-ray diffraction) and has a structure in which fine fibrous crystals are entangled (scanning electron microscope).

【0015】上記供試材AおよびBのそれぞれについ
て、相対密度(%)およびJIS B1601(ファインセラミッ
クスの曲げ強さ試験方法」) による3点曲げ強さ(スパ
ン距離30mm)を測定し、下記の結果を得た。非晶質二
チタン酸カリウム粉末と酸化チタン粉末の混合粉末を使
用して得られた発明例の焼結体Aは、チタン酸カリウム
結晶粉末を使用した焼結体Bに比し、緻密性が高く、機
械強度に優れている。
For each of the test materials A and B, the relative density (%) and the three-point bending strength (span distance 30 mm) according to JIS B1601 (Testing method for bending strength of fine ceramics) were measured. The result was obtained. The sintered body A of the invention example obtained using the mixed powder of the amorphous potassium dititanate powder and the titanium oxide powder has a higher density than the sintered body B using the potassium titanate crystal powder. High and excellent in mechanical strength.

【0016】[0016]

【表1】 [Table 1]

【0017】〔参考例:六チタン酸カリウム結晶粉末の
製造〕 (1) 溶融および凝固処理 精製酸化チタン(純度99.8%) と工業用炭酸カリウム
(純度99.5%)との混合物( TiO2 /K2 O =6)をアル
ミナ坩堝に入れ、1300℃で2 時間を要して加熱溶融した
後、溶融物を室温まで自然放冷する。 (2)凝固物の洗浄処理 得られた凝固物を純粋で洗浄し、可溶性物質を分離して
粉化物を回収し、1500℃で乾燥する (3)粉砕・分級 乾燥物を乳鉢で粉砕した後、フルイにかけ、50μm以下
に分級する。得られた粉末は、六チタン酸カリウム結晶
であり(X線回折)であり、粒径は5〜40μmである。
Reference Example: Production of potassium hexatitanate crystal powder (1) Melting and coagulation treatment A mixture of purified titanium oxide (purity 99.8%) and industrial potassium carbonate (purity 99.5%) (TiO 2 / K 2 O = 6) is placed in an alumina crucible, and is heated and melted at 1300 ° C. for 2 hours, and then the melt is naturally cooled to room temperature. (2) Coagulation washing process The obtained coagulation is washed with pure, the soluble substance is separated and the powdered material is collected and dried at 1500 ° C. (3) Pulverization and classification , Sieve and classify to 50 μm or less. The obtained powder is a potassium hexatitanate crystal (X-ray diffraction) and has a particle size of 5 to 40 μm.

【0018】[0018]

【発明の効果】本発明によれば、チタン酸カリウム結晶
粉末を予め合成しておく必要がなく、非晶質二チタン酸
カリウム(チタン酸カリウム結晶粉末製造工程の中間生
成物)を使用して、チタン酸カリウム焼結体を得ること
ができ、製造工程の簡素化、コスト低減の効果が得られ
る。また、得られる焼結体は、高緻密性で、機械強度に
優れているので、耐火材,断熱材,耐熱材,摩擦材等と
して、また電気・電子工業分野における機械強度が要求
される部品等として有用である。
According to the present invention, it is not necessary to synthesize potassium titanate crystal powder in advance, and it is possible to use amorphous potassium dititanate (an intermediate product of the potassium titanate crystal powder production process). Thus, a potassium titanate sintered body can be obtained, and the effects of simplification of the manufacturing process and cost reduction can be obtained. In addition, the resulting sintered body is highly dense and has excellent mechanical strength, so it is used as a refractory material, a heat insulating material, a heat resistant material, a friction material, or a component requiring mechanical strength in the electric and electronic industries. It is useful as such.

フロントページの続き (56)参考文献 特開 平6−329467(JP,A) 特開 昭63−282160(JP,A) 特開 昭58−199774(JP,A) 特開 昭60−231464(JP,A) 特開 平1−246139(JP,A) 特開 昭63−260821(JP,A) 特開 昭63−256526(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 C04B 35/00 - 35/22 CA(STN) JICSTファイル(JOIS) REGISTRY(STN)Continuation of the front page (56) References JP-A-6-329467 (JP, A) JP-A-63-282160 (JP, A) JP-A-58-199774 (JP, A) JP-A-60-231464 (JP, A) JP-A-1-246139 (JP, A) JP-A-63-260821 (JP, A) JP-A-63-256526 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) C04B 35/42-35/49 C04B 35/00-35/22 CA (STN) JICST file (JOIS) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二チタン酸カリウム相当の化学組成を有
する非晶質粉末と、酸化チタン粉末とからなる微細粉末
混合物を、加圧成形したうえ、温度1100〜1400
℃で焼結処理することを特徴とするチタン酸カリウム焼
結体の製造方法。
1. A fine powder mixture comprising an amorphous powder having a chemical composition equivalent to potassium dititanate and a titanium oxide powder, is subjected to pressure molding, and then subjected to a temperature of 1100 to 1400.
A method for producing a potassium titanate sintered body, characterized by performing sintering at a temperature of ° C.
【請求項2】 酸化チタンまたは加熱により酸化チタン
を生成するチタン化合物と、酸化カリウムまたは加熱に
より酸化カリウムを生成するカリウム化合物とを、 TiO
2 /K2 O のモル比が1.5〜2.5となる割合に配合し
た粉末混合物を加熱溶融し、 加熱溶融物を急冷して二チタン酸カリウム相当の化学組
成を有する非晶質凝固物を得、 非晶質凝固物に、酸化チタンを加えて微細粉末混合物と
なし、加圧成形したうえ、温度1100〜1400℃で
焼結処理することを特徴とするチタン酸カリウム焼結体
の製造方法。
2. A method according to claim 1, wherein titanium oxide or a titanium compound which forms titanium oxide by heating, and potassium oxide or a potassium compound which forms potassium oxide by heating are mixed with TiO 2
Heat-melt a powder mixture blended at a molar ratio of 2 / K 2 O of 1.5 to 2.5, and quench the heated melt to form an amorphous solidification with a chemical composition equivalent to potassium dititanate A titanium oxide is added to the amorphous coagulated product to form a fine powder mixture, and the mixture is pressed and then sintered at a temperature of 1100 to 1400 ° C. Production method.
JP30732994A 1994-12-12 1994-12-12 Method for producing potassium titanate sintered body Expired - Fee Related JP3164986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30732994A JP3164986B2 (en) 1994-12-12 1994-12-12 Method for producing potassium titanate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30732994A JP3164986B2 (en) 1994-12-12 1994-12-12 Method for producing potassium titanate sintered body

Publications (2)

Publication Number Publication Date
JPH08165168A JPH08165168A (en) 1996-06-25
JP3164986B2 true JP3164986B2 (en) 2001-05-14

Family

ID=17967833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30732994A Expired - Fee Related JP3164986B2 (en) 1994-12-12 1994-12-12 Method for producing potassium titanate sintered body

Country Status (1)

Country Link
JP (1) JP3164986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800020470A1 (en) * 2018-12-20 2020-06-20 Mario Gerardo Terruzzi PROCEDURE FOR THE PREPARATION OF FIBER-FREE ALKALINE TITANATES
CN112408955B (en) * 2020-11-24 2022-10-11 梅河口市跃兴砂轮特耐有限责任公司 Iron-aluminum-magnesium oxide composite material product and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08165168A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
RU2383638C2 (en) Nano-crystal sintered bodies on base of alpha-oxide of aluminium, method of their fabrication and implementation
JPH10182150A (en) Ito stock powder and sintered compact and their production
US5773733A (en) Alumina-aluminum nitride-nickel composites
JPH0251863B2 (en)
JP3164986B2 (en) Method for producing potassium titanate sintered body
DE2923729A1 (en) SINTER-CERAMIC PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
JPH05279125A (en) Production of sintered silicon nitride ceramic
EP0754659A1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH0569765B2 (en)
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof
JP2992667B2 (en) Metal titanate fiber and high dielectric material
DE60027018T2 (en) SYNTHESIS AND CONSOLIDATION OF NANOPHASE MATERIALS
JP3640432B2 (en) Method for producing fluid tungsten / copper composite powder
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
Junmin et al. Synthesizing 0.9 PZN–0.1 BT by mechanically activating mixed oxides
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH02271919A (en) Production of fine powder of titanium carbide
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPH06329467A (en) Production of sintered potassium titanate
Nagashima et al. Fabrication of Al2O3/ZrO2 micro/nano-composite prepared by high energy ball milling
JPH03193801A (en) Sintering additive powder for intermetallic compound and sintering method thereof
JP2584032B2 (en) Manufacturing method of zinc oxide whiskers
JPH03243734A (en) Manufacture of compound sintered body
JPS6140724B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees