JPH03193801A - Sintering additive powder for intermetallic compound and sintering method thereof - Google Patents

Sintering additive powder for intermetallic compound and sintering method thereof

Info

Publication number
JPH03193801A
JPH03193801A JP1335783A JP33578389A JPH03193801A JP H03193801 A JPH03193801 A JP H03193801A JP 1335783 A JP1335783 A JP 1335783A JP 33578389 A JP33578389 A JP 33578389A JP H03193801 A JPH03193801 A JP H03193801A
Authority
JP
Japan
Prior art keywords
powder
sintering
intermetallic compound
alloy powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1335783A
Other languages
Japanese (ja)
Inventor
Takuhiko Nishida
西田 卓彦
Masao Yamamiya
山宮 昌夫
Susumu Senda
晋 千田
Tatsuo Yamazaki
達夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1335783A priority Critical patent/JPH03193801A/en
Publication of JPH03193801A publication Critical patent/JPH03193801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve density of a sintered body with a little quantity of additive by mixing Al-Ti, Al-Ni series intermetallic compound powder with the specific particle diameter of Ni-B alloy powder, compacting and sintering. CONSTITUTION:The composition of powder for sintering additive is made to 3.5-18wt.% B and the balance Ni with impurities, and the average diameter thereof is made to <=30mum. This Ni-B alloy powder is added to the Al-Ti and Al-Ni series intermetallic compound powder at 0.5-8wt.% and mixed. This mixed powder is compacted with press, injection, etc., and made to the green compact with the powder rolling method. Successively, this is heated at 1100-1350 deg.C and sintered. This sintered product has the excellent characteristics in density and hardness, too.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属間化合物からなる耐熱材料、耐摩耗材料と
して用いられるAl−Ti  、Al−Nl系の金属間
化合物焼結材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat-resistant material made of an intermetallic compound and a sintered material of an Al-Ti or Al-Nl-based intermetallic compound used as a wear-resistant material. .

〔従来の技術〕[Conventional technology]

Al−TiおよびAl−Ni系の金属間化合物焼結製品
を製造するにはACTi、Niの粉末を目的とする組成
に合せて混合した後、圧縮成形し焼結工程に付す。この
ようにして製造される製品の相対密度は70〜80%で
強度も溶製材にくらべるとかなり低い。
To produce Al-Ti and Al-Ni based intermetallic compound sintered products, ACTi and Ni powders are mixed to a desired composition, then compression molded and subjected to a sintering process. The relative density of the product manufactured in this way is 70 to 80%, and the strength is also considerably lower than that of ingot lumber.

焼結製品の密度を上げるための方法として反応焼結法が
あるが、反応の制御がむずかしく、5%程度の気孔が残
りやすい。更に密度を高める方法として熱間静水圧成形
法がある。しかしこの方法は複雑で高価な装置を用いる
ことおよび最終製品の形状が限定され、しかも最終製品
を直接製造することができない。このように従来法には
それぞれ一長一短があり満足しうる特性の焼結晶を得る
ことが難しかった。
Reactive sintering is a method for increasing the density of sintered products, but it is difficult to control the reaction and tends to leave around 5% of pores. Hot isostatic pressing is a method for further increasing the density. However, this method requires the use of complicated and expensive equipment, the shape of the final product is limited, and furthermore, the final product cannot be manufactured directly. As described above, each of the conventional methods has advantages and disadvantages, and it has been difficult to obtain sintered crystals with satisfactory characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

こうした事情に着目し、高価で複雑な工程をへることな
く、高密度で強度が高くかつ寸法安定性のすぐれた焼結
体を得るための種々の検討を重ねた。
Focusing on these circumstances, we conducted various studies to obtain a sintered body with high density, high strength, and excellent dimensional stability without having to go through expensive and complicated processes.

焼結法のなかで液相を利用した活性化焼結方法は、 少量の添加物によって成形圧力、成形方法によらず焼結
体の密度を向上させるのに有効である。そこでマトリッ
クスのA 1−TiおよびAl−Ni系粉末に溶解度が
大きく、かつぬれ性がよく、しかも少量でその目的を達
っするものを種々検討した結果、Al1−Ti、および
Aj!−Ni系粉末の焼結に際して有効な添加用合金粉
末と新たな焼結添加用合金粉末を加える焼結法を見出し
本発明を完成した。
Among the sintering methods, the activated sintering method that utilizes a liquid phase is effective in improving the density of sintered bodies using a small amount of additives, regardless of the molding pressure or molding method. Therefore, we investigated various materials that had high solubility in matrix A1-Ti and Al-Ni powders, had good wettability, and achieved the purpose with a small amount, and we found Al1-Ti and Aj! The present invention was completed by discovering a sintering method for adding an alloy powder for addition and a new alloy powder for addition to sintering that is effective in sintering Ni-based powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る焼結添加用合金粉末はAj! −Tiおよ
びAj!−Ni系の金属間化合物粉末と配合して焼結製
品を製造するための添加用粉末であってBを3.5〜1
8重量%、残部がNiおよび不可避不純物からなり、平
均粒径が301!m以下のNi −8合金粉末であり、
焼結法は前言己Ni −8合金粉末をAj!−Tiおよ
びAl−Ni系の金属間化合物粉末に0.5重量%〜8
重量%添加して混合し、成形後、その加熱温度が110
0℃〜1350℃でその時間が10〜120分間加熱す
ることを特徴とする焼結方法である。
The alloy powder for sintering addition according to the present invention is Aj! -Ti and Aj! - Additive powder for producing sintered products by blending with Ni-based intermetallic compound powder, containing 3.5 to 1 B
8% by weight, the remainder consisting of Ni and unavoidable impurities, and the average particle size is 301! m or less Ni-8 alloy powder,
The sintering method uses Ni-8 alloy powder as described above. -0.5% by weight to 8% by weight of Ti and Al-Ni intermetallic compound powders
After adding weight% and mixing, after molding, the heating temperature is 110
This sintering method is characterized by heating at 0°C to 1350°C for 10 to 120 minutes.

〔作 用〕[For production]

本発明に係るNi −8合金粉末はその融点が990℃
〜1280℃の範囲にある。本発明のNi −B合金は
真空溶解炉にて純Ni板、ホウ化ニッケル、ボロンの塊
などを原料にして溶解した後鋳造して鋳片を製造する。
The Ni-8 alloy powder according to the present invention has a melting point of 990°C.
~1280°C. The Ni-B alloy of the present invention is produced by melting pure Ni plates, nickel boride, boron ingots, etc. as raw materials in a vacuum melting furnace, and then casting to produce slabs.

その鋳片をショークラッシャー等の粗粉砕機で粗粉砕し
、その後、ボールミル、遊星ミル等で微粉砕して30−
以下の粉末を製造する。
The slab is coarsely crushed using a coarse crusher such as a show crusher, and then finely crushed using a ball mill, planetary mill, etc.
The following powders are manufactured.

この合金粉末をAl−T1およびAj!−Ni系の金属
間化合物粉末に添加して混合した後成形を行なう。
This alloy powder is used as Al-T1 and Aj! - After being added to the Ni-based intermetallic compound powder and mixed, molding is performed.

成形法としてはプレス成形や射出成形でもよく、また粉
末圧延法でもよく、成形後、加熱して焼結する。
The molding method may be press molding or injection molding, or may be a powder rolling method, and after molding, it is heated and sintered.

本発明合金粉末は焼結工程の加熱時に溶融して液相とな
り、金属間化合物粉末間のすき間に毛管現象によって浸
透して化合物の密度を上げるばかりでなく、金属間化合
物粉末と反応して液相量を増加させ焼結を促進する。
The alloy powder of the present invention melts into a liquid phase during heating during the sintering process, and not only penetrates into the gaps between the intermetallic compound powders by capillary action to increase the density of the compound, but also reacts with the intermetallic compound powders to form a liquid phase. Increases phase amount and promotes sintering.

本発明のNi −8合金粉末においてB量を3.5〜1
8重量%に限定したのは3.5%未満および18%超で
は融点が1300℃以上になるためであり、好ましい範
囲は4〜15%である。
In the Ni-8 alloy powder of the present invention, the amount of B is 3.5 to 1.
The reason why it is limited to 8% by weight is because if it is less than 3.5% or more than 18%, the melting point will be 1300°C or higher, and the preferable range is 4 to 15%.

また本発明において上記のごと<Ni −B合金組成を
設定するとともに合金粉末の粒度を30−以下とする必
要がある。粒度が30Jaをこえると金属間化合物粉末
との混合が不均一となり、焼結状態が不均質となって焼
結体の密度および強度が低下するとともに寸法変化のば
らつきが大きくなる。
In addition, in the present invention, it is necessary to set the Ni-B alloy composition as described above and to set the particle size of the alloy powder to 30- or less. If the particle size exceeds 30 Ja, the mixture with the intermetallic compound powder becomes non-uniform, the sintered state becomes non-uniform, the density and strength of the sintered body decrease, and the variation in dimensional changes increases.

本発明においては上記の如<Ni −B合金組成の設定
および粒度の設定とともに、金属間化合物粉末への添加
量と焼結条件を設定する必要がある。
In the present invention, in addition to setting the Ni-B alloy composition and particle size as described above, it is necessary to set the amount added to the intermetallic compound powder and the sintering conditions.

金属間化合物粉末への添加量は0.5〜8重量%で、0
.5重量%未満では液相量が少なく焼結はほとんど促進
されない。
The amount added to the intermetallic compound powder is 0.5 to 8% by weight, and 0.
.. If it is less than 5% by weight, the amount of liquid phase is small and sintering is hardly promoted.

また添加量が8重量%超ではその焼結促進効果は飽和し
てしまうことおよび焼結体が溶融して形がくずれてしま
うためである。
Furthermore, if the amount added exceeds 8% by weight, the sintering promoting effect will be saturated and the sintered body will melt and lose its shape.

焼結温度を1100℃〜1350℃に限定した理由は1
100℃未満では液相の発生が少なく効果がないためで
あり、1350℃超では焼結体の組織が粗大化して特性
が劣化することによる。
The reason for limiting the sintering temperature to 1100°C to 1350°C is 1.
This is because if it is less than 100°C, the generation of liquid phase is small and there is no effect, and if it is more than 1350°C, the structure of the sintered body becomes coarse and its properties deteriorate.

従来の方法によれば金属間化合物粉末を5〜10t /
 cutの成形圧で成形し、1300℃で焼結しても密
度は90%以下であり、成形方向による収縮率の差が大
きく現われる。本発明によれば1〜3ton/cII!
のような低い成形圧でも相対密度を98%以上に上げる
ことができ金型の摩耗を最小限にすることができる。さ
らに粉末圧延法のような低い成形圧力の成形法を利用す
ることができ板状の製品の製造も可能である。
According to the conventional method, the amount of intermetallic compound powder is 5 to 10 tons/
Even when molded at a molding pressure of 1,300° C. and sintered at 1300° C., the density is less than 90%, and there is a large difference in shrinkage rate depending on the molding direction. According to the present invention, 1 to 3 tons/cII!
Even with such a low molding pressure, the relative density can be increased to over 98%, and mold wear can be minimized. Furthermore, it is possible to use a molding method with low molding pressure, such as a powder rolling method, and it is also possible to manufacture a plate-shaped product.

従来、射出成形法では10−以下の特殊な粉末しか密度
が上がらないためその利用は制限されていたが、本発明
によれば通常の大きさの粉末が利用できるためこの分野
の大きな発展が期待できる。
Conventionally, the injection molding method only increased the density of special powders of 10- or less, so its use was limited, but with the present invention, powders of normal sizes can be used, so major developments in this field are expected. can.

上述のように本発明は経済的にも、焼結晶の特性上から
も画期的なものである。
As mentioned above, the present invention is revolutionary both economically and in terms of the characteristics of the fired crystal.

〔実施例〕〔Example〕

つぎに、この発明を実施例により具体的に説明する。 Next, the present invention will be specifically explained with reference to Examples.

金属間化合物粉末としてTiA R、Ti3Al、Ni
3i。
TiAR, Ti3Al, Ni as intermetallic compound powder
3i.

NiAl粉を用い、これにインゴットを粉砕して作成し
たNi −8合金粉末を第1表に示す添加量で加えてボ
ールミルにて1時間混合した後、3 ton/cdの圧
力でタブレットを作成した。またNi −8合金粉末を
添加混合した粉末に有機バインダーを加えて射出成形を
行ない板状の試験片を作成した。さらにNi −8合金
粉末を添加混合した粉末を圧延ロールにより粉末圧延を
行なって板状の試験片を作成した。これらの試験片を第
1表に示す焼結条件で焼結し、焼結体の密度、硬度を測
定した。これらの測定結果を第1表に示した。また比較
の目的でNi −8合金粉末を添加しない材料およびN
i−8合金粉末の組成、焼結温度の影響を調べた比較例
も第1表に示した。
Using NiAl powder, Ni-8 alloy powder prepared by crushing an ingot was added in the amount shown in Table 1, mixed in a ball mill for 1 hour, and then tablets were created at a pressure of 3 ton/cd. . Further, an organic binder was added to a powder obtained by adding and mixing Ni-8 alloy powder, and injection molding was performed to prepare a plate-shaped test piece. Furthermore, the powder to which Ni-8 alloy powder was added and mixed was powder-rolled using rolling rolls to prepare a plate-shaped test piece. These test pieces were sintered under the sintering conditions shown in Table 1, and the density and hardness of the sintered bodies were measured. The results of these measurements are shown in Table 1. For comparison purposes, materials without Ni-8 alloy powder and N
Table 1 also shows comparative examples in which the influence of the composition of the i-8 alloy powder and the sintering temperature was investigated.

本発明法1〜4に示したようにNi −8合金粉末の添
加によって焼結体の相対密度は98%以上になり高い硬
度が得られる。Ni −8合金粉末を添加しない場合は
比較例1〜4に示したように相対密度は90%以下で硬
度も低い。またNi −8合金粉末の組成が本発明の範
囲の3.5%未満では比較例5のように添加の効果が現
われず、さらに焼結温度が1100℃未満では比較例6
のように添加の効果が現われない。
As shown in Methods 1 to 4 of the present invention, by adding the Ni-8 alloy powder, the relative density of the sintered body becomes 98% or more and high hardness can be obtained. When Ni-8 alloy powder is not added, as shown in Comparative Examples 1 to 4, the relative density is 90% or less and the hardness is low. Furthermore, when the composition of Ni-8 alloy powder is less than 3.5% of the range of the present invention, the effect of addition does not appear as in Comparative Example 5, and furthermore, when the sintering temperature is less than 1100°C, Comparative Example 6
The effect of the addition does not appear.

以下余日 〔発明の効果〕 以上説明したように、本発明によって製造される焼結製
品は従来の材料に比べて、密度、硬度ともにすぐれた特
性を示す。
[Effects of the Invention] As explained above, the sintered product manufactured by the present invention exhibits superior properties in both density and hardness compared to conventional materials.

また、本発明では少量の合金粉末の添加によって従来の
焼結方法よりもより経済的かつ迅速にすぐれた特性の焼
結晶を得ることができることである。
Further, in the present invention, by adding a small amount of alloy powder, a sintered crystal with excellent properties can be obtained more economically and quickly than in the conventional sintering method.

Claims (2)

【特許請求の範囲】[Claims] (1)Bを3.5〜18重量%、残部がNiおよび不可
避不純物からなり、平均粒径が30μm以下であること
を特徴とする金属間化合物焼結添加用Ni−B合金粉末
(1) A Ni-B alloy powder for use in sintering and adding intermetallic compounds, comprising 3.5 to 18% by weight of B, the balance being Ni and unavoidable impurities, and having an average particle size of 30 μm or less.
(2)Bを3.5〜18重量%、残部がNiおよび不可
避不純物からなり、平均粒径が30μm以下であるNi
−B合金粉末をAl−TiおよびAl−Ni系の金属間
化合物粉末に重量で0.5〜8%添加して混合し、成形
後、1100℃〜1350℃の温度範囲で加熱すること
を特徴とする焼結方法。
(2) Ni consisting of 3.5 to 18% by weight of B, the balance being Ni and unavoidable impurities, and having an average particle size of 30 μm or less
-B alloy powder is added to Al-Ti and Al-Ni intermetallic compound powder in an amount of 0.5 to 8% by weight, mixed, and after molding, heated in a temperature range of 1100°C to 1350°C. sintering method.
JP1335783A 1989-12-25 1989-12-25 Sintering additive powder for intermetallic compound and sintering method thereof Pending JPH03193801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335783A JPH03193801A (en) 1989-12-25 1989-12-25 Sintering additive powder for intermetallic compound and sintering method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335783A JPH03193801A (en) 1989-12-25 1989-12-25 Sintering additive powder for intermetallic compound and sintering method thereof

Publications (1)

Publication Number Publication Date
JPH03193801A true JPH03193801A (en) 1991-08-23

Family

ID=18292398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335783A Pending JPH03193801A (en) 1989-12-25 1989-12-25 Sintering additive powder for intermetallic compound and sintering method thereof

Country Status (1)

Country Link
JP (1) JPH03193801A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139194A1 (en) * 2006-05-31 2007-12-06 Kyocera Corporation Composite material, method for manufacturing the composite material, composition used for the composite material and blade using the composite material
JP2013133500A (en) * 2011-12-27 2013-07-08 Tdk Corp Sintered electrode, multilayer electronic component, internal electrode paste, method of producing sintered electrode, and method of producing multilayer electronic component
CN103498074A (en) * 2013-10-21 2014-01-08 武汉理工大学 Novel Ni3Al-based self-lubricating composite material and preparing method thereof
WO2017175499A1 (en) * 2016-04-05 2017-10-12 三菱重工航空エンジン株式会社 SINTERED BODY OF TiAl INTERMETALLIC COMPOUND AND METHOD FOR PRODUCING SINTERED BODY OF TiAl INTERMETALLIC COMPOUND

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139194A1 (en) * 2006-05-31 2007-12-06 Kyocera Corporation Composite material, method for manufacturing the composite material, composition used for the composite material and blade using the composite material
JP2013133500A (en) * 2011-12-27 2013-07-08 Tdk Corp Sintered electrode, multilayer electronic component, internal electrode paste, method of producing sintered electrode, and method of producing multilayer electronic component
CN103498074A (en) * 2013-10-21 2014-01-08 武汉理工大学 Novel Ni3Al-based self-lubricating composite material and preparing method thereof
WO2017175499A1 (en) * 2016-04-05 2017-10-12 三菱重工航空エンジン株式会社 SINTERED BODY OF TiAl INTERMETALLIC COMPOUND AND METHOD FOR PRODUCING SINTERED BODY OF TiAl INTERMETALLIC COMPOUND
JP2017186609A (en) * 2016-04-05 2017-10-12 三菱重工航空エンジン株式会社 TiAl-BASED INTERMETALLIC COMPOUND SINTERED BODY AND MANUFACTURING METHOD OF TiAl-BASED INTERMETALLIC COMPOUND SINTERED BODY

Similar Documents

Publication Publication Date Title
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
JPH0231031B2 (en)
KR890014774A (en) Method for producing flat articles from metal powders and alloy plates produced by the method
US4486544A (en) Titanium boride based sintering composition and the use thereof in the manufacture of sintered articles
KR100764902B1 (en) Uranium aluminide nuclear fuel and preparation method thereof
JP5356991B2 (en) Method for producing titanium silicon carbide ceramics
JPH03193801A (en) Sintering additive powder for intermetallic compound and sintering method thereof
CN111204721A (en) MnAlCxNn-1-xMethod for preparing phase powder
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH02259029A (en) Manufacture of aluminide
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
JP2749165B2 (en) TiA-based composite material and method for producing the same
JPH0253388B2 (en)
CN115961166B (en) By Ti2Ni、TiNi3Method for preparing TiNi alloy by using intermediate alloy
JPS5819738B2 (en) Koumitsudoshiyouketsukouno Seizouhouhou
CN115323244B (en) High-entropy alloy material and preparation method thereof
JPH03243734A (en) Manufacture of compound sintered body
CN110016622B (en) Powder metallurgy material and application thereof
CN106676362A (en) Preparation method of TiC high-alloy hot work die steel based steel bond hard alloy
CN110004346B (en) Cr-C-N-based metal ceramic and preparation method thereof
JPH05320814A (en) Composite member and its production
JPH0635637B2 (en) Diamond composite high speed tool steel sintered body and its manufacturing method
KR850000618B1 (en) Sintered powdered titanium alloy of method