JPH02271919A - Production of fine powder of titanium carbide - Google Patents

Production of fine powder of titanium carbide

Info

Publication number
JPH02271919A
JPH02271919A JP1090376A JP9037689A JPH02271919A JP H02271919 A JPH02271919 A JP H02271919A JP 1090376 A JP1090376 A JP 1090376A JP 9037689 A JP9037689 A JP 9037689A JP H02271919 A JPH02271919 A JP H02271919A
Authority
JP
Japan
Prior art keywords
powder
particle size
average particle
titanium oxide
tio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090376A
Other languages
Japanese (ja)
Inventor
Toru Kuramoto
倉本 透
Hiroshi Ono
浩 小野
Taiichi Kusunoki
楠 泰一
Yoshihiro Miura
三浦 佳浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1090376A priority Critical patent/JPH02271919A/en
Publication of JPH02271919A publication Critical patent/JPH02271919A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To easily obtain fine powder of titanium carbide with excellent sintering property, high melting point, high strength, high hardness and high corrosion resistance by adding TiO2 powder of extremely fine average particle size as an additive to the source material TiO2 powder of a specified average particle size, and then sintering. CONSTITUTION:100 pts.wt. of TiO2 powder of 0.1-5mum average particle size, 0.05-30 pts.wt. of the additive TiO2 of <=0.05mum average particle size and amorphous carbon powder such as furnace black by 40-70 pts.wt. to the total TiO2 are mixed together. This mixture is then dried, put in a graphite reactor and sintered in a non-oxidative atmosphere at 1300-1800 deg.C to produce fine powder of TiC.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高融点、高強度、高硬度、高耐食の特徴を備
え、切削工具等として有用な炭化チタン焼結体の原料微
粉末の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a fine powder raw material for a titanium carbide sintered body, which has the characteristics of a high melting point, high strength, high hardness, and high corrosion resistance, and is useful as a cutting tool, etc. Regarding the manufacturing method.

[従来技術とその解決しようとする課題]従来、炭化チ
タンの製造法としては、チタンと炭素を直接反応させる
方法がよく知られている。
[Prior Art and Problems to be Solved] Conventionally, as a method for producing titanium carbide, a method of directly reacting titanium and carbon is well known.

しかし、この反応は、使用する原料が高価である上、発
熱反応であるので得られる炭化チタンの粉末は粒子径が
大きいものとなるという問題点がある。
However, this reaction has problems in that the raw materials used are expensive and, since it is an exothermic reaction, the resulting titanium carbide powder has a large particle size.

また、微細な粉末を得るためには、四塩化チタンと炭化
水素等の反応による所謂気相法による方法があるが、上
記方法は原料が高価である上大量生産が簡単でなく得ら
れる粉末が高価になり、工業的な方法とは言えない。
In addition, in order to obtain fine powder, there is a method using the so-called gas phase method by reacting titanium tetrachloride with hydrocarbons, etc., but the above method requires expensive raw materials and is difficult to mass produce, making it difficult to obtain powder. It is expensive and cannot be called an industrial method.

さらに、より工業的な製造法として酸化チタンを炭素と
反応させる方法が知られているが、通常の方法ではサブ
ミクロン級の粉末を製造するのは難しく、未だに適当な
方法がない。
Furthermore, a method of reacting titanium oxide with carbon is known as a more industrial production method, but it is difficult to produce submicron-sized powder using normal methods, and there is still no suitable method.

炭化チタンは硬度が高く、粉砕によっても微粉化するこ
とは非常に困難であり、前記した各種物性を活かして良
好な焼結体を得るためには、均一かつ微細な炭化チタン
粉末が要望されているのにもかかわらず、上述したよう
に種々の方法によっても工業的に容易に微粉末を得る製
造法がないのが現状である。
Titanium carbide has high hardness and is extremely difficult to pulverize even by pulverization. In order to obtain a good sintered body by taking advantage of the various physical properties mentioned above, uniform and fine titanium carbide powder is required. However, as mentioned above, there is currently no manufacturing method for easily obtaining fine powder industrially using the various methods described above.

[課題を解決するための手段] 本発明者らはこのような現状に鑑み、上記問題点を解決
するために鋭意検討を行った結果、原料の一部に極めて
微細な酸化チタンを添加することにより、より微細な炭
化チタン粉末が製造できることを見い出し本発明に到達
したものである。
[Means for Solving the Problems] In view of the current situation, the present inventors conducted intensive studies to solve the above problems, and as a result, they decided to add extremely fine titanium oxide to some of the raw materials. The present invention was achieved by discovering that finer titanium carbide powder can be produced by the above method.

すなわち本発明は、酸化チタンと炭素を非酸化性雰囲気
下で1300〜1800℃の温度で焼成することにより
炭化チタンを得る方法において、平均粒径0.1〜5μ
mの酸化チタン100重量部に対して、添加剤として平
均粒径0.05μm以下の酸化チタンを0.05〜30
重量部添加することを特徴とする炭化チタン微粉末の製
造方法である。
That is, the present invention provides a method for obtaining titanium carbide by firing titanium oxide and carbon at a temperature of 1,300 to 1,800°C in a non-oxidizing atmosphere.
0.05 to 30 parts by weight of titanium oxide with an average particle size of 0.05 μm or less as an additive to 100 parts by weight of titanium oxide.
This is a method for producing fine titanium carbide powder, characterized in that part by weight of titanium carbide is added.

本発明では主たる原料粉末としての酸化チタンおよび炭
素にさらに、より微細な酸化チタンを添加して反応に供
することにより微細な炭化チタン粉末を製造しようとす
るものである。
The present invention aims to produce fine titanium carbide powder by adding finer titanium oxide to titanium oxide and carbon as the main raw material powders and subjecting the mixture to a reaction.

添加剤としての酸化チタンは、主原料の酸化チタンに比
較してかなり微細な粉末である必要があり、焼結体原料
として良好な粉末となる0、6μm程度以下の炭化チタ
ン粉末を得るためには、0.05μm以下の微細酸化チ
タンが好ましく、該粉末は四塩化チタンの酸化分解等の
気相法により得られたものを使用することができる。
Titanium oxide as an additive needs to be a considerably finer powder than the main raw material titanium oxide, and in order to obtain titanium carbide powder of about 0.6 μm or less, which is a good powder as a raw material for sintered bodies. is preferably a fine titanium oxide powder of 0.05 μm or less, and the powder obtained by a gas phase method such as oxidative decomposition of titanium tetrachloride can be used.

この添加剤として用いる酸化チタンの添加量は主たる原
料の酸化チタン100 f!量部に対し、0.05〜3
0重量部の範囲が好ましく 、0.05〜10重量部の
範囲がより好ましい、0.05重量部より少ない場合は
添加剤の効果による生成炭化チタンの微細化の程度が十
分でなく、一方30重量部を越えた場合、微細化の効果
は増加はあまり期待できず経済的でない。
The amount of titanium oxide used as this additive is 100 f! of titanium oxide, the main raw material. 0.05 to 3 parts
The range of 0 parts by weight is preferable, and the range of 0.05 to 10 parts by weight is more preferable. If the amount exceeds parts by weight, the effect of refinement cannot be expected to increase much and is not economical.

本発明において、主たる原料として用いる酸化チタン粉
末としては粒子径の小さいもののほうが反応速度が大と
なり、また生成する粒子自体も当然微細となるので好ま
しいが、0,1μm以下の酸化チタンは高価であり、ま
た上記したように微細な酸化チタンを添加することによ
り十分微細化の効果は上がるので、0.1〜5μm程度
の酸化チタンが好ましい、好ましい酸化チタンの粒子径
の上限を5μmとしたのは、それより大きい場合は主反
応の反応速度が小さくなり、反応時間がかかりすぎるた
めである。
In the present invention, the titanium oxide powder used as the main raw material is preferably one with a smaller particle size because the reaction rate is faster and the particles produced are naturally finer, but titanium oxide with a size of 0.1 μm or less is expensive. Also, as mentioned above, adding fine titanium oxide can sufficiently increase the effect of finer particles, so titanium oxide of about 0.1 to 5 μm is preferable, and the upper limit of the preferred titanium oxide particle size is set to 5 μm. , if it is larger than that, the reaction rate of the main reaction will be low and the reaction time will be too long.

次に原料となる炭素は、ファーネスブラック、アセチレ
ンブラック、ランプブランク等の無定形の炭素粉末や単
糖、多糖類等の水溶性炭水化物やタール、ピンチ等の難
溶性油脂類等が挙げられ、その添加量は全酸化チタンに
対して40重量部以上70重量部以下が好ましい。
Next, the raw material carbon includes amorphous carbon powder such as furnace black, acetylene black, and lamp blank, water-soluble carbohydrates such as monosaccharides and polysaccharides, and sparingly soluble oils and fats such as tar and pinch. The amount added is preferably 40 parts by weight or more and 70 parts by weight or less based on the total titanium oxide.

本発明において、添加剤としての酸化チタンが生成する
炭化チタンの微細化にどのように寄与しているかは明ら
かではないが、予め存在する微細で反応活性の大きい酸
化チタンが反応の初期におい優先的に一挙に反応して多
量の核を発生させるため、均一かつ微細な粉末が得られ
るものと考えられる。
In the present invention, it is not clear how the titanium oxide as an additive contributes to the refinement of the produced titanium carbide, but the pre-existing fine titanium oxide with high reaction activity is preferential at the initial stage of the reaction. It is thought that a uniform and fine powder can be obtained because a large amount of nuclei are generated by reacting all at once.

本発明における焼成温度としては、1300〜1800
℃の範囲が好ましく、1300℃より低いと反応速度が
十分でなく、1800”Cより高いと生成炭化チタンの
異常粒成長により粒子径が大なる傾向を有するとともに
エネルギー的にも経済的でない。また、反応装置内の雰
囲気は反応により生成する一酸化炭素か、またはアルゴ
ンガス等の不活性ガス等により非酸化性ガス雰囲気で行
う必要がある。
The firing temperature in the present invention is 1300 to 1800.
℃ range is preferable; if it is lower than 1300''C, the reaction rate is insufficient, and if it is higher than 1800''C, the particle size tends to increase due to abnormal grain growth of the titanium carbide produced, and it is not economical in terms of energy. The atmosphere in the reaction apparatus must be a non-oxidizing gas atmosphere such as carbon monoxide produced by the reaction or an inert gas such as argon gas.

反応圧力は特に限定されず、常圧で十分であるが、反応
速度等を考慮して減圧下で行ってもよい。
The reaction pressure is not particularly limited, and normal pressure is sufficient, but the reaction may be carried out under reduced pressure in consideration of the reaction rate and the like.

[実施例] 以下、実施例により本発明をより詳細に説明するが、本
発明は斯かる実施例により限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜8 主原料である酸化チタン、炭素粉末よび添加剤として使
用される平均粒径005μm以下の酸化チタンを仕込み
、バインダーとして15−tχのポリビニールアルコー
ルおよび30wtzのシ9$1を含有する水溶液を70
重量部添加し、湿式混合を行った後、約8畷−径の粒子
になるよう造粒した。
Examples 1 to 8 Titanium oxide as the main raw material, carbon powder, and titanium oxide with an average particle size of 005 μm or less used as an additive were prepared, and the binder contained 15-tχ polyvinyl alcohol and 30wtz Si9$1. 70% aqueous solution
After adding part by weight and performing wet mixing, the mixture was granulated into particles with a diameter of about 8 mm.

ついでこの混合物を乾燥した後、黒鉛製の反応容器に入
れ、焼成を行った。得られた粉末は走査型電子顕微鏡に
よりSEM写真を逼り、50個の粒子の粒子径を測定し
てその平均を平均粒子径とした、SEM写真での観察よ
り、生成した炭化チタンの粒子は異常粒成長した粒子を
含まず、極めて粒径の整った粒子であることがわかった
After drying this mixture, it was placed in a graphite reaction vessel and fired. The obtained powder was taken through an SEM photograph using a scanning electron microscope, and the particle diameter of 50 particles was measured and the average was taken as the average particle diameter.From the observation with the SEM photograph, the produced titanium carbide particles were It was found that the particles were of extremely uniform size and did not contain particles with abnormal grain growth.

この場合の各原料粉末の組成比、反応条件、生成した炭
化チタンの平均粒径を第1表に示す。
Table 1 shows the composition ratio of each raw material powder, reaction conditions, and average particle size of the produced titanium carbide in this case.

比較例1〜3 添加剤として使用される平均粒径0.05μm以下の酸
化チタンを比較例1では0.03重量部、比較例2.3
では使用しなかったがその他は、実施例と同様の条件で
反応原料を混合し、焼成を行った。
Comparative Examples 1 to 3 Titanium oxide with an average particle size of 0.05 μm or less used as an additive was 0.03 parts by weight in Comparative Example 1, and 0.03 parts by weight in Comparative Example 2.3.
The reaction raw materials were mixed and calcined under the same conditions as in the example except that they were not used.

この場合の各原料粉末の組成比、反応条件、生成した炭
化チタンの平均粒径を、同様に第1表に示す。
The composition ratio of each raw material powder, reaction conditions, and average particle size of the produced titanium carbide in this case are also shown in Table 1.

[発明の効果コ 本発明の方法によれば、汎用の原料に対し0.05μm
以下の極めて微細な酸化チタンを少量添加することによ
り、焼結性に優れた均一でかつ微細な炭化チタン微粉末
が容易に得られるものである。
[Effects of the invention] According to the method of the present invention, 0.05 μm for general-purpose raw materials
By adding a small amount of the following extremely fine titanium oxide, a uniform and fine titanium carbide fine powder with excellent sinterability can be easily obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化チタンと炭素を非酸化性雰囲気下で1300
〜1800℃の温度で焼成することにより炭化チタンを
得る方法において、平均粒径0.1〜5μmの酸化チタ
ン100重量部に対して、添加剤として平均粒径0.0
5μm以下の酸化チタンを0.05〜30重量部添加す
ることを特徴とする炭化チタン微粉末の製造方法。
(1) Titanium oxide and carbon were heated at 1300°C in a non-oxidizing atmosphere.
In a method for obtaining titanium carbide by firing at a temperature of ~1800°C, an additive having an average particle size of 0.0 to 100 parts by weight of titanium oxide with an average particle size of 0.1 to 5 μm is added.
A method for producing fine titanium carbide powder, which comprises adding 0.05 to 30 parts by weight of titanium oxide having a diameter of 5 μm or less.
JP1090376A 1989-04-10 1989-04-10 Production of fine powder of titanium carbide Pending JPH02271919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090376A JPH02271919A (en) 1989-04-10 1989-04-10 Production of fine powder of titanium carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090376A JPH02271919A (en) 1989-04-10 1989-04-10 Production of fine powder of titanium carbide

Publications (1)

Publication Number Publication Date
JPH02271919A true JPH02271919A (en) 1990-11-06

Family

ID=13996848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090376A Pending JPH02271919A (en) 1989-04-10 1989-04-10 Production of fine powder of titanium carbide

Country Status (1)

Country Link
JP (1) JPH02271919A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078614A1 (en) * 2008-01-11 2009-07-15 tesa SE Pigment layer and method for long-term inscription of a substrate with high-energy radiation
CN101920958A (en) * 2010-08-06 2010-12-22 刘昭晖 Method for preparing nano zirconium carbide
US7939164B2 (en) 2008-01-11 2011-05-10 Tesa Se Pigment layer and method of permanently scribing a substrate by means of high-energy radiation
US8821991B2 (en) 2008-01-11 2014-09-02 Tesa Se Process for preparing titanium carbide
US9751769B2 (en) 2012-06-28 2017-09-05 Nisshin Engineering Inc. Method for production of titanium carbide nanoparticles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078614A1 (en) * 2008-01-11 2009-07-15 tesa SE Pigment layer and method for long-term inscription of a substrate with high-energy radiation
US7939164B2 (en) 2008-01-11 2011-05-10 Tesa Se Pigment layer and method of permanently scribing a substrate by means of high-energy radiation
US8821991B2 (en) 2008-01-11 2014-09-02 Tesa Se Process for preparing titanium carbide
CN101920958A (en) * 2010-08-06 2010-12-22 刘昭晖 Method for preparing nano zirconium carbide
US9751769B2 (en) 2012-06-28 2017-09-05 Nisshin Engineering Inc. Method for production of titanium carbide nanoparticles
KR20190132568A (en) 2012-06-28 2019-11-27 닛신 엔지니어링 가부시키가이샤 Method for production of titanium carbide microparticles

Similar Documents

Publication Publication Date Title
US3932594A (en) Process for the preparation of fine grain metal carbide powders
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US4190439A (en) Process for the preparation of fine grain metal carbide powders and sintered articles therefrom
CN108840681B (en) Nano boron carbide and preparation method thereof
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
JPH0741311A (en) Production of hexagonal boron nitride powder
JP2021116202A (en) Hexagonal boron nitride powder, and sintered body raw material composition
JPH02271919A (en) Production of fine powder of titanium carbide
JPH0362643B2 (en)
KR100420605B1 (en) Cabalt Metal Agglomerates, a Process of the Same and Their Use
KR100411998B1 (en) Cabalt Metal Agglomerates, a Method of Producing Them and Their Use
JPH0323206A (en) Aluminum nitride powder and its production
JPH0280318A (en) Synthesis of refractory metal boride having predetermined particle dimension
US3567808A (en) Production of low density-high strength carbon
JP7356364B2 (en) Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
JPS61132509A (en) Production of silicon carbide
CN108675292A (en) The method that combination method prepares isotropic graphite material
JP7302123B2 (en) Fibrous boron carbide and method for producing the same
JP7349921B2 (en) Hexagonal boron nitride sintered body
JPH02283609A (en) Production of fine silicon carbide powder
JPS6328873B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS63123867A (en) Manufacture of silicon carbide formed body for sintering
JPH01167213A (en) Production of fine powder of titanium diboride
KR100829230B1 (en) Preparing method of carbon particle