JPH01167213A - Production of fine powder of titanium diboride - Google Patents

Production of fine powder of titanium diboride

Info

Publication number
JPH01167213A
JPH01167213A JP32467587A JP32467587A JPH01167213A JP H01167213 A JPH01167213 A JP H01167213A JP 32467587 A JP32467587 A JP 32467587A JP 32467587 A JP32467587 A JP 32467587A JP H01167213 A JPH01167213 A JP H01167213A
Authority
JP
Japan
Prior art keywords
titanium oxide
tib2
titanium diboride
particle size
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32467587A
Other languages
Japanese (ja)
Inventor
Toru Kuramoto
倉本 透
Hironori Henmi
逸見 浩典
Hiroshi Ono
浩 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP32467587A priority Critical patent/JPH01167213A/en
Publication of JPH01167213A publication Critical patent/JPH01167213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain fine powder of TiB2 having uniform and fine particle size and excellent sintering property, by adding specific amounts of fine particles of TiB2 or fine particles of titanium oxide as additives in the course of baking titanium oxide, B oxide and carbon in a non-oxidizing atmosphere at a high temperature. CONSTITUTION:TiB2 is produced by baking titanium oxide, a boron oxides (e.g., boric acid) and a carbon source (e.g., furnace black) in a non-oxidizing atmosphere (e.g., CO atmosphere) at 1300-1700 deg.C. In the above process, 100pts. wt. of the above titanium oxide having an average particle diameter of 0.05-5mum is added with 0.05-100 pts.wt. of TiB2 having an average particle diameter of <=3mum or titanium oxide having an average particle diameter of <=0.05mum and baked. The process affords fine powder of TiB2 having particle diameter of about 1-3mum which is necessary to obtain a sintered TiB2 having excellent quality.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はニホウ化チタン微粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing fine titanium diboride powder.

ニホウ化チタンは、高融点、高強度、高硬度、高耐食の
特徴を備え、従来がら切削工具、熱機関部品等として使
用されている。
Titanium diboride has the characteristics of a high melting point, high strength, high hardness, and high corrosion resistance, and has been traditionally used as cutting tools, heat engine parts, etc.

[従来の技術] ニホウ化チタンの製造法としては、チタンとホウ素を直
接反応させる直接反応法がよく知られているが、原料が
高価である上、反応が高温で進行するため得られるニホ
ウ化チタンは粒子径が大きいものとなる。また、より工
業的な製造法として酸化チタンを炭素、無水ホウ酸の存
在下でホウ化する方法が知られているがこの方法におい
ても、均一かつ粒子径の小さいニホウ化チタン粉末を得
ることは容易ではなく、例えば特開昭61−13251
1号公報にはホウ化反応を50Torr以下の減圧下に
て行なう方法が示されているが、高価な設備となる上、
良好な状態での操業は容易ではない等、必ずしも工業的
に優れた方法とは言えないものであった。
[Prior art] As a method for producing titanium diboride, the direct reaction method in which titanium and boron are directly reacted is well known, but the raw materials are expensive and the reaction proceeds at high temperatures, making it difficult to produce titanium diboride. Titanium has a large particle size. In addition, a more industrial production method is known, in which titanium oxide is borated in the presence of carbon and boric anhydride, but even with this method, it is difficult to obtain titanium diboride powder with a uniform and small particle size. It is not easy, for example, Japanese Patent Application Laid-Open No. 61-13251.
Publication No. 1 discloses a method of carrying out the boration reaction under reduced pressure of 50 Torr or less, but this requires expensive equipment and
It was not necessarily an industrially superior method, as it was not easy to operate under good conditions.

ニホウ化チタンは硬度が高く、粉砕によって微細化する
ことは非常に困難である。前記した各種物性を活かして
良好な焼結体を得るためには均一かつ微細なニホウ化チ
タン粉末が要望されているにもかかわらず工業的に容易
な製造法がないのが実状である。
Titanium diboride has high hardness and is extremely difficult to grind into fine particles. Although uniform and fine titanium diboride powder is desired in order to obtain a good sintered body by taking advantage of the various physical properties described above, the reality is that there is no industrially easy manufacturing method.

[問題点を解決するための具体的手段]本発明者らは、
これら従来技術の問題点に鑑み鋭意検討の末、本発明に
到達したものである。
[Specific means for solving the problem] The present inventors
In view of these problems of the prior art, the present invention was arrived at after intensive study.

すなわち本発明は酸化チタン、ホウ素酸化物および炭素
を非酸化性雰囲気下で1300〜1700℃の温度で焼
成することによりニホウ化チタンを得る方法において、
平均粒径005〜5μの酸化チタン100重量部に対し
て、添加剤として平均粒径3μ以下のニホウ化チタンま
たは平均粒径0,05μ以下の酸化チタンを0.05〜
100重量部添加することを特徴とするニホウ化チタン
微粉末の製造方法である。
That is, the present invention provides a method for obtaining titanium diboride by firing titanium oxide, boron oxide, and carbon at a temperature of 1300 to 1700 ° C. in a non-oxidizing atmosphere.
To 100 parts by weight of titanium oxide with an average particle size of 0.05 to 5 μ, add 0.05 to 0.05 of titanium diboride with an average particle size of 3 μ or less or titanium oxide with an average particle size of 0.05 μ or less as an additive.
This is a method for producing fine titanium diboride powder, characterized in that 100 parts by weight of titanium diboride is added.

本発明では主たる原料粉末としての酸化チタン、ホウ素
酸化物および炭素にさらに、より微細なニホウ化チタン
を得るための添加剤として微細なニホウ化チタンあるい
は酸化チタンを添加して反応に供するものである。添加
剤としてニホウ化チタンを用いる場合にはこの粒子径は
より小さいことが好ましく、良好なニホウ化チタン焼結
体を得るために要求される1〜3μ程度の微粉末を得る
ためには原料の酸化チタンの粒径にもよるが3μ以下の
ニホウ化チタンを添加剤として用いることが好ましい。
In the present invention, fine titanium diboride or titanium oxide is added as an additive to titanium oxide, boron oxide, and carbon as the main raw material powders to obtain finer titanium diboride, and subjected to the reaction. . When titanium diboride is used as an additive, it is preferable that the particle size is smaller, and in order to obtain a fine powder of about 1 to 3 μm, which is required to obtain a good titanium diboride sintered body, it is necessary to Although it depends on the particle size of titanium oxide, it is preferable to use titanium diboride having a particle size of 3 μm or less as an additive.

添加剤として微細なニホウ化チタンを用いるかわりに微
細な酸化チタンを用いることによっても本発明の目的は
達成されるものであるが、この場合には当然、主たる原
料として用いる酸化チタンと比較して、より微細な酸化
チタンを用いる必要があり、前記のような微細なニホウ
化チタンを得るためには0,05μ以下の微細酸化チタ
ンが好ましい。これら添加剤としてのニホウ化チタンお
よび酸化チタンの添加量としては主たる原料中の酸化チ
タン100重量部に対して0.05〜100重量部の範
囲が好ましい。これ以下では添加剤の効果による生成ニ
ホウ化チタンの微細化の程度が少なく、また、これ以上
にすることは経済的ではない。
The object of the present invention can also be achieved by using fine titanium oxide instead of fine titanium diboride as an additive, but in this case, of course, compared to the titanium oxide used as the main raw material, , it is necessary to use finer titanium oxide, and in order to obtain the above-mentioned fine titanium diboride, fine titanium oxide of 0.05 μm or less is preferable. The amount of titanium diboride and titanium oxide added as these additives is preferably in the range of 0.05 to 100 parts by weight based on 100 parts by weight of titanium oxide in the main raw material. If it is less than this, the degree of refinement of the produced titanium diboride due to the effect of the additive is small, and it is not economical to make it more than this.

本発明において主たる原料粉末として用いる酸化チタン
粉末としては粒子径の小さいものの方がより反応速度が
大となるため好ましいが0.05μ以下の酸化チタンは
、高価であるため0.05〜5μ程度の酸化チタンが好
ましい。
As the titanium oxide powder used as the main raw material powder in the present invention, titanium oxide powder with a small particle size is preferable because the reaction rate is higher, but titanium oxide with a particle size of 0.05μ or less is expensive, so Titanium oxide is preferred.

原料として使用するホウ素酸化物としてはホウ酸あるい
は無水ホウ酸等が使用でき、その添加量は全酸化チタン
100重量部に対して70重量部以上であり、炭素源と
しては、ファーネスブラック、アセチレンブラック、ラ
ンプブラック等の無定形の炭素粉末や単糖、多糖類等の
水溶性炭水化物やタール、ピッチ等の難溶性油脂類等が
挙げられ、その添加量は全酸化チタンに対して72重量
部以上である。
As the boron oxide used as a raw material, boric acid or boric anhydride can be used, and the amount added is 70 parts by weight or more per 100 parts by weight of total titanium oxide, and as a carbon source, furnace black, acetylene black, etc. can be used. , amorphous carbon powder such as lamp black, water-soluble carbohydrates such as monosaccharides and polysaccharides, and sparingly soluble oils and fats such as tar and pitch, and the amount added is 72 parts by weight or more based on the total titanium oxide. It is.

本発明において添加剤としてのニホウ化チタンおよび酸
化チタンがどのように生成ニホウ化チタンの微細化およ
び粒子径の均一化に寄与しているかは明確ではないが、
予め存在する微細なニホウ化チタンあるいは微細で反応
活性な酸化チタンの反応により反応の初期段階で生成す
る微細ニホウ化チタンが触媒的に核発生を促進し、均一
かつ微細な粉末が得られるものと考えられる。
In the present invention, it is not clear how titanium diboride and titanium oxide as additives contribute to making the produced titanium diboride finer and more uniform in particle size.
The fine titanium diboride generated in the initial stage of the reaction by the reaction of pre-existing fine titanium diboride or fine reactive titanium oxide catalytically promotes nucleation, resulting in a uniform and fine powder. Conceivable.

本発明における焼成温度としては1300〜1700℃
の範囲が好ましく、これ以下では反応速度が十分ではな
く、これ以上では生成ニホウ化チタンの異常粒成長によ
り粒子径が大となる傾向を有するとともにエネルギー的
にも経済的ではない。また、反応は反応により生成する
CO雰囲気あるいはアルゴン等の不活性ガス雰囲気等の
非酸化性雰囲気下で行われる。反応圧力は特に限定され
ず常圧で十分であるが、反応速度等を考慮して減圧系で
行なうことも勿論可能である。
The firing temperature in the present invention is 1300 to 1700°C.
Below this range, the reaction rate is not sufficient, and above this range, the particle size tends to increase due to abnormal grain growth of the titanium diboride produced, and it is not economical in terms of energy. Further, the reaction is carried out in a non-oxidizing atmosphere such as a CO atmosphere generated by the reaction or an inert gas atmosphere such as argon. The reaction pressure is not particularly limited, and normal pressure is sufficient, but it is of course possible to conduct the reaction in a reduced pressure system in consideration of the reaction rate and the like.

以下本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

実施例1〜8、比較例1 主原料である酸化チタン、炭素粉末、無水ホウ酸および
種晶としてのニホウ化チタン、酸化チタンを第1表の組
成比にてボールミルにより混合し原料粉末を調製し、焼
成してニホウ化チタン粉末を得た。この反応条件および
生成ニホウ化チタンの物性も合わせて第1表に示した。
Examples 1 to 8, Comparative Example 1 Main raw materials titanium oxide, carbon powder, boric anhydride, and seed crystals such as titanium diboride and titanium oxide were mixed in a ball mill at the composition ratio shown in Table 1 to prepare raw material powder. This was then calcined to obtain titanium diboride powder. The reaction conditions and the physical properties of the produced titanium diboride are also shown in Table 1.

また、実施例2および比較例1で得られた粉末の粒度分
布を■島津製作所製遠心沈降式光透過型粒度分布測定機
(5A−CP2)により媒体をエタノールとして測定し
た。この結果を第1図および第2図に示した。また、実
施例2で得られた粉末の粒吊構造のSEM写真を第3図
に示した。
Furthermore, the particle size distribution of the powders obtained in Example 2 and Comparative Example 1 was measured using ethanol as the medium using a centrifugal sedimentation light transmission type particle size distribution analyzer (5A-CP2) manufactured by Shimadzu Corporation. The results are shown in FIGS. 1 and 2. Further, a SEM photograph of the suspended grain structure of the powder obtained in Example 2 is shown in FIG.

[発明の効果] 本発明によれば焼結性に優れた均一微細なニホウ化チタ
ン微粉末が容易に得られるものである。
[Effects of the Invention] According to the present invention, uniform fine titanium diboride fine powder with excellent sinterability can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は実施例および比較例により得られ
た粉末の粒度分布曲線を示すものである。 第3図は実施例により得られた粉末の粒子構造のSEM
写真を示すものである。 特許出願人  セントラル硝子株式会社第1図 粒度分布 粒 度 分布
FIGS. 1 and 2 show particle size distribution curves of powders obtained in Examples and Comparative Examples. Figure 3 is an SEM of the particle structure of the powder obtained in the example.
The photo is shown. Patent applicant Central Glass Co., Ltd. Figure 1 Particle size distribution Particle size distribution

Claims (1)

【特許請求の範囲】[Claims] 酸化チタン、ホウ素酸化物および炭素を非酸化性雰囲気
下で1300〜1700℃の温度で焼成することにより
二ホウ化チタンを得る方法において、平均粒径0.05
〜5μの酸化チタン100重量部に対して、添加剤とし
て平均粒径3μ以下の二ホウ化チタンまたは平均粒径0
.05μ以下の酸化チタンを0.05〜100重量部添
加することを特徴とする二ホウ化チタン微粉末の製造方
法。
In a method for obtaining titanium diboride by firing titanium oxide, boron oxide and carbon at a temperature of 1300 to 1700°C in a non-oxidizing atmosphere, an average particle size of 0.05
Titanium diboride with an average particle size of 3 μ or less or an average particle size of 0 as an additive to 100 parts by weight of titanium oxide with a particle size of ~5 μ
.. A method for producing fine titanium diboride powder, which comprises adding 0.05 to 100 parts by weight of titanium oxide having a particle diameter of 0.05 μm or less.
JP32467587A 1987-12-22 1987-12-22 Production of fine powder of titanium diboride Pending JPH01167213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32467587A JPH01167213A (en) 1987-12-22 1987-12-22 Production of fine powder of titanium diboride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32467587A JPH01167213A (en) 1987-12-22 1987-12-22 Production of fine powder of titanium diboride

Publications (1)

Publication Number Publication Date
JPH01167213A true JPH01167213A (en) 1989-06-30

Family

ID=18168474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32467587A Pending JPH01167213A (en) 1987-12-22 1987-12-22 Production of fine powder of titanium diboride

Country Status (1)

Country Link
JP (1) JPH01167213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063191A (en) * 2006-09-07 2008-03-21 Fuji Titan Kogyo Kk Manufacturing method of metal boride fine powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063191A (en) * 2006-09-07 2008-03-21 Fuji Titan Kogyo Kk Manufacturing method of metal boride fine powder

Similar Documents

Publication Publication Date Title
CA1115033A (en) Method of forming a ceramic product
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
NO845015L (en) SINTER, CERAMIC COMPOSITION BODY AND PROCEDURE FOR PREPARING THIS
CN110511036A (en) A kind of submicron order aluminum oxynitride ceramic powder and preparation method thereof
JPH06128039A (en) Self-reinforcing silicon nitride ceramic body and its production
CN108840681A (en) A kind of nano boron carbide and preparation method thereof
JPH0432030B2 (en)
JPH01167213A (en) Production of fine powder of titanium diboride
JPH07165467A (en) Production of isotropic graphite material
JPH02271919A (en) Production of fine powder of titanium carbide
WO2017209096A1 (en) Method for producing calcium carbonate sintered compact
JPH0662286B2 (en) Method for producing silicon carbide
JPH03215348A (en) Sintered material of zircon and its production
JPH062565B2 (en) Method for producing silicon carbide
JPS5945915A (en) Preparation of beta-type silicon carbide powder
CN114772598B (en) Appearance-controllable hollow MAX phase powder and preparation method thereof
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH01103960A (en) Production of boron nitride sintered compact
JP2614891B2 (en) Method of producing boron nitride atmospheric pressure sintered body having high wear resistance
SU1636334A1 (en) Method for preparation of ultra-dispersed silicon carbide powder
JPH0313166B2 (en)
JPH01179763A (en) Production of combined sintered body of boron nitride and silicon nitride
JPH02283609A (en) Production of fine silicon carbide powder
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2635695B2 (en) Method for producing α-silicon nitride powder