JP2008063191A - Manufacturing method of metal boride fine powder - Google Patents

Manufacturing method of metal boride fine powder Download PDF

Info

Publication number
JP2008063191A
JP2008063191A JP2006243206A JP2006243206A JP2008063191A JP 2008063191 A JP2008063191 A JP 2008063191A JP 2006243206 A JP2006243206 A JP 2006243206A JP 2006243206 A JP2006243206 A JP 2006243206A JP 2008063191 A JP2008063191 A JP 2008063191A
Authority
JP
Japan
Prior art keywords
metal
oxide
carbon
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006243206A
Other languages
Japanese (ja)
Other versions
JP5175464B2 (en
Inventor
Akira Mukai
暁 向井
Takeshi Harada
毅司 原田
Hitoshi Okada
均 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Titanium Industry Co Ltd
Original Assignee
Fuji Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Titanium Industry Co Ltd filed Critical Fuji Titanium Industry Co Ltd
Priority to JP2006243206A priority Critical patent/JP5175464B2/en
Publication of JP2008063191A publication Critical patent/JP2008063191A/en
Application granted granted Critical
Publication of JP5175464B2 publication Critical patent/JP5175464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable manufacturing method of a metal boride fine powder molding a thin film or a molded body having high transparency and also excellent conductivity and heat ray shielding property. <P>SOLUTION: The manufacturing method of the fine powder of the metal boride is composed of a first heat treating step wherein boron oxide and carbon are added to an oxide of at least one kind of metal selected from among a rare earth metal, a group IVa transition metal, a group Va transition metal and a group VIa transition metal, and wherein the carbon is added in an atomic ratio of ≥1.3 to the sum of the oxygen originated from the metal oxide and the boron oxide, and the mixture is fired in an inert gas atmosphere, a second heat treating step wherein a residual carbon is oxidized and decomposed at a temperature T<SB>2</SB>lower than a temperature T<SB>1</SB>in the first heat treating step and a third heat treating step wherein the treated matter is fired at a temperature lower than T<SB>1</SB>and higher than T<SB>2</SB>in the inert gas atmosphere. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、透明性を有し、かつ導電性及び熱線遮蔽性に優れる薄膜あるいは成形体を形成できる、金属ホウ化物微粉末の製造方法に関する。   The present invention relates to a method for producing a metal boride fine powder capable of forming a thin film or a molded article having transparency and excellent conductivity and heat ray shielding properties.

従来から導電性材料は、太陽電池や液晶ディスプレイ等の透明電極、エレクトロルミネツセンスディスプレイやタッチパネル等の透明導電膜、あるいは車両用窓ガラスや建築用ガラス等の透明熱線遮蔽膜の形成用材料として広く用いられている。透明導電膜及び透明熱線遮蔽膜の形成技術としては、一般にスパッタリング法、真空蒸着法、CVD法等が挙げられるが、これらの手段では成膜装置が高価であり、歩留まりも悪く生産性が低いなど問題点も多かった。近年の微粒子製造技術の発展に伴い、これらの技術に代わって、微粉末を用いてこれを塗布することにより成膜、あるいは有機樹脂中に分散させ成形体とする方法が開発され、この塗布法あるいは樹脂中分散法に適した材料としてアンチモン含有酸化スズ(ATO)微粉末あるいはスズ含有酸化インジウム(ITO)微粉末が知られている。しかしながら、ATOは導電性能的に電極材料としては使用し得ず帯電防止用途に留まり、かつ熱線遮蔽材としても近赤外域での遮蔽能が不十分であり、ITOに関してはATOと比較すれば導電機能、熱線遮蔽機能とも優れるものの、熱線遮蔽機能的にはより可視光に近い波長域での遮蔽能については課題を残しており、さらに原料となるインジウムの枯渇問題を抱えている。そのような状況に鑑み本発明者らは、ATOあるいはITOに対し機能及びコストの両面で優位性を持つ材料として金属ホウ化物に注目、鋭意検討の結果、本発明の製造方法に至ったものである。   Conventionally, conductive materials have been used as materials for forming transparent electrodes such as solar cells and liquid crystal displays, transparent conductive films such as electroluminescence displays and touch panels, or transparent heat-shielding films such as vehicle window glass and architectural glass. Widely used. As a technique for forming a transparent conductive film and a transparent heat ray shielding film, sputtering, vacuum deposition, CVD, etc. are generally used. However, these means are expensive in film formation apparatus, yield is poor, and productivity is low. There were also many problems. With the recent development of fine particle production technology, instead of these technologies, a method of forming a film by dispersing it in an organic resin by coating it with fine powder or forming it into a molded body has been developed. Alternatively, antimony-containing tin oxide (ATO) fine powder or tin-containing indium oxide (ITO) fine powder is known as a material suitable for the resin dispersion method. However, ATO cannot be used as an electrode material in terms of electrical conductivity, and remains in an antistatic application, and also has insufficient shielding ability in the near infrared region as a heat ray shielding material. Although both the function and the heat ray shielding function are excellent, the heat ray shielding function still has a problem with respect to the shielding ability in a wavelength region closer to visible light, and further has a problem of depletion of indium as a raw material. In view of such a situation, the present inventors have focused on metal borides as materials having advantages in both functions and costs over ATO or ITO, and as a result of intensive studies, they have reached the production method of the present invention. is there.

金属ホウ化物微粒子の製造方法ということでは、例えば特許文献1に予め調製した金属ホウ化物粉末を不活性雰囲気下でアーク熱源を用いて超微粒子化する方法、また、特許文献2には金属水酸化物及び/または水和物、あるいはそれを熱処理して得られる金属酸化物に、ホウ素化合物及び炭素を混合した後、真空または不活性雰囲気下において1,500℃未満で熱処理する製造方法が提案されている。   Regarding the method for producing metal boride fine particles, for example, a method in which a metal boride powder prepared in advance in Patent Document 1 is made into ultrafine particles using an arc heat source in an inert atmosphere. And / or hydrates, or metal oxides obtained by heat treatment thereof, boron compounds and carbon are mixed, and then a manufacturing method is proposed in which heat treatment is performed at less than 1,500 ° C. in a vacuum or inert atmosphere. ing.

しかしながら、特許文献1に記載される方法は、原料である金属ホウ化物を両電極として斜向配置し、両電極間にアークを発生させ、このアーク熱により原料から金属ホウ化物蒸気を発生させて超微粒子を得るものであってその操作が非常に煩雑であり、かつ収率の点からコスト面で不利な製造方法である。また、特許文献2に記載される方法では、前駆体となる金属水酸化物及び/または水和物、あるいはそれを熱処理して得られる金属酸化物の粒子径が最終生成物である金属ホウ化物の粒子径に反映されるため、前駆体調製時の中和反応における条件を適正化する必要があり、かつ最終熱処理温度は粒子の粗大化を防ぐために1,500℃未満としているなど、製造条件的にその適正範囲が限定されており安定生産については課題を有するものである。
特開平2−59418号公報 特開2005−1918号公報
However, in the method described in Patent Document 1, the metal boride which is a raw material is disposed obliquely as both electrodes, an arc is generated between both electrodes, and metal boride vapor is generated from the raw material by this arc heat. This is a method for obtaining ultrafine particles, which is very complicated and is disadvantageous in terms of cost in terms of yield. Moreover, in the method described in Patent Document 2, a metal hydroxide and / or hydrate as a precursor, or a metal boride in which the particle size of the metal oxide obtained by heat-treating it is the final product It is necessary to optimize the conditions in the neutralization reaction at the time of preparing the precursor, and the final heat treatment temperature is set to less than 1,500 ° C. to prevent particle coarsening. In particular, the appropriate range is limited, and stable production has problems.
JP-A-2-59418 Japanese Patent Laid-Open No. 2005-1918

本発明の課題は、上記した問題点を解消し、透明性を有し、かつ導電性及び熱線遮蔽性に優れる薄膜あるいは成形体を形成できる金属ホウ化物微粉末を安定的に製造できる方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems and provide a method capable of stably producing a metal boride fine powder capable of forming a thin film or a molded article having transparency and excellent conductivity and heat ray shielding properties. There is to do.

本発明は以下の発明に係る。
1.希土類金属、IVa族遷移金属、Va族遷移金属及びVIa族遷移金属の中から選ばれる少なくとも1種の金属の酸化物に、酸化ホウ素及び炭素を加え、該炭素は金属酸化物及び酸化ホウ素に由来する酸素の総和に対し原子比1.3以上の割合で加え、不活性ガス雰囲気下で焼成する第1の熱処理工程と、第1の熱処理工程での温度Tより低い温度Tにて残存する炭素を酸化分解する第2の熱処理工程、さらにT未満でTを越える温度域にて不活性ガス雰囲気下で焼成する第3の熱処理工程からなる金属ホウ化物微粉末の製造方法。
2.金属酸化物がその前駆体である金属水酸化物を熱処理して得られるものである上記1に記載の金属ホウ化物微粉末の製造方法。
3.酸化ホウ素の代わりにホウ酸を用いる上記1に記載の金属ホウ化物微粉末の製造方法。
The present invention relates to the following inventions.
1. Boron oxide and carbon are added to an oxide of at least one metal selected from a rare earth metal, a group IVa transition metal, a group Va transition metal, and a group VIa transition metal, and the carbon is derived from the metal oxide and boron oxide. Added at a ratio of atomic ratio of 1.3 or more with respect to the total amount of oxygen to be performed, and remains at a temperature T 2 lower than the temperature T 1 in the first heat treatment step and firing in an inert gas atmosphere. second heat treatment step of decomposing oxidation of carbon to further third manufacturing method of fine metal boride fines consisting of a heat treatment step of firing in an inert gas atmosphere at a temperature range exceeding T 2 less than T 1.
2. 2. The method for producing fine metal boride powder according to 1 above, wherein the metal oxide is obtained by heat-treating a metal hydroxide which is a precursor thereof.
3. 2. The method for producing fine metal boride powder according to 1 above, wherein boric acid is used in place of boron oxide.

本発明によれば、簡単な操作、高収率、及び安定した製造条件で金属ホウ化物微粉末を製造することができる。   According to the present invention, metal boride fine powder can be produced with simple operation, high yield, and stable production conditions.

本発明で出発原料となる金属酸化物に用いる金属としては、希土類金属、IVa族遷移金属、Va族遷移金属及びVIa族遷移金属の中から選ばれる金属元素から任意に選ぶことができ、例えば希土類金属としてはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho等が、IVa族遷移金属としてはTi、Zr、Hf等が、Va族遷移金属としてはV、Nb、Ta等、VIa族遷移金属としてはCr、Mo、W等が挙げられる。また本発明では上記金属酸化物として、その前駆体である金属水酸化物を熱処理して得られるものを用いることもできる。
これらの金属の水酸化物及び酸化物は、市販されるものであっても良いし、夫々の硝酸塩、硫酸塩、塩化物などの水溶性化合物を水に溶解し、アルカリ溶液と反応させることによって得られる水酸化物、あるいはその水酸化物をさらに熱処理することによって得られる酸化物であっても良い。
The metal used for the metal oxide as a starting material in the present invention can be arbitrarily selected from metal elements selected from rare earth metals, IVa group transition metals, Va group transition metals and VIa group transition metals. Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, etc. as metals, Ti, Zr, Hf, etc. as group IVa transition metals, Va group transition metals V, Nb, Ta and the like, and VIa group transition metals include Cr, Mo, W and the like. Moreover, in this invention, what is obtained by heat-processing the metal hydroxide which is the precursor can also be used as said metal oxide.
These metal hydroxides and oxides may be commercially available, or by dissolving water-soluble compounds such as nitrates, sulfates, and chlorides in water and reacting them with an alkaline solution. The obtained hydroxide or the oxide obtained by further heat-treating the hydroxide may be used.

本発明では、ホウ素化合物として酸化ホウ素を用いるがホウ酸であっても良い。何故なら、後で記述するようにホウ化反応が起きる第1の熱処理工程は少なくとも1,000℃を超える高温域での処理であり、ホウ素化合物としてホウ酸を用いたとしても当該ホウ酸はホウ化反応の前には分解され酸化ホウ素となるからである。この時加える酸化ホウ素は金属元素に対し得ようとする金属ホウ化物組成の化学量論量相当とするが、反応性向上のため若干過剰に加えても良く、通常1.02〜1.05当量程度とするのが好ましい。   In the present invention, boron oxide is used as the boron compound, but boric acid may be used. This is because, as will be described later, the first heat treatment step in which the boring reaction occurs is a treatment in a high temperature range exceeding at least 1,000 ° C. Even if boric acid is used as the boron compound, the boric acid is not treated with boron. This is because it is decomposed into boron oxide before the chemical reaction. The boron oxide added at this time is equivalent to the stoichiometric amount of the metal boride composition to be obtained with respect to the metal element, but may be added in a slight excess to improve the reactivity, and is usually 1.02 to 1.05 equivalents. It is preferable to set the degree.

本発明においては還元剤として炭素を使用するがその添加量が重要であり、金属酸化物及び酸化ホウ素に由来する酸素の総和に対し原子比1.3以上加える。例えば金属としてLaを用いLaBを合成する場合にはその反応式は以下のようになり、1モルのLaBを得ようとすれば必要とする炭素の理論量は10.5モルであるが、本発明ではその1.3倍以上、即ち13.65モル以上加えることとなる。
0.5La+3B+10.5C→LaB+10.5CO
In the present invention, carbon is used as a reducing agent, but the addition amount is important, and an atomic ratio of 1.3 or more is added to the sum of oxygen derived from the metal oxide and boron oxide. For example, when LaB 6 is synthesized using La as a metal, the reaction formula is as follows. If 1 mol of LaB 6 is to be obtained, the theoretical amount of carbon required is 10.5 mol. In the present invention, 1.3 times or more, that is, 13.65 mol or more is added.
0.5La 2 O 3 + 3B 2 O 3 + 10.5C → LaB 6 + 10.5CO

炭素を原子比1.3以上加えることにより可視光波長域にて所望とする透明性を発揮し得る微粒サイズの金属ホウ化物を生成することができる。過剰の炭素を加えることによる微粒化達成の理由は明確ではないが、ホウ化反応は1,000℃を超える高温域での処理であり、必然的に粒成長による粒子の粗大化が促進されるが還元に寄与しない過剰の炭素が生成した金属ホウ化物の粒子間に入り込み、粒成長の緩衝剤として作用することも一因と考えられる。従って、還元剤として添加する炭素量が原子比1.3未満では粒成長による粒子の粗大化が著しく所望とする粒子サイズを得ることができない。また、原子比は1.3以上であれば特に上限を求めないが、コスト及びホウ化後の過剰分の除去を勘案すれば3.0以下が好ましく、更には1.5以上2.5以下が好ましい。炭素源としてはランプブラック、チャンネルブラック、ファーネスブラック等のカーボンブラックの他、ピッチコークスや単糖あるいは多糖類を燃焼させ生成した炭素なども用いることができる。   By adding carbon in an atomic ratio of 1.3 or more, a metal boride having a fine particle size capable of exhibiting desired transparency in the visible light wavelength region can be generated. Although the reason for achieving atomization by adding excess carbon is not clear, the boring reaction is a treatment in a high temperature region exceeding 1,000 ° C., and inevitably the coarsening of particles due to grain growth is promoted. It is thought that one factor is that excess carbon that does not contribute to reduction enters between the metal boride particles generated and acts as a buffer for grain growth. Therefore, if the amount of carbon added as the reducing agent is less than 1.3 in atomic ratio, the desired particle size cannot be obtained due to the remarkable particle coarsening due to grain growth. Further, if the atomic ratio is 1.3 or more, the upper limit is not particularly required, but it is preferably 3.0 or less, more preferably 1.5 or more and 2.5 or less in consideration of cost and removal of excess after boring. Is preferred. As the carbon source, carbon black such as lamp black, channel black, furnace black, etc., carbon produced by burning pitch coke, monosaccharides or polysaccharides can be used.

本発明では金属酸化物に、酸化ホウ素及び還元剤としての炭素を金属酸化物及び酸化ホウ素に由来する酸素の総和に対し原子比1.3以上加えた後、3段階の熱処理工程を経る。即ち、不活性ガス雰囲気下で焼成する第1の熱処理工程と、第1の熱処理工程での温度Tより低い温度Tにて残存する炭素を酸化分解する第2の熱処理工程、さらにT未満でTを越える温度域にて不活性ガス雰囲気下で焼成する第3の熱処理工程であり、この3段階の熱処理工程を経ることにより微粒かつ未反応成分を含まない金属ホウ化物を得ることができる。 In the present invention, boron oxide and carbon as a reducing agent are added to the metal oxide in an atomic ratio of 1.3 or more with respect to the total oxygen derived from the metal oxide and boron oxide, and then a three-step heat treatment process is performed. That is, a first heat treatment step for firing in an inert gas atmosphere, a second heat treatment step for oxidizing and decomposing carbon remaining at a temperature T 2 lower than the temperature T 1 in the first heat treatment step, and T 1 It is a third heat treatment step for firing in an inert gas atmosphere at a temperature range lower than T 2 and less than T 2 , and through this three-step heat treatment step, a metal boride containing no fine particles and no unreacted components is obtained. Can do.

不活性ガス雰囲気下で焼成する第1の熱処理工程は金属水酸化物及び/または金属酸化物をホウ化する反応工程であり、不活性ガスとしては希ガス、窒素等を挙げることができるが、窒素は金属水酸化物または金属酸化物、あるいはホウ素と反応し窒化物を生成する可能性があることから希ガスが好ましい。この時の熱処理温度Tは1,000℃以上1,600℃以下であり、1,000℃未満ではホウ化反応が不十分で未ホウ化物としての金属水酸化物及び/または金属酸化物あるいは中間生成物として金属のホウ酸塩が残存することになり、また、1,600℃を超える温度域では過剰に加えた炭素による粒成長の抑制効果が損なわれ粗大粒子の発生を招くと共に、高温熱処理設備が必要となりランニングコストも含めコスト面で不利となる。処理時間は特に限定するものではないが、1〜6時間が好ましい。 The first heat treatment step for firing in an inert gas atmosphere is a reaction step for boring metal hydroxide and / or metal oxide, and examples of the inert gas include rare gas, nitrogen, etc. Nitrogen is preferably a rare gas because it may react with a metal hydroxide or metal oxide, or boron to form a nitride. The heat treatment temperature T 1 at this time is 1,000 ° C. or more and 1,600 ° C. or less, and if it is less than 1,000 ° C., the boride reaction is insufficient, and the metal hydroxide and / or metal oxide as an unborated product or Metal borate remains as an intermediate product, and in the temperature range exceeding 1,600 ° C., the effect of suppressing grain growth by excessively added carbon is impaired, resulting in generation of coarse particles, and high temperature. Heat treatment equipment is required, which is disadvantageous in terms of cost, including running costs. Although processing time is not specifically limited, 1 to 6 hours are preferable.

この第1の熱処理工程で最終生成物としての金属ホウ化物の粒度は決定され、また、その粒度は熱処理温度Tに応じ変化するが、膜とした場合の透明性を勘案すれば1次粒子径として20〜100nmとなるよう調整することが好ましいが、特に20〜40nmの微粉末のものが有用である。なお、出発原料となる金属水酸化物及び/または金属酸化物の粒度は最終生成物となる金属ホウ化物の粒度にほとんど反映しない故、出発原料に対する自由度が極めて高く、安定した製造条件で金属ホウ化物微粉末を製造することができる。 The particle size of the metal boride as a final product in the first heat treatment step is determined, also, although the particle size varies depending on the heat treatment temperature T 1, 1 primary particle Considering the transparency of case of the film The diameter is preferably adjusted to 20 to 100 nm, but a fine powder having a diameter of 20 to 40 nm is particularly useful. Since the particle size of the metal hydroxide and / or metal oxide as the starting material hardly reflects the particle size of the metal boride as the final product, the degree of freedom with respect to the starting material is extremely high, and the metal is stable under stable production conditions. A fine boride powder can be produced.

これに続く第2の熱処理工程は、第1の熱処理工程での温度Tより低い温度Tにて残存する炭素を酸化分解するための工程となる。温度Tは400℃以上900℃以下が好ましく、400℃未満では残存する炭素の酸化分解が十分になされず、900℃を超える温度では生成した金属ホウ化物が酸化されてしまう。処理時間は特に限定するものではないが、1〜6時間が好ましい。また、処理時の雰囲気は大気下で良いが、積極的に酸素を導入しても構わない。 The subsequent second heat treatment step is a step for oxidatively decomposing carbon remaining at a temperature T 2 lower than the temperature T 1 in the first heat treatment step. The temperature T2 is preferably 400 ° C. or more and 900 ° C. or less. If the temperature T 2 is less than 400 ° C., the remaining carbon is not sufficiently oxidized and decomposed, and if it exceeds 900 ° C., the generated metal boride is oxidized. Although processing time is not specifically limited, 1 to 6 hours are preferable. The atmosphere during the treatment may be atmospheric, but oxygen may be positively introduced.

さらに本発明では第3の熱処理工程として第2の熱処理工程での温度Tと第1の熱処理工程での温度Tの間の温度域にて不活性ガス雰囲気下での焼成を実施する。当該処理により第2の熱処理工程で部分的に酸化されたもの(例えば金属としてLaを用いた場合にはLaBO)及び残存する未ホウ化物(例えば金属としてLaを用いた場合にはLa3)を同様に未だ残存する酸化ホウ素及び炭素との反応により完全にホウ化させることができる。不活性ガスとしては希ガス及び窒素を挙げることができるが、窒素は生成物と反応し窒化物を生成する可能性があることから希ガスが好ましい。また、処理時間は特に限定するものではないが、1〜6時間が好ましい。
本発明で得られる金属ホウ化物としては、例えばScB、YB、LaB、CeB、PrB、NdB、TiB、ZrB、VB、NbB、WBなどを例示することができる。
本発明では目的の金属ホウ化物を高純度で得ることができる。例えば、目的物の純度は96.0重量%以上、特に98.0重量%以上にすることができる。
The present invention further to conduct the calcination under inert gas atmosphere at a temperature range between the temperature T 1 of the third temperature T 2 in the second heat treatment step as a heat treatment step of the first heat treatment step. Those partially oxidized in the second heat treatment step by the treatment (for example, LaBO 3 when La is used as the metal) and remaining unborides (for example, La 2 O when La is used as the metal) 3 ) can likewise be completely borated by reaction with the remaining boron oxide and carbon. As the inert gas, a rare gas and nitrogen can be exemplified, but a rare gas is preferable because nitrogen may react with a product to produce a nitride. Moreover, although processing time is not specifically limited, 1 to 6 hours are preferable.
Examples of the metal boride obtained in the present invention include ScB 6 , YB 6 , LaB 6 , CeB 6 , PrB 6 , NdB 6 , TiB 2 , ZrB 2 , VB 2 , NbB 2 , and WB. .
In the present invention, the target metal boride can be obtained with high purity. For example, the purity of the target product can be 96.0% by weight or more, particularly 98.0% by weight or more.

以上のような条件により、透明性を有し、かつ導電性及び熱線遮蔽性に優れる薄膜あるいは成形体を形成できる金属ホウ化物微粉末を安定的に得ることができる。   Under the above conditions, a metal boride fine powder having transparency and capable of forming a thin film or molded article having excellent conductivity and heat ray shielding properties can be stably obtained.

以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1
La(NO6HO109.6gを水に溶解させたものに7%アンモニア水200gを20分かけて添加し沈殿を生成させた後、さらに20分間熟成した。この間、液温は室温を維持していた。得られた沈殿物を洗浄した後150℃にて乾燥したものは図1の電子顕微鏡写真が示すように針状結晶及び柱状結晶の混合物であり、X線回折パターンからはLa(OH)と同定された。次いでこの乾燥物にB54.5g及びカーボンブラック49.0g(La及びBに由来する酸素原子量×1.5相当)を加えボールミルにて混合した後、Arガス雰囲気にて1,400℃で3時間熱処理した。その後、500℃にて2時間大気焼成した後、さらにArガス雰囲気にて1,200℃で2時間熱処理した。得られた処理物は図2の電子顕微鏡写真が示すように30〜50nmの微粒子であり、図3に示すX線回折パターンからはLaBと同定された。
Example 1
200 g of 7% ammonia water was added over 20 minutes to 109.6 g of La (NO 3 ) 3 6H 2 O dissolved in water to form a precipitate, followed by aging for another 20 minutes. During this time, the liquid temperature was maintained at room temperature. What was dried at 150 ° C. after washing the obtained precipitate was a mixture of needle-like crystals and columnar crystals as shown in the electron micrograph of FIG. 1. From the X-ray diffraction pattern, La (OH) 3 and Identified. Next, 54.5 g of B 2 O 3 and 49.0 g of carbon black (corresponding to the amount of oxygen atoms derived from La 2 O 3 and B 2 O 3 × 1.5) were added to the dried product and mixed in a ball mill. Heat treatment was performed at 1,400 ° C. for 3 hours in an atmosphere. Then, after air baking at 500 ° C. for 2 hours, heat treatment was further performed at 1,200 ° C. for 2 hours in an Ar gas atmosphere. The obtained processed product was a fine particle of 30 to 50 nm as shown in the electron micrograph of FIG. 2, and was identified as LaB 6 from the X-ray diffraction pattern shown in FIG.

実施例2
La(NO6HO109.6gを水に溶解させたものに2.8%アンモニア水500gを3時間かけて添加し沈殿を生成させた後、さらに30分間熟成した。この間、液温は5℃を維持するようにした。得られた沈殿物を洗浄し、150℃にて乾燥した後500℃にて大気焼成したものは図4の電子顕微鏡写真が示すように針状結晶及び柱状結晶の混合物であり、X線回折パターンからはLaと同定された。次いでこの焼成物にB55.5g及びカーボンブラック83.1g(La及びBに由来する酸素原子量×2.5相当)を加えボールミルにて混合した後、Arガス雰囲気にて1,450℃で3時間熱処理した。その後、600℃にて3時間大気焼成した後、さらにArガス雰囲気にて1,100℃で2時間熱処理した。得られた処理物は図5の電子顕微鏡写真が示すように20〜40nmの微粒子であり、X線回折パターンからは実施例1と同様にLaBと同定された。
Example 2
To a solution obtained by dissolving 109.6 g of La (NO 3 ) 3 6H 2 O in water, 500 g of 2.8% aqueous ammonia was added over 3 hours to form a precipitate, and then the mixture was further aged for 30 minutes. During this time, the liquid temperature was maintained at 5 ° C. The obtained precipitate was washed, dried at 150 ° C., and then calcined at 500 ° C., as shown in the electron micrograph of FIG. 4, which is a mixture of needle-like crystals and columnar crystals, and an X-ray diffraction pattern Was identified as La 2 O 3 . Next, 55.5 g of B 2 O 3 and 83.1 g of carbon black (corresponding to the amount of oxygen atoms derived from La 2 O 3 and B 2 O 3 × 2.5) were added to the fired product and mixed in a ball mill. Heat treatment was performed at 1,450 ° C. for 3 hours in an atmosphere. Then, after air baking at 600 ° C. for 3 hours, heat treatment was further performed at 1,100 ° C. for 2 hours in Ar gas atmosphere. The obtained processed product was 20 to 40 nm fine particles as shown in the electron micrograph of FIG. 5, and was identified as LaB 6 from the X-ray diffraction pattern as in Example 1.

実施例3
キシダ化学製La(試薬1級)41.2gにホウ酸(HBO)96.7g及びカーボンブラック42.5g(La及びBに由来する酸素原子量×1.3相当)を加えボールミルにて混合した後、実施例1と同様な3段階の熱処理を実施した。最終的に得られた処理物は20〜50nmの微粒子であり、X線回折パターンからはLaBと同定された。
Example 3
Kishida Chemical Ltd. La 2 O 3 (first grade reagent) 41.2 g boric acid (H 3 BO 3) 96.7g and oxygen atomic weight × 1 derived from carbon black 42.5g (La 2 O 3 and B 2 O 3 .3 equivalent) and mixing in a ball mill, the same three-stage heat treatment as in Example 1 was performed. The finally obtained processed material was fine particles of 20 to 50 nm, and was identified as LaB 6 from the X-ray diffraction pattern.

実施例4
金属化合物としてY(NO6HOを96.9g用いた他は実施例1と同様な処理を実施した。最終的に得られた処理物は30〜50nmの微粒子であり、X線回折パターンからはYBと同定された。
Example 4
The same treatment as in Example 1 was carried out except that 96.9 g of Y (NO 3 ) 3 6H 2 O was used as the metal compound. The finally obtained processed product was a fine particle of 30 to 50 nm, and was identified as YB 6 from the X-ray diffraction pattern.

実施例5
金属化合物としてScCl・6HOを65.6g用いた他は実施例1と同様な処理を実施した。最終的に得られた処理物は40〜70nmの微粒子であり、X線回折パターンからはScBと同定された。
Example 5
The same treatment as in Example 1 was carried out except that 65.6 g of ScCl 3 .6H 2 O was used as the metal compound. The finally obtained processed product was 40-70 nm fine particles, and was identified as ScB 6 from the X-ray diffraction pattern.

実施例6
金属化合物としてキシダ化学製Nd(試薬1級)を42.6g用いた他は実施例3と同様な処理を実施した。最終的に得られた処理物は20〜40nmの微粒子であり、X線回折パターンからはNdBと同定された。
Example 6
The same treatment as in Example 3 was carried out except that 42.6 g of Nd 2 O 3 (reagent grade 1) manufactured by Kishida Chemical was used as the metal compound. Finally obtained treated product is fine particles of 20 to 40 nm, were identified as NdB 6 from X-ray diffraction pattern.

実施例7
20%濃度のTiCl水溶液240gに7%アンモニア水250gを20分かけて添加し沈殿を生成させた後、さらに20分間熟成した。この間、液温は室温を維持させた。得られた沈殿物を洗浄し150℃にて乾燥して、Ti(OH)を得た。これにB18.0g及びカーボンブラック23.0g(TiO及びBに由来する酸素原子量×1.5相当)を加えボールミルにて混合した。その後は実施例1と同様な3段階の熱処理を実施した。最終的に得られた処理物は、60〜100nmの微粒子であり、X線回折パターンからはTiBと同定された。
Example 7
250 g of 7% aqueous ammonia was added to 240 g of a 20% strength TiCl 4 aqueous solution over 20 minutes to form a precipitate, followed by aging for another 20 minutes. During this time, the liquid temperature was maintained at room temperature. The obtained precipitate was washed and dried at 150 ° C. to obtain Ti (OH) 4 . To this, 18.0 g of B 2 O 3 and 23.0 g of carbon black (corresponding to the amount of oxygen atoms derived from TiO 2 and B 2 O 3 × 1.5) were added and mixed by a ball mill. Thereafter, the same three-stage heat treatment as in Example 1 was performed. The finally obtained treated product was fine particles of 60 to 100 nm, and was identified as TiB 2 from the X-ray diffraction pattern.

実施例8
NbCl68.4gを1Lの5%HCl水溶液に溶解させたものに7%アンモニア水650gを20分かけて添加し沈殿を生成させた後、さらに20分間熟成した。この間、液温は室温を維持していた。得られた沈殿物を洗浄した後150℃にて乾燥し、これにB18.1g及びカーボンブラック25.5g(Nb及びBに由来する酸素原子量×1.5相当)を加えボールミルにて混合した。その後は実施例1と同様な3段階の熱処理を実施した。最終的に得られた処理物は、70〜100nmの微粒子であり、X線回折パターンからはNbBと同定された。
Example 8
A solution of 68.4 g of NbCl 5 dissolved in 1 L of 5% HCl aqueous solution was added with 650 g of 7% aqueous ammonia over 20 minutes to form a precipitate, followed by further aging for 20 minutes. During this time, the liquid temperature was maintained at room temperature. The obtained precipitate was washed and then dried at 150 ° C., and then B 2 O 3 18.1 g and carbon black 25.5 g (the amount of oxygen atoms derived from Nb 2 O 5 and B 2 O 3 × 1.5 Equivalent) and mixed with a ball mill. Thereafter, the same three-stage heat treatment as in Example 1 was performed. The finally obtained processed product was a fine particle of 70 to 100 nm, and was identified as NbB 2 from the X-ray diffraction pattern.

実施例9
キシダ化学製WO(試薬1級)58.7gにB9.2g及びカーボンブラック18.1g(WO及びBに由来する酸素原子量×1.3相当)を加えボールミルにて混合した後、実施例1と同様な3段階の熱処理を実施した。最終的に得られた処理物は50〜70nmの微粒子であり、X線回折パターンからはWBと同定された。
Example 9
Add 29.2 g of B 2 O 3 and 18.1 g of carbon black (corresponding to the amount of oxygen atoms derived from WO 3 and B 2 O 3 × 1.3) to 58.7 g of WO 3 (Reagent grade 1) manufactured by Kishida Chemical Then, the same three-stage heat treatment as in Example 1 was performed. The finally obtained processed product was fine particles of 50 to 70 nm, and was identified as WB from the X-ray diffraction pattern.

比較例1
使用するカーボンブラック量を39.2g(La及びBに由来する酸素原子量×1.2相当)とする以外は実施例1と同様に実験を実施した。最終的に得られた処理物はX線回折パターンから実施例1と同様にLaBと同定されたが、図6の電子顕微鏡写真が示すように200nmを越える粒子であった。
Comparative Example 1
The experiment was carried out in the same manner as in Example 1 except that the amount of carbon black used was 39.2 g (corresponding to the amount of oxygen atoms derived from La 2 O 3 and B 2 O 3 × 1.2). The finally obtained processed product was identified as LaB 6 from the X-ray diffraction pattern in the same manner as in Example 1. However, as shown in the electron micrograph of FIG.

比較例2
第3の熱処理工程を除く以外は実施例1と同様に実験を実施した。最終的に得られた処理物は粒度的には実施例1と同様な粒子が得られたが、図7のX線回折パターンが示すようにLaB以外に約10重量%のLaBOを含むものであった。
Comparative Example 2
The experiment was performed in the same manner as in Example 1 except that the third heat treatment step was omitted. The final product obtained had the same particle size as that of Example 1 in terms of particle size, but contained about 10% by weight of LaBO 3 in addition to LaB 6 as indicated by the X-ray diffraction pattern of FIG. It was a thing.

以上の各実施例及び比較例において得られた生成物の物性を表1にまとめて示す。   Table 1 summarizes the physical properties of the products obtained in the above Examples and Comparative Examples.

Figure 2008063191
Figure 2008063191

実施例1のLa(NO6HOとアンモニア水による生成物を、150℃にて乾燥したものの電子顕微鏡写真。The product according to La (NO 3) 3 6H 2 O and aqueous ammonia Example 1, an electron microscope photograph of dried at 0.99 ° C.. 実施例1によって得られた、最終生成物の電子顕微鏡写真。The electron micrograph of the final product obtained by Example 1. 実施例1によって得られた、最終生成物のX線回折パターン。The X-ray diffraction pattern of the final product obtained by Example 1. 実施例2のLa(NO6HOとアンモニア水による生成物を、150℃にて乾燥した後500℃にて大気焼成したものの電子顕微鏡写真。An electron micrograph of the product of La (NO 3 ) 3 6H 2 O and aqueous ammonia of Example 2 dried at 150 ° C. and then calcined at 500 ° C. in the atmosphere. 実施例2によって得られた、最終生成物の電子顕微鏡写真。The electron micrograph of the final product obtained by Example 2. 比較例1によって得られた、最終生成物の電子顕微鏡写真。The electron micrograph of the final product obtained by the comparative example 1. 比較例2によって得られた、最終生成物のX線回折パターン。The X-ray diffraction pattern of the final product obtained by Comparative Example 2.

Claims (3)

希土類金属、IVa族遷移金属、Va族遷移金属及びVIa族遷移金属の中から選ばれる少なくとも1種の金属の酸化物に、酸化ホウ素及び炭素を加え、該炭素は金属酸化物及び酸化ホウ素に由来する酸素の総和に対し原子比1.3以上の割合で加え、不活性ガス雰囲気下で焼成する第1の熱処理工程と、第1の熱処理工程での温度Tより低い温度Tにて残存する炭素を酸化分解する第2の熱処理工程、さらにT未満でTを越える温度域にて不活性ガス雰囲気下で焼成する第3の熱処理工程からなる金属ホウ化物微粉末の製造方法。 Boron oxide and carbon are added to an oxide of at least one metal selected from a rare earth metal, a group IVa transition metal, a group Va transition metal, and a group VIa transition metal, and the carbon is derived from the metal oxide and boron oxide. Added at a ratio of atomic ratio of 1.3 or more with respect to the total amount of oxygen to be performed, and remains at a temperature T 2 lower than the temperature T 1 in the first heat treatment step and firing in an inert gas atmosphere. second heat treatment step of decomposing oxidation of carbon to further third manufacturing method of fine metal boride fines consisting of a heat treatment step of firing in an inert gas atmosphere at a temperature range exceeding T 2 less than T 1. 上記金属酸化物がその前駆体である金属水酸化物を熱処理して得られるものである請求項1記載の金属ホウ化物微粉末の製造方法。 2. The method for producing a metal boride fine powder according to claim 1, wherein the metal oxide is obtained by heat-treating a metal hydroxide which is a precursor thereof. 上記酸化ホウ素の代わりにホウ酸を用いる請求項1記載の金属ホウ化物微粉末の製造方法。
2. The method for producing fine metal boride powder according to claim 1, wherein boric acid is used in place of the boron oxide.
JP2006243206A 2006-09-07 2006-09-07 Method for producing metal boride fine powder Active JP5175464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243206A JP5175464B2 (en) 2006-09-07 2006-09-07 Method for producing metal boride fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243206A JP5175464B2 (en) 2006-09-07 2006-09-07 Method for producing metal boride fine powder

Publications (2)

Publication Number Publication Date
JP2008063191A true JP2008063191A (en) 2008-03-21
JP5175464B2 JP5175464B2 (en) 2013-04-03

Family

ID=39286209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243206A Active JP5175464B2 (en) 2006-09-07 2006-09-07 Method for producing metal boride fine powder

Country Status (1)

Country Link
JP (1) JP5175464B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063486A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP2011063487A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
JP2011136876A (en) * 2009-12-28 2011-07-14 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal boride sintered compact, lanthanum boride sintered compact, and target using the lanthanum boride sintered compact
JP2012012249A (en) * 2010-06-30 2012-01-19 Sumitomo Osaka Cement Co Ltd Method for producing lanthanum hexaboride fine particle and lanthanum hexaboride fine particle
JP2012214374A (en) * 2011-03-29 2012-11-08 Sumitomo Osaka Cement Co Ltd Method for producing microparticle of lanthanum hexaboride, microparticle of lanthanum hexaboride, sintered compact of lanthanum hexaboride, film of lanthanum hexaboride, and organic semiconductor device
CN113800534A (en) * 2021-09-30 2021-12-17 畅的新材料科技(上海)有限公司 Preparation method of multi-rare-earth doped boride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167213A (en) * 1987-12-22 1989-06-30 Central Glass Co Ltd Production of fine powder of titanium diboride
JPH05139725A (en) * 1991-11-13 1993-06-08 Denki Kagaku Kogyo Kk Production of titanium boride
JPH06279021A (en) * 1993-03-24 1994-10-04 Sumitomo Chem Co Ltd Production of titanium diboride fine powder
JP2004534929A (en) * 2001-02-23 2004-11-18 ノルスク・ヒドロ・アーエスアー Method for performing thermal reaction between reactants and heating furnace therefor
JP2005001918A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Mining Co Ltd Method for manufacturing boride fine particle, boride fine particle and dispersion liquid for forming solar radiation shield

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167213A (en) * 1987-12-22 1989-06-30 Central Glass Co Ltd Production of fine powder of titanium diboride
JPH05139725A (en) * 1991-11-13 1993-06-08 Denki Kagaku Kogyo Kk Production of titanium boride
JPH06279021A (en) * 1993-03-24 1994-10-04 Sumitomo Chem Co Ltd Production of titanium diboride fine powder
JP2004534929A (en) * 2001-02-23 2004-11-18 ノルスク・ヒドロ・アーエスアー Method for performing thermal reaction between reactants and heating furnace therefor
JP2005001918A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Mining Co Ltd Method for manufacturing boride fine particle, boride fine particle and dispersion liquid for forming solar radiation shield

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063486A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP2011063487A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
JP2011136876A (en) * 2009-12-28 2011-07-14 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal boride sintered compact, lanthanum boride sintered compact, and target using the lanthanum boride sintered compact
JP2012012249A (en) * 2010-06-30 2012-01-19 Sumitomo Osaka Cement Co Ltd Method for producing lanthanum hexaboride fine particle and lanthanum hexaboride fine particle
JP2012214374A (en) * 2011-03-29 2012-11-08 Sumitomo Osaka Cement Co Ltd Method for producing microparticle of lanthanum hexaboride, microparticle of lanthanum hexaboride, sintered compact of lanthanum hexaboride, film of lanthanum hexaboride, and organic semiconductor device
CN113800534A (en) * 2021-09-30 2021-12-17 畅的新材料科技(上海)有限公司 Preparation method of multi-rare-earth doped boride

Also Published As

Publication number Publication date
JP5175464B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
Fu et al. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications
JP5175464B2 (en) Method for producing metal boride fine powder
CN101184696B (en) Process for producing conductive mayenite compound
JPWO2006129675A1 (en) Process for producing conductive mayenite type compound
JP2010180449A (en) Target material of composite tungsten oxide, and method for manufacturing the same
JP2013159553A (en) Transparent heat-shielding material and method for producing the same
KR101691410B1 (en) Method for Preparing Titanium Carbonitride Powder
EP2086671B1 (en) Process for the manufacture of nano-sized powders
JP5910242B2 (en) Method for producing lanthanum hexaboride fine particles, lanthanum hexaboride fine particles, lanthanum hexaboride sintered body, lanthanum hexaboride film, and organic semiconductor device
Faustino et al. Synthesis and photoluminescent properties of Sm3+-doped SnO2 nanoparticles
WO2009081677A1 (en) Tin oxide-magnesium oxide sputtering target and transparent semiconductor film
JP2011063486A (en) Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
CN112250080B (en) Method for preparing refractory metal boride in two steps
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
KR102061677B1 (en) Method for Preparing Powdered Composite Carbide of Tungsten and Titanium
CN109502643B (en) Boron-magnesium co-doped VO2Powder and preparation method and application thereof
Li et al. Synthesis and up-conversion luminescence properties of Yb3+–Er3+ Co-doped In2O3
Zhang et al. Synthesis and upconversion luminescence of YF3: Yb3+, Tm3+ and TiO2-coated YF3: Yb3+, Tm3+ microcrystals
JP4463157B2 (en) Indium oxide fine powder and method for producing tin-containing indium oxide fine powder
JP5720128B2 (en) Method for producing lanthanum hexaboride fine particles and lanthanum hexaboride fine particles
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
WO2012121298A1 (en) Oxide sintered body, method for manufacturing same, and target using same
KR101664376B1 (en) Fabrication Method of Metal Nitride Nanopowder using Solidstate Combustion Synthesis
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
KR20100119670A (en) Method for preparing manesium oxide having high purity from magnesium chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

R150 Certificate of patent or registration of utility model

Ref document number: 5175464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250