JPH01113162A - Production for fiber reinforced composite casting body - Google Patents
Production for fiber reinforced composite casting bodyInfo
- Publication number
- JPH01113162A JPH01113162A JP62270032A JP27003287A JPH01113162A JP H01113162 A JPH01113162 A JP H01113162A JP 62270032 A JP62270032 A JP 62270032A JP 27003287 A JP27003287 A JP 27003287A JP H01113162 A JPH01113162 A JP H01113162A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- mold
- metal
- casting
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005266 casting Methods 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000003733 fiber-reinforced composite Substances 0.000 title claims description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 239000002657 fibrous material Substances 0.000 claims abstract description 23
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000000835 fiber Substances 0.000 abstract description 68
- 239000002131 composite material Substances 0.000 abstract description 13
- 239000007788 liquid Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 239000008187 granular material Substances 0.000 abstract description 3
- 238000005452 bending Methods 0.000 abstract description 2
- 239000011800 void material Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000009661 fatigue test Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 208000025599 Heat Stress disease Diseases 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は無機質短繊維材を結合剤で成形した繊維成形体
に金属湯を注入させて鋳造する繊維強化複合鋳造体の製
造法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a fiber-reinforced composite cast body, which involves injecting metal hot water into a fiber molded body formed by molding an inorganic short fiber material with a binder.
従来の技術
繊維成形体の空間部に金属湯を注入して鋳造体の局部に
優れた機械的強度・耐摩耗性等を得る繊維複合鋳造体の
製造法としては時開1′I85 B −93560号、
特開昭52−128832号等がある。前記特開昭58
−93560号は内燃機関のピストンの製造に於て、断
面矩形のリング状のia A!成形体を金型内の所定位
置にセットし、その金型にアルミニウム合金等を鋳込ん
で局部的に繊維強化した繊維複合鋳造体の製造法であり
、特開昭52−128832号は内燃機関のピストンや
燃焼室等に断熱性を付与するために無機質類m部材の成
形体を成形し、該成形体をアルミニウム又はマグネシウ
ム合金鋳造物の一部に複合させる鋳造体の製造法である
。しかし、この従来製造法によって出来た複合鋳造体は
マット状或いはバルク状の無機質短繊維を使用して圧縮
成形するためアルミニウム合金等を鋳込んでも繊維成形
体の中へ充分に浸透しないので機械的強度や耐摩耗性等
にばらつきを生じ易く、特に水平方向と垂直方向とでは
著しく機械的強度が異り易く使用中に破損等の恐れもあ
る。このため、予め多数の毛玉状に堆積した無機質短繊
維に結合剤を添加し、所定形状の成形体に結合成形させ
ることにより、該繊m成形体の中へ金属湯が浸透し易く
させて機械的強度や耐摩耗性等を一層向上することが可
能なta雄強化複合鋳造体の製造法が本発明者によって
特願昭62−22457号で提案されている。Conventional technology A method for manufacturing a fiber composite cast body in which metal hot water is injected into the space of a fiber molded body to obtain excellent mechanical strength, wear resistance, etc. in local parts of the cast body is disclosed in Jikai 1'I85 B-93560. issue,
There is Japanese Patent Application Laid-open No. 52-128832, etc. Said Japanese Unexamined Patent Publication No. 58
-93560 is a ring-shaped ia A! with a rectangular cross section in the manufacture of pistons for internal combustion engines. This is a method for manufacturing a fiber composite cast body in which a molded body is set at a predetermined position in a mold, and an aluminum alloy or the like is cast into the mold to locally strengthen the fibers. This is a method for producing a cast body, in which a molded body of an inorganic member is molded in order to provide heat insulation properties to a piston, a combustion chamber, etc., and the molded body is composited with a part of an aluminum or magnesium alloy casting. However, since composite castings made by this conventional manufacturing method are compression molded using matte or bulk inorganic short fibers, even when aluminum alloy is cast, it does not penetrate sufficiently into the fiber moldings, so it is not mechanically possible. It is easy to cause variations in strength, wear resistance, etc., and in particular, the mechanical strength tends to be significantly different between the horizontal direction and the vertical direction, and there is a risk of breakage during use. For this reason, by adding a binder to a large number of inorganic short fibers deposited in the form of fluff in advance and bonding and molding them into a molded body of a predetermined shape, it is possible to make it easier for the metal hot water to penetrate into the fiber molded body. The present inventor has proposed a method for producing a ta-male reinforced composite cast body that can further improve strength, wear resistance, etc. in Japanese Patent Application No. 62-22457.
発明が解決しようとする問題点
しかし、この特願昭62−22457号に於る毛玉状か
ら作られるmfar形体は、相隣り合う毛玉間を互いに
充分に接触せしめるためには繊維体積率が18%以上必
要であり、繊維強化が良好な繊維体積率10〜20%の
範囲の一部しか成形体が成形出来ず、また比較的高い鋳
造圧でないと均等に金属湯が侵入しにくく、しかもm維
が絡み合って作られたL玉には、屈曲した繊維が極めて
多数含有されているので耐熱疲労特性が悪い等の欠点が
ある。Problems to be Solved by the Invention However, in the mfar shape made from fluff shapes in this Japanese Patent Application No. 62-22457, the fiber volume percentage must be 18% in order to bring the adjacent fluffs into sufficient contact with each other. The above is necessary, and only a part of the molded body with a fiber volume ratio of 10 to 20%, where fiber reinforcement is good, can be formed, and it is difficult for the metal molten metal to penetrate evenly unless the casting pressure is relatively high. The L ball made by intertwining the fibers contains an extremely large number of bent fibers, so it has drawbacks such as poor heat fatigue resistance.
問題点を解決するための手段
本発明は上記欠点を解消するためになされたものであり
、つまり予め水平方向に堆積した無機質1υffl雄材
に結合剤をもって所定形状の成形体に成形させ、該成形
体を鋳型内の所定位置にセットし、その鋳型にアルミニ
ウム合金等の金属を鋳込むことにより、比較的低い鋳造
圧でも成形体に金属湯が均等に侵入し、得られた鋳造体
の繊維複合部が極めて優れた機械的強度や耐摩耗性を有
すると共に耐熱疲労特性等が改善される繊維強化複合鋳
造体の製造法を提供する。Means for Solving the Problems The present invention was made in order to eliminate the above-mentioned drawbacks. Specifically, the inorganic 1υffl male material deposited in advance in the horizontal direction is molded with a binder into a molded body of a predetermined shape. By setting a metal at a predetermined position in a mold and casting a metal such as an aluminum alloy into the mold, the metal molten metal penetrates evenly into the molded body even at a relatively low casting pressure, and the fiber composite part of the resulting cast body is Provided is a method for producing a fiber-reinforced composite cast body which has extremely excellent mechanical strength and wear resistance, and has improved thermal fatigue resistance.
作 用
本発明の製造過程に於て出来る繊維成形体は、無機質短
繊維材を液中に投入攪拌させると共に篩や布等でその液
中から無機質短繊維材を漉して堆積凝集させ、更に繊維
密度の均質化のために、堆積凝集した繊維を手で揉み潰
すか或いは刃物を用いて切断し一定の大きさに粒状化さ
せ、この繊維粒を所定形状の型内に収容して所定の繊維
体積率になるまで圧縮することにより、繊維粒の方向が
水平でないものは圧力によって自然に水平に揃う共に揃
った大きさの繊維粒を使用するので繊維密度の均質な繊
維成形体が成形される。尚、本発明に於るHA維粒の初
期比重は、従来のマット状のものが0.02 、バルク
状のものが0.03〜0.05であるのに比べ、毛玉と
ほぼ等しい0.10〜0.13であるため圧縮成形され
て繊維成形体が出来るときに加えられる圧力は小さく、
且つ圧縮率も小さくて済むので成形体の成形が極めて容
易となり、アスペクト比の大きなものも得られる。Function: The fibrous molded product produced in the manufacturing process of the present invention is obtained by adding inorganic short fiber material into a liquid and stirring it, and then straining the inorganic short fiber material from the liquid using a sieve or cloth, allowing it to accumulate and coagulate. In order to homogenize the density, the accumulated and agglomerated fibers are crushed by hand or cut with a knife to granulate them into a certain size, and the fiber granules are placed in a mold with a predetermined shape to form the predetermined fibers. By compressing until the volume ratio is reached, if the direction of the fiber grains is not horizontal, the fiber grains will naturally become horizontal due to the pressure, and since fiber grains of the same size are used, a fiber molded product with a homogeneous fiber density can be formed. . In addition, the initial specific gravity of the HA fibers in the present invention is 0.02 for conventional mat-like fibers and 0.03-0.05 for bulk-like fibers, but 0.0, which is almost the same as that of pilling. Since it is .10 to 0.13, the pressure applied when compression molding is performed to produce a fiber molded product is small.
In addition, since the compression ratio is small, it is extremely easy to mold a molded product, and a product with a large aspect ratio can also be obtained.
この成形体を鋳型内の所定位置にセットし、その鋳型に
アルミニウム合金等の金属を鋳込むことにより、繊維の
方向性及び密度が揃っているため金jヱ湯の流れが良く
なり、金属湯がla維成形体の空間部に充分に浸透する
と共に屈曲した繊維材を殆ど含まないのでH/A維強化
が良好な繊維体積率10〜20%の範囲の成形体の成形
が可能となる。By setting this molded body at a predetermined position in a mold and casting metal such as aluminum alloy into the mold, the flow of the metal molten metal is improved because the directionality and density of the fibers are uniform. The la fiber material sufficiently penetrates into the space of the LA fiber molded product and contains almost no bent fiber material, so it is possible to mold a molded product with a fiber volume ratio in the range of 10 to 20% with good H/A fiber reinforcement.
実施例
以下本発明の実施例を図面に基づいて説明すると、先ず
、水やアルコール類等の液体を予め入れた攪拌χ付きの
混合容器の中に5体積%以下の濃度になるように無機質
短繊維材(1)を投じ、繊維が絡み合わぬ程度の緩やか
な速度で攪拌させながら液体中に無機¥!を短繊維材(
1)を分散懸濁する。前記無機質層H&維材(1)とし
ては通常のアルミナ質繊維の他にシリカアルミナHa維
材、通常の炭素繊維の他にグラファイト質fa維材、炭
化けい素繊維等であり、いずれもそれぞれ単独に、又は
適宜組合せて使用しても良い、この時の繊維の長さは数
c11100市販の短1維材をそのまま使用しても良い
が、1cm以下の長さに裁断したものを使用することも
出来る。Examples Below, examples of the present invention will be explained based on the drawings. First, an inorganic short film is placed in a mixing container equipped with stirring χ in which a liquid such as water or alcohol is pre-filled to a concentration of 5% by volume or less. Pour the fiber material (1) into the liquid while stirring at a slow speed that does not allow the fibers to get entangled. short fiber material (
1) Disperse and suspend. The inorganic layer H & fiber material (1) includes silica-alumina Ha fiber material in addition to normal alumina fiber, graphitic FA fiber material, silicon carbide fiber in addition to normal carbon fiber, and each of them may be used individually. In this case, the length of the fibers may be several c11100. Commercially available short fiber materials may be used as they are, but those cut into lengths of 1 cm or less should be used. You can also do it.
その後、分散懸濁させた状態で、金属製篩或いは布等で
漉し、その上に短1m維材(1)を堆積凝集させる。こ
の時のia a材(1)は垂直方向に立つことなく全て
が倒れた状態で渡れるので繊維の方向が水平方向になる
よう堆積凝集され、且つ短繊維材(1)は従来の毛玉の
ように屈曲した短繊維材(L)も殆ど見られない。尚、
前記布は通液性の良好なもの程よく、前記金属製篩の目
開きは0.043〜3+smの範囲が好適である。Thereafter, the dispersed and suspended state is filtered through a metal sieve or cloth, and the 1 m short fiber material (1) is deposited and aggregated thereon. At this time, the IA A material (1) can be crossed in a state where it is all lying down without standing vertically, so the fibers are piled up and aggregated so that the direction of the fibers is horizontal, and the short fiber material (1) is similar to the conventional fluff. Short fiber material (L) bent in this manner is hardly seen. still,
The cloth has good liquid permeability, and the opening of the metal sieve is preferably in the range of 0.043 to 3+sm.
前記無機質短繊維材(1)を堆積凝集後、金属製篩或い
は布等から離し、大気中で適当な方法、例えば手で揉み
潰すか或いは刃物等を用いて切断し一定の大きさに粒状
化する。この時のtam粒の大きさは、縦、横、高さ、
又は径が0.1〜3+smの範囲になるようにする。こ
の繊維粒を所定形状、例えば円形等の型内に収容すると
共にシリカゾル。After the inorganic short fiber material (1) is deposited and agglomerated, it is separated from a metal sieve or cloth, and granulated into a certain size by crushing it by hand or cutting it with a knife in the atmosphere. do. The size of the tam grain at this time is length, width, height,
Alternatively, the diameter should be in the range of 0.1 to 3+sm. The fiber particles are housed in a mold of a predetermined shape, for example, a circular shape, and then silica sol is formed.
酸性又は塩基性塩化アルミニウム等の結合剤を添加して
充分に湿潤しておき、型の上面から繊維粒が所定の嵩比
重になるように圧縮させる。圧縮した状態で80〜10
0℃の温度で乾燥させた後、 800〜1000℃の温
度で焼成することによって好ましい性状、つまり繊維の
方向が水平に揃う共に繊維の密度が均質である成形体(
2)を得ることができる。次に焼成した成形体(2)を
鋳型内の所定の位置、例えばピストン部品(A)であれ
ばヘッド部に設置させ、アルミニウム合金等の金属湯を
注入して繊維強化複合鋳造体(A)が鋳造される(第5
図参照)、尚、鋳造時には成形体(2)の内部空間まで
金属(3)の湯が充分に浸透するように加圧される適宜
な鋳造法を行うことが望ましい。A binder such as acidic or basic aluminum chloride is added to sufficiently moisten the material, and the fiber particles are compressed from the top of the mold to a predetermined bulk specific gravity. 80-10 when compressed
By drying at a temperature of 0°C and then firing at a temperature of 800 to 1000°C, a molded product with desirable properties, that is, the direction of the fibers is aligned horizontally and the density of the fibers is homogeneous (
2) can be obtained. Next, the fired molded body (2) is placed in a predetermined position in the mold, for example, in the head part for a piston part (A), and metal hot water such as aluminum alloy is injected to form a fiber-reinforced composite cast body (A). is cast (5th
(see figure), it is desirable to use an appropriate casting method during casting in which pressure is applied so that the hot water of the metal (3) sufficiently penetrates into the internal space of the molded body (2).
第1表は本発明の製造法によって成形した繊維成形体(
2)1毛玉状から作られた繊!II&形体(2)、マッ
ト状から作られた識維成形体、バルク状から作られた繊
維成形体からカミソリを利用して1 cmX 1 cm
X 1.5cmの試料片各100個に分割し、各々重量
を測定し、偏差値を求めた結果を示す。Table 1 shows the fiber molded articles (
2) Fiber made from 1 pill shape! II & Shape (2), 1 cm x 1 cm using a razor from a fiber molded body made from a mat shape and a fiber molded body made from a bulk shape.
The sample pieces were divided into 100 pieces each measuring 1.5 cm in diameter, and the weight of each piece was measured. The deviation value was determined. The results are shown below.
:51 表(実験l)
尚、この時の条件としては、各繊維成形体(2)は10
0℃で乾燥、700℃で加熱焼成し、その径は15cm
、厚さ1.5cm 、 Fa 雄体積率10%の円盤状
とし、且つ無機質短繊維材(1)には径3.uI8.長
ざ1〜2cmのアルミナ質短繊維材を用い、また本発明
の製造法に於ては分散懸濁させた状態で、目開き1+i
mの金属製篩を用いる。:51 Table (Experiment 1) Note that the conditions at this time were that each fiber molded body (2) was 10
Dry at 0℃, heat and bake at 700℃, diameter is 15cm
, thickness 1.5 cm, Fa male volume fraction 10%, and the inorganic short fiber material (1) has a diameter of 3.5 cm. uI8. Using alumina short fiber material with a length of 1 to 2 cm, and in the production method of the present invention, in a dispersed and suspended state, the alumina fiber material has a mesh size of 1+i.
Use a metal sieve of size 1.
第2表は、円盤状繊m成形体(2)を圧縮成形する際に
繊維体積−J20%にし、他の細かな条件は第1表の条
件に合せて成形させ、これを乾燥した後、700℃に加
熱焼成させた各成形体(2)をPIffi内にセットし
、その鋳型に700℃のAI−12%5i−0,5%)
1g42%Cu合金湯を鋳込んで得られた第5図に示す
如きピストン部品の鋳造体(A)の複合鋳造部分から鋳
造体(A)の直径方向と高さ方向に各々4本ずつ棒状試
料片を切出し、引張試験を行った結果を示す、尚、毛玉
状から作られる繊維成形体(2)は繊維体積率が18%
以上必要であるので始めから繊維体m*20%のものを
予め成形させておく。Table 2 shows that when the disk-shaped fiber m molded body (2) is compression molded, the fiber volume is -J20%, other detailed conditions are molded according to the conditions in Table 1, and after drying, Each molded body (2) heated and fired at 700°C is set in PIffi, and the mold is filled with AI-12%5i-0.5%) at 700°C.
From the composite cast part of the piston component casting (A) as shown in Figure 5 obtained by pouring 1 g of 42% Cu alloy molten metal, four rod-shaped samples were taken in each of the diameter and height directions of the casting (A). The result of cutting out a piece and performing a tensile test is shown.The fiber molded article (2) made from the pill shape has a fiber volume percentage of 18%.
Since the above is necessary, a fibrous material of m*20% is preformed from the beginning.
第 2 表(実験2) 4i位K z/a m”第3表
はAI−12%S i −0,5%M、−2%Cu合金
湯を鋳込んで得られた鋳造体(A)の複合鋳造部分から
径92a+m、厚さ15mmの円盤状に切出し、第2図
に示す耐熱疲労試験過程を1サイクル(=60秒)とし
、各繊維複合鋳造体(A)にクラックが最初に現われる
迄のサイクル数を比較した結果を示す。Table 2 (Experiment 2) 4i Kz/am" Table 3 shows the cast body (A) obtained by casting AI-12%S i -0.5%M, -2% Cu alloy hot water. A disk shape with a diameter of 92 a + m and a thickness of 15 mm was cut from the composite cast part of , and the thermal fatigue test process shown in Fig. 2 was set as one cycle (=60 seconds), and cracks first appeared in each fiber composite cast body (A). The results of comparing the number of cycles up to this point are shown.
第 3 表(実験3)
実験1〜3の結果から本発明によって作られた複合鋳造
体(A)は複合部分に於る機械的強度に於て殆ど方向性
を示さず、極めて均質なものであり、且つ耐熱疲労強度
の大幅な向上が得られることが確認された。Table 3 (Experiment 3) From the results of Experiments 1 to 3, the composite cast body (A) made according to the present invention showed almost no directionality in mechanical strength in the composite part and was extremely homogeneous. It was confirmed that there was a significant improvement in thermal fatigue strength.
発明の効果
このように本発明の製造法は、繊維の方向が水平に揃う
共に繊維の密度が均質である成形体(2)を鋳型内にセ
ー、トし、その鋳型にアルミニウム合金等の金属(3)
を鋳込むことにより、従来のマット状、バルク状から作
られた繊維成形体よりも繊維密度が極めて均質であるた
め比較的低い鋳造圧でも金属湯の流れが良く、m雄の空
間部に充分に金属(3)が浸透されて均質な複合鋳造体
(A)を製造でき、機械的強度・耐摩耗性が向トする。Effects of the Invention As described above, the manufacturing method of the present invention involves setting a molded body (2) in which the fiber direction is horizontal and having a uniform fiber density in a mold, and placing a metal such as an aluminum alloy in the mold. (3)
By casting, the fiber density is extremely homogeneous compared to conventional fiber moldings made from mat or bulk shapes, so the flow of the metal metal is good even at relatively low casting pressure, and it is sufficient to fill the space of the m-male. A homogeneous composite cast body (A) can be produced by infiltrating the metal (3) into the composite cast body (A), which improves mechanical strength and wear resistance.
また本発明の製造法は、従来の毛玉を用いる製造法では
不可能であった繊維体積率lO〜18%の繊維成形体(
2)の成形が可能となり、繊維強化が良好な繊維体積率
lO〜20%の全範囲の繊維成形体(2)が容易に製造
出来るのである。In addition, the production method of the present invention enables a fiber molded article (
2) becomes possible, and a fiber molded article (2) with good fiber reinforcement and a fiber volume ratio of 10 to 20% can be easily produced.
しかも繊維成形体(2)には屈曲した繊維材(1)が殆
ど含まれていないので、耐熱疲労試験(実験3)に於て
は従来の毛玉状から作られたものと比べると2倍の耐久
サイクル数を示し、また回転面げによる疲労試験に於て
も疲労強度が毛玉状から作られたものより40%向上さ
れ、耐熱疲労特性等の改善が顕著である等の効果を奏す
る。Moreover, since the fiber molded product (2) contains almost no bent fiber material (1), it has twice the durability in the heat fatigue test (Experiment 3) compared to the conventional product made from fluff. It shows the number of cycles, and also in a fatigue test by rotary surface bending, the fatigue strength is improved by 40% compared to the one made from a pill shape, and the heat fatigue resistance properties etc. are significantly improved.
第1図は本発明の製造過程例の概要を示したブロック図
、第2図は耐熱疲労試験内容を示す図、第3図は本発明
に係るtli誰成形成形体施例を示す斜視図、第4図は
従来の毛玉状から作られた成形体を示す斜視図、第5図
は本発明によって出来りつだ部品例を示す一部切欠いた
正面IZである。
(1)・・・無4yj、質短繊維材(?)・・・成形体
(3)・・・金属
以」二
特許出願代理人
弁理士 松 岡 宏、’、、−′j、、+jう、4
1/
第7図
]蓋[
第3図 第4図
第c図FIG. 1 is a block diagram showing an overview of an example of the manufacturing process of the present invention, FIG. 2 is a diagram showing the contents of a thermal fatigue test, and FIG. 3 is a perspective view showing an example of a tli-formed product according to the present invention. FIG. 4 is a perspective view showing a conventional molded product made from a fluffy shape, and FIG. 5 is a partially cutaway front view IZ showing an example of a part made according to the present invention. (1)...Non-4yj, short fiber material (?)...Molded object (3)...Metal (2) Patent application agent Hiroshi Matsuoka, ',, -'j,, +j U, 4
1/ Fig. 7] Lid [ Fig. 3 Fig. 4 Fig. c
Claims (1)
をもって所定形状の成形体(2)に成形させ、該成形体
(2)を鋳型内の所定位置にセットし、その鋳型にアル
ミニウム合金等の金属(3)を鋳込んで鋳造することを
特徴とする繊維強化複合鋳造体の製造法。The inorganic short fiber material (1) deposited in the horizontal direction in advance is molded with a binder into a molded body (2) of a predetermined shape, the molded body (2) is set at a predetermined position in a mold, and an aluminum alloy is placed in the mold. A method for manufacturing a fiber-reinforced composite cast body, characterized by casting by casting a metal (3) such as.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62270032A JPH01113162A (en) | 1987-10-26 | 1987-10-26 | Production for fiber reinforced composite casting body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62270032A JPH01113162A (en) | 1987-10-26 | 1987-10-26 | Production for fiber reinforced composite casting body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01113162A true JPH01113162A (en) | 1989-05-01 |
Family
ID=17480582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62270032A Pending JPH01113162A (en) | 1987-10-26 | 1987-10-26 | Production for fiber reinforced composite casting body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01113162A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329983A (en) * | 1991-10-08 | 1994-07-19 | Arnold J. Cook | Sealed chamber die castings of metal matrix components |
FR2764027A1 (en) | 1997-05-27 | 1998-12-04 | Aisin Seiki | Motor vehicle automatic gearbox control procedure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619537A (en) * | 1984-06-25 | 1986-01-17 | Mitsubishi Alum Co Ltd | Manufacture of inorganic staple fiber-reinforced metallic composite material |
JPS6117266A (en) * | 1984-07-04 | 1986-01-25 | Matsushita Electric Ind Co Ltd | Magnetic head holding device of magnetic card recording and reproducing device |
JPS6130608A (en) * | 1984-07-19 | 1986-02-12 | Nikkei Kako Kk | Manufacture of composite granule consisting of inorganic short fiber and aluminum |
JPS62139840A (en) * | 1985-12-12 | 1987-06-23 | Toyota Motor Corp | Metallic composite material reinforced with continuous alumina fiber containing mullite crystal |
-
1987
- 1987-10-26 JP JP62270032A patent/JPH01113162A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619537A (en) * | 1984-06-25 | 1986-01-17 | Mitsubishi Alum Co Ltd | Manufacture of inorganic staple fiber-reinforced metallic composite material |
JPS6117266A (en) * | 1984-07-04 | 1986-01-25 | Matsushita Electric Ind Co Ltd | Magnetic head holding device of magnetic card recording and reproducing device |
JPS6130608A (en) * | 1984-07-19 | 1986-02-12 | Nikkei Kako Kk | Manufacture of composite granule consisting of inorganic short fiber and aluminum |
JPS62139840A (en) * | 1985-12-12 | 1987-06-23 | Toyota Motor Corp | Metallic composite material reinforced with continuous alumina fiber containing mullite crystal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329983A (en) * | 1991-10-08 | 1994-07-19 | Arnold J. Cook | Sealed chamber die castings of metal matrix components |
FR2764027A1 (en) | 1997-05-27 | 1998-12-04 | Aisin Seiki | Motor vehicle automatic gearbox control procedure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61501756A (en) | Pressure molding method for metal products | |
JP2001512411A (en) | Method for producing compressed article of ceramic fiber and compressed article obtained thereby | |
US4653569A (en) | Process for producing fiber-reinforced light-metal castings | |
US5259435A (en) | Lightweight and low thermal expansion composite material | |
JPH01113162A (en) | Production for fiber reinforced composite casting body | |
JPH0135931B2 (en) | ||
CN109252060A (en) | A kind of preparation method of crystal-amorphous aluminum matrix composite | |
CN105946173B (en) | Plastic cement projects equipment | |
JPS63192830A (en) | Manufacture of fiber-reinforced composite casting | |
EP0109241B1 (en) | Manufacture of composite of metal and synthetic inorganic fibrous material | |
CA1039507A (en) | Moulding for the heat retention of feeder head in casting molten metals | |
JPS63247013A (en) | Manufacture of short fiber reinforced composite material | |
JPS5943835A (en) | Production of frm from sic whisker | |
JPH0429724B2 (en) | ||
JPS6092438A (en) | Production of fiber reinforced metallic composite material | |
JP2000204454A (en) | Preform for metal matrix composite material and its production | |
JP2940325B2 (en) | Method for producing preform for FRM | |
JPS6130608A (en) | Manufacture of composite granule consisting of inorganic short fiber and aluminum | |
JPS62231704A (en) | Manufacture of fiber reinforced cement molded form | |
JPS62238062A (en) | Production of fiber reinforced metallic composite material | |
JPH0143822B2 (en) | ||
JPH01133660A (en) | Manufacture of fiber reinforced metal | |
CA1052533A (en) | Moulding for the heat retention of feeder head in casting molten metals | |
JPS59169646A (en) | Expendable pattern for ceramic shell mold for casting and its production | |
JPS6410581B2 (en) |