JPS59169646A - Expendable pattern for ceramic shell mold for casting and its production - Google Patents

Expendable pattern for ceramic shell mold for casting and its production

Info

Publication number
JPS59169646A
JPS59169646A JP4556683A JP4556683A JPS59169646A JP S59169646 A JPS59169646 A JP S59169646A JP 4556683 A JP4556683 A JP 4556683A JP 4556683 A JP4556683 A JP 4556683A JP S59169646 A JPS59169646 A JP S59169646A
Authority
JP
Japan
Prior art keywords
mold
model
heat
pattern
fugitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4556683A
Other languages
Japanese (ja)
Inventor
Yasuji Morita
森田 保治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4556683A priority Critical patent/JPS59169646A/en
Publication of JPS59169646A publication Critical patent/JPS59169646A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns

Abstract

PURPOSE:To prevent cracking in a casting mold and to improve dimensional accuracy by dispersing and adding fine grains of glass, etc. to an expendable hot melt material and molding an expendable pattern for a ceramic shell mold for casting. CONSTITUTION:An expendable hot melt material such as wax, naphthalene or the like is heated to the m.p. thereof or higher. On the other hand, fine grains such as glass beads, sand grain, metallic grains or the like are heated to approximately the same temp. as the temp. of the molten material and are charged and added to the molten material under stirring with a sirrer, etc. to accomplish uniform dispersion. The resulted mixture is cast into a mold for forming a desired pattern and thereafter the mixture is cooled to solidify. The solidified molding is removed from the mold for forming the pattern and the pattern is obtd.

Description

【発明の詳細な説明】 この発明はクラックのない優秀な一体セラミック鋳型が
得られる消失性模型及びその製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fugitive model and a method for producing the same, which can provide an excellent monolithic ceramic mold without cracks.

周知のよ5(/cセラミックシェル鋳型の製作に当って
は、ワックス、スチロナフタリン及びその混合物、尿素
等の消失性熱溶融物質によジ成型された消失性模型の表
面に、耐火物スラリーを塗布してこの表面に直ちに粗粒
状耐火物をサンディング処理により被着し、これを乾燥
して第1層とし、以下この工程を5〜10回反復して模
型上に層状耐火物を成形して後、消失性模型を熱処理、
溶液処理、気体処理等によって急速に溶解、溶融等させ
て消失させ、前記耐火物層を焼成して中空鋳型とするの
である。処で消失性模型の材料としてワックスを用いる
場合、ワックスの変形、熱による膨張収縮の点で問題点
があり、300闘以上の大型を対象とする場合不適当と
され、その溶出処理に当っては、ワックスの熱膨張が消
失速度より大であるため、耐火物層即ち鋳型側にクラッ
クを生じ易く、そのため実用困難である。又スチロナ7
り11ン及びその混合物、尿素等による模型は熱による
膨張収縮についてワックスと大同小異で、ワックス模型
より大型の対象として有利であるが、鋳型側のクラック
発生という点については未だ問題点が残っている。従っ
て上記のような問題点を解決するため従来から消失性熱
溶融物質そのものの組成の研究や、新しい物質の発見等
に努力されてきているが、未だ実用的に満足したものが
得られていない現状である。
It is well known that when manufacturing a ceramic shell mold, a refractory slurry is applied to the surface of a fugitive model that has been molded with a fugitive heat-melting substance such as wax, styronaphthalene and its mixture, or urea. Coarse-grained refractories are immediately deposited on the surface by sanding, dried to form the first layer, and this process is repeated 5 to 10 times to form layered refractories on the model. After that, heat-treat the fugitive model,
The refractory material layer is rapidly dissolved, melted, etc., and disappeared by solution treatment, gas treatment, etc., and the refractory layer is fired to form a hollow mold. However, when wax is used as a material for fugitive models, there are problems with wax deformation and expansion and contraction due to heat, making it unsuitable for large objects of 300 mm or more. Since the thermal expansion of the wax is greater than the rate of disappearance, cracks are likely to occur in the refractory layer, that is, on the mold side, and therefore it is difficult to put it into practical use. Mata Styrona 7
Models made of resin, mixtures thereof, urea, etc. are similar to wax in terms of expansion and contraction due to heat, and are advantageous for larger objects than wax models, but there still remains the problem of cracks occurring on the mold side. . Therefore, in order to solve the above-mentioned problems, efforts have been made to research the composition of fugitive heat-melting substances themselves and to discover new substances, but so far nothing that is practically satisfactory has been obtained. This is the current situation.

以上の技術背景を基に本発明者は種々研究した結果、従
来の上記欠点を解消し、且つ実用的なセラミック鋳型用
の消失性模型を得るに至ったもので、本発明の要旨とす
る点は、消失性熱溶融物質にガラス、砂、金属等の前記
熱溶融物質よジ体膨張率が小さい細粒が分散添加され成
型されてなるセラミック鋳型用消失性模型であり、その
目的とするところは、この模型を使用して鋳型を形成し
た際、同鋳型にクラックを発生させない優れたものを提
供する点にある。
Based on the above technical background, the present inventor has conducted various researches and as a result, has solved the above-mentioned conventional drawbacks and obtained a practical fugitive model for ceramic molds.The main points of the present invention are as follows. is a fugitive model for a ceramic mold, which is formed by dispersing and molding a fugitive heat-fusible substance with fine particles such as glass, sand, metal, etc., which have a small coefficient of thermal expansion. The object of the present invention is to provide an excellent mold that does not cause cracks when a mold is formed using this model.

以下本発明について詳述する。The present invention will be explained in detail below.

先ず本発明で使用する消失性熱溶融物質としては、ワッ
クス、ナックリンおよびその混合物、尿素等を例示でき
、この他従来から公知のものを使他方、本発明で使用す
る細粒として、ガラスピーズ、砂粒、金属粒等を例示で
きる。これらの細粒は、第1VC熱溶融物質の体膨張率
の大による耐火物層(セル層)に与える影響を緩和相殺
するため熱溶融物質より著しく体膨張率が小さいこと、
第2VC熱影響及び取扱中に破壊しない程度の高強度を
有すること、第6に熱溶融物質と混合した際、溶融状態
に於ても、模型成型用型内で冷却固化する状態に於ても
、細粒が熱溶融物質中で可及的均一に分散するよう、熱
溶融物質と略同等の見掛は比重を有すること、第4に取
扱いが便利であり、表面積が最小でかつ膨張方向が放射
方向で均一であり、熱溶融物質との結合が十分なものと
して、表面が凹凸に富む球状体が望ましい。そしてその
大きさ#i直径0.3〜5.0厘が好適である。
First, examples of the fugitive heat-melting substance used in the present invention include wax, nuclin, a mixture thereof, urea, etc., and other conventionally known substances are used. On the other hand, the fine particles used in the present invention include glass peas, Examples include sand grains and metal grains. These fine particles have a significantly smaller coefficient of expansion than the first VC heat-melting material, in order to alleviate and cancel out the effects on the refractory layer (cell layer) due to the large coefficient of expansion of the first VC heat-melting material;
Second, it must have high strength to the extent that it will not break under the influence of VC heat and during handling. Sixth, when mixed with a heat-molten substance, it will hold up well both in the molten state and in the state in which it cools and solidifies in the mold for molding the model. Fourthly, it is convenient to handle, has a minimum surface area, and has a minimum surface area and a direction of expansion. A spherical body with a richly uneven surface is desirable because it is uniform in the radial direction and has sufficient bonding with the hot melt substance. The size #i is preferably 0.3 to 5.0 cm in diameter.

本発明の消失性模型は上記のよりな熱溶融物質と細粒の
二つの材料から成るが、その製造法を下記に説明する。
The fugitive model of the present invention is made of two materials, the above-mentioned hot-melting substance and fine particles, and the manufacturing method thereof will be explained below.

先ず消失性熱溶融物質を、その融点より高く加熱する。First, the fugitive thermofusible substance is heated above its melting point.

通常け10−30’Cである。この温度は作業室温、処
理時間等の作業性を考慮して適宜選択するものである。
Normal temperature is 10-30'C. This temperature is appropriately selected in consideration of workability such as room temperature and processing time.

−万細粒は適宜手段により前記溶融物質と略同温度に加
熱し、これを溶融物質に投入添加し、攪拌機等により攪
拌して均一に分散させる。かくして得られた混合物を所
望の模型成形用型に流し込み、その後冷却固化させて該
成形用型から取出すことにより模型が得られる。なお熱
溶融物質に対する細粒の添加割合は、体積で1゜〜80
%の範囲であり、10%未満ではこの模型で成形される
鋳型のクラックは防止されず、又8゜襲を越えると消失
性模型とは云えず、その本来の消失性模型の機能を逸脱
したものとなり、従って40〜70%が実用的な好まし
い範囲である。
- The fine grains are heated to approximately the same temperature as the molten substance by an appropriate means, added to the molten substance, and stirred with a stirrer or the like to uniformly disperse them. A model is obtained by pouring the mixture thus obtained into a desired model mold, cooling and solidifying it, and then taking it out from the mold. The addition ratio of fine particles to the hot melt substance is 1° to 80° by volume.
If it is less than 10%, the mold formed with this model will not be prevented from cracking, and if it exceeds 8°, it cannot be called a vanishing model, and it has deviated from its original function as a vanishing model. Therefore, 40 to 70% is a practical preferred range.

木発F!A/fi以上の通り、消失性熱溶融物質にガラ
ス等の細粒を分散添加されたものからなる一体中ラミツ
クシエル鋳型に使用する消失性模型であって、この模型
を使用して鋳型を成形した際、従来の問題点であった鋳
型に生ずるクラックは、殆んで起らない。しかも鋳型の
模型の寸法精度が太いに向上するこ七も確認された。又
本発明の消失性模型の製造法は流し込み手段によるため
、従来ワックス等の熱溶融物質による模型成形で使用さ
れていたインゼクションマシンは不要となり、更にワッ
クス等では困難だった300輔以上の模型の作成が可能
となったものであり、従来の欠点を解消した消失性模型
として実用的に優れたものである。
Kibatsu F! A/fi As mentioned above, this is a fugitive model used for a one-piece LAMITSUSHEL mold made of a fugitive heat-melting substance with fine particles such as glass dispersed therein, and this model was used to mold the mold. In this case, cracks that occur in the mold, which was a problem in the past, hardly occur. Furthermore, it was confirmed that the dimensional accuracy of the mold model was significantly improved. In addition, since the method of manufacturing the fugitive model of the present invention uses a casting method, there is no need for an injection machine that was conventionally used for model molding using hot melt materials such as wax. This makes it possible to create a model, and it is practically excellent as a vanishing model that eliminates the drawbacks of conventional models.

以下、本発明の実施例を挙げる。Examples of the present invention will be given below.

〈実施例〉 ワックスを加熱溶融して7o±5℃に保持し、別に表面
に凹凸を有する直径1.−のガラスピーズを前記ワック
スに対し60%(体積)を用意してこれを90℃に加熱
し、ワックス中にこのガラスピーズを投入し、攪拌機で
攪拌して該ビーズが液中に均一分散させ、これを大きさ
500mの模型成形用型に流し込んだ。次いでこれが冷
却固化された後、前記型から取出した。
<Example> Wax was melted by heating and maintained at 7°C ± 5°C, and a diameter 1mm wax was separately prepared with unevenness on the surface. - Prepare 60% (volume) of the glass beads based on the wax, heat this to 90°C, put the glass beads into the wax, and stir with a stirrer to uniformly disperse the beads in the liquid. This was poured into a model mold with a size of 500 m. After this was cooled and solidified, it was taken out from the mold.

かくして得られた模型上に、公知の通常手段により、セ
ラミックシェル層を形成し、乾燥後これを加熱して前記
模型を消失(ワックスとガラスピ−ズを排出)させるこ
とにより一体型のセラミックシェル鋳型が得られた。こ
の鋳型を検査するも、どこにもクラックが発生しておら
ず、その後これを焼成したものを測定したところ、従来
のものに比し、鋳型の寸法精度も大巾に向上していた。
A ceramic shell layer is formed on the model thus obtained by a conventional method known in the art, and after drying, the layer is heated to eliminate the model (wax and glass beads are expelled) to form an integrated ceramic shell mold. was gotten. When this mold was inspected, no cracks were found anywhere, and when it was subsequently fired and measured, the dimensional accuracy of the mold was significantly improved compared to conventional molds.

特許出願人  久保田鉄工株式会社Patent applicant: Kubota Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】 L 消失性熱溶融物質にガラス、砂、金属等の前記熱溶
融物質より体膨張率が小さい細粒が分散添加され、成型
されてなることを特徴とするセラミックシェル鋳型用消
失性模型。 2 消失性熱溶融物質を、その融点より高く加熱したも
のに、予め前記熱溶融物質と略同温度に加熱されたガラ
ス、砂、金属等の前記熱溶融物質より体膨張率が小さい
細粒を添加攪拌し、これを模型成形用型に流し込んだ後
冷却固化することを特徴とするセラミックシェル鋳型用
消失性模型の製造法。
[Claims] L. A ceramic shell mold comprising a fugitive heat-melting substance dispersed with fine particles having a smaller coefficient of expansion than the heat-melting substance such as glass, sand, metal, etc., and molded. Vanishing model. 2 A fugitive heat-melting substance heated above its melting point contains fine particles having a smaller coefficient of body expansion than the heat-melting substance, such as glass, sand, metal, etc., which have been previously heated to approximately the same temperature as the heat-melting substance. A method for producing a fugitive model for a ceramic shell mold, which comprises adding and stirring the mixture, pouring it into a mold for molding the model, and then cooling and solidifying it.
JP4556683A 1983-03-17 1983-03-17 Expendable pattern for ceramic shell mold for casting and its production Pending JPS59169646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4556683A JPS59169646A (en) 1983-03-17 1983-03-17 Expendable pattern for ceramic shell mold for casting and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4556683A JPS59169646A (en) 1983-03-17 1983-03-17 Expendable pattern for ceramic shell mold for casting and its production

Publications (1)

Publication Number Publication Date
JPS59169646A true JPS59169646A (en) 1984-09-25

Family

ID=12722895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4556683A Pending JPS59169646A (en) 1983-03-17 1983-03-17 Expendable pattern for ceramic shell mold for casting and its production

Country Status (1)

Country Link
JP (1) JPS59169646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056520A1 (en) * 1995-04-21 1998-12-17 Norbert Beermann Rigid sand body, method for producing the same, use thereof and method for producing grains of sand coated in wax
US6235070B1 (en) 1997-06-12 2001-05-22 Norbert Beermann Rigid sand body, method for producing the same, use thereof and method for producing grains of sand coated in wax

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056520A1 (en) * 1995-04-21 1998-12-17 Norbert Beermann Rigid sand body, method for producing the same, use thereof and method for producing grains of sand coated in wax
US6235070B1 (en) 1997-06-12 2001-05-22 Norbert Beermann Rigid sand body, method for producing the same, use thereof and method for producing grains of sand coated in wax

Similar Documents

Publication Publication Date Title
US4278544A (en) Filter medium for fluid
US3512571A (en) Cryogenic formation of refractory molds and other foundry articles
US8235092B2 (en) Insulated investment casting mold and method of making
US3204303A (en) Precision investment casting
US3351688A (en) Process of casting refractory materials
JPH0318448A (en) Material for ceramic molding
US3752689A (en) Refractory laminate based on positive sols and organic or inorganic bases
US4530722A (en) Binder and refractory compositions and methods
US4284121A (en) Process and materials for making refractory cores
US3266106A (en) Graphite mold and fabrication method
CN105057593A (en) Investment casting technology for copper alloy casting
US3686006A (en) Refractory cores and methods of making the same
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
US4591385A (en) Die material and method of using same
EP0020373A1 (en) Method of making and using a ceramic shell mold.
US3059296A (en) Ceramic body
JPS59169646A (en) Expendable pattern for ceramic shell mold for casting and its production
US3239897A (en) Precision casting mold and methods and materials for production and use
AU588257B2 (en) Molding medium, method for making same and evaporative pattern casting process
US4188450A (en) Shell investment molds embodying a metastable mullite phase in its physical structure
US4664948A (en) Method for coating refractory molds
GB2155484A (en) Binder and refractory compositions
JPH0663684A (en) Production of ceramic core for casting
JPS56119641A (en) Production of mold for quick precision casting
US3815658A (en) Process for making a metallurgically slow reacting mold