JPS6410581B2 - - Google Patents

Info

Publication number
JPS6410581B2
JPS6410581B2 JP11208285A JP11208285A JPS6410581B2 JP S6410581 B2 JPS6410581 B2 JP S6410581B2 JP 11208285 A JP11208285 A JP 11208285A JP 11208285 A JP11208285 A JP 11208285A JP S6410581 B2 JPS6410581 B2 JP S6410581B2
Authority
JP
Japan
Prior art keywords
fiber
cast
aluminum
molten metal
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11208285A
Other languages
Japanese (ja)
Other versions
JPS61270347A (en
Inventor
Nobuyuki Suzuki
Kenichi Tanaka
Masanao Yamanashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP60112082A priority Critical patent/JPS61270347A/en
Priority to US06/755,148 priority patent/US4617979A/en
Priority to KR1019850005057A priority patent/KR910006069B1/en
Priority to GB08517880A priority patent/GB2162104B/en
Priority to CA000487036A priority patent/CA1227616A/en
Priority to IT21640/85A priority patent/IT1201432B/en
Priority to FR8511207A priority patent/FR2567803B1/en
Priority to DE19853525872 priority patent/DE3525872A1/en
Publication of JPS61270347A publication Critical patent/JPS61270347A/en
Publication of JPS6410581B2 publication Critical patent/JPS6410581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、無機質短繊維材を強化材とし、これ
をマトリツクス材としてのアルミニウムまたはア
ルミニウム合金(以下、アルミニウムという。)
中に分散含有させた複合鋳造体の製造法に関する
ものである。 従来の技術 近時、炭素質、炭化けい素質、アルミナ質など
の無機質短繊維材を強化材とし、これをマトリツ
クス材としてのアルミニウム中に分散含有させた
複合材は、アルミニウム材の有する軽量性に加え
て優れた機械的強度や耐摩耗性を有するので、
種々の機械部材として広く利用することが試みら
れている。 従来、このような無機質短繊維材を複合含有さ
せたアルミニウム鋳造体を得る方法として、鋳型
内に短繊維材を充填し、これにアルミニウム溶湯
を加圧混合する方法が知られている。しかし、こ
のようにして得られる鋳造体は、その中に含まれ
る繊維材が局部的に偏在し勝ちであつて、均一に
繊維材を分散含有した複合体を得ることが困難で
あつた。そこで、上記のようにして、アルミニウ
ム溶湯を繊維材に加圧混合して得た凝固塊を、そ
のまま、またはこれにアルミニウム溶湯を加え
て、加熱し再溶融した後、所望形状の鋳型に再鋳
造する試みもなされている。しかしながら、この
ようにして得られた溶湯は、多量の繊維材を不規
則に含有しているので極度に湯流れが悪く、複雑
な形状の鋳型に鋳込むことが難しく、したがつ
て、得られる複合鋳造体は、形状的に自ら制約を
受けるものであつた。 本発明者らは、先に、無機質短繊維材にアルミ
ニウム溶湯を加圧混合して得た凝固塊を、微細な
粒状に砕解しておいてから、この砕解粒を2次的
に加えたアルミニウム溶湯中に溶融し、この溶湯
を任意形状の鋳型に鋳造する複合鋳造体の製造法
を提案した。(特願昭59−65690号) 上記特願昭59−65690号の方法は、無機質短繊
維材とアルミニウムとの複合凝固物を一度微細粒
状に砕解しておいて、これを2次的に加えられた
アルミニウム溶湯中に再溶融することによつて、
繊維含有溶湯の湯流れを改善し、複合凝固物の再
鋳造を容易としたものであるが、この方法にも、
なお、次のような欠点があつた。すなわち、この
方法において、無機質短繊維材にアルミニウム溶
湯を加圧混合して得た複合凝固物は、その中に不
規則に含まれている多量の繊維材によつて強固に
補強された状態で凝固しているので、これの砕解
には著しく困難を伴い、工業的に多量の微粒状物
を得るには、可成りの長時間を要するものであつ
た。 問題点を解決するための手段 本発明者らは、上記従来法における問題点の解
決を図るためさらに研究を重ねた結果、強化材と
しての無機質短繊維材を容器内において撹拌混合
することによつて、繊維材が互いに絡み合つて凝
集し多数の微細な毛玉状の凝集粒となし得るこ
と、このように毛玉状に凝集された繊維材に溶融
アルミニウムを混合して得られた溶湯は、繊維材
を不規則に含有する従来の溶湯に比べて、はるか
に流動性がよく、容易に任意形状の鋳型に鋳造し
得ること、および、このようにして鋳造された鋳
造体は、従来の複合鋳造体に比べて、はるかに塑
性加工性がよく、押出しまたは圧延などによつて
容易に複合展伸加工材となし得ることなどの一連
の事実を見出した。 本発明は、上記の知見に基いてなされたもので
ある。 すなわち、本発明は、無機質短繊維材をあらか
じめ多数の毛玉状の凝集粒としておき、この繊維
凝集粒にアルミニウム溶湯を混合して得た繊維混
合溶湯をそのまま、または一度凝固させた後再溶
融し、任意形状に鋳造する繊維強化アルミニウム
複合鋳造体の製造法である。 以下、本発明の方法について、さらに具体的に
説明する。 本発明の方法においては、まず、強化材として
の無機質短繊維材を多数の毛玉状の凝集粒とする
のであるが、使用する無機質短繊維材としては、
炭素質繊維、炭化けい素質繊維、アルミナ質繊維
その他適宜の繊維材を用いることができる。凝集
化は、これらの繊維材を撹拌翼付の混合容器、回
転混合機、V型混合機などに収容し、暫時撹拌混
合することによつて行わせることができる。例え
ば、繊維材を撹拌翼付の小型混合容器内に収容し
5〜30分間程度撹拌を続けると、容器内の繊維材
は適度に切断されながら互いに絡み合つて、繊維
材の種類によつて多少の違いはあるが、径0.1〜
3mm程度の粒状の整つた多数の毛玉状の凝集粒が
得られる。 凝集化のための繊維材の長さは、数cm程度の比
較的長い繊維を含む市販の短繊維材をそのまま使
用することもできるが、あらかじめ1cmないしは
それ以下、好ましくは0.1〜1cm程度の長さに調
整された繊維材を使用することは、凝集化に要す
る時間を短縮し、かつ、整つた粒状の凝集粒を得
るうえから望ましいことである。 繊維材の凝集化は、乾燥繊維材をそのまま撹拌
することによつて行わせることができるが、撹拌
によつて生ずる微細に切断された繊維材の飛散に
よつて生ずる損失を少くし、かつ短時間に効率よ
く生玉状に凝集させるには、繊維材に少量の水を
散布し適度の湿り気を与えながら撹拌し凝集化さ
せることが望ましい。また、繊維材を水または低
級アルコールのような適宜の分散媒中に濃厚に懸
濁させた状態で撹拌することによつても凝集化さ
せることができる。 次いで、上記のように調製された毛玉状繊維凝
集粒を、必要に応じて乾燥した後、これにマトリ
ツクス材としてのアルミニウム溶湯を混合する。
アルミニウム溶湯としては、100系の工業用普通
純度のアルミニウム、4000系の鋳物用アルミニウ
ムその他目的に応じて適宜の合金材を使用するこ
とができる。また、6000系や7000系熱処理型の展
伸加工用合金などを使用してもよい。繊維凝集粒
にアルミニウム溶湯を混合するには、繊維粒内の
空隙にアルミニウム溶湯が十分に浸透するよう
に、溶湯に圧力を加えて行うことが望ましい。こ
の加圧混合は容器内に収容した繊維粒に、高圧プ
レスのごときを使用し溶湯を圧入して行うことも
できるが、繊維凝集粒の内部にまで十分に溶湯を
浸透させるために遠心装置を使用して遠心加圧下
に混合するときは、一層容易に繊維凝集粒の内部
にまでアルミニウム溶湯を浸透させることができ
る。このようにして得られる繊維凝集粒とアルミ
ニウム溶湯の混合物中の繊維含有率は、5〜20容
量%程度であるが、繊維凝集粒を圧縮状態として
おいて、これに溶湯を加圧混合することによつ
て、30容量%程度の高密度に繊維を含有する混合
溶湯を得ることができる。このような高密度に繊
維粒を含有する混合溶湯を調製しようとする場
合、あらかじめ繊維凝集粒に少量の径数μ以下の
極く微細な例えば酸化アルミニウムのようなアル
ミニウム溶湯に反応し難い無機質粉末をまぶして
おくことは、混合溶湯を凝固させた後に再溶解す
るに際して、繊維粒が溶湯中に均整に分散するこ
とを助けるので望ましくことである。 次に、上記のようにして得た毛玉状繊維凝集粒
とアルミニウム溶湯との混合溶湯を任意形状の鋳
型に鋳込むのであるが、この鋳込みは混合溶湯を
そのまま直接鋳型内に流し込んでもよいが、溶湯
を一度凝固させておいて、この複合凝固塊を加熱
によつて再溶融した後、鋳造する方が鋳造作業が
容易となり、均整な鋳造体を得易いので望まし
い。 複合凝固塊の再溶融には、通常金属溶融に使用
される外熱炉を使用して行うことができるが、高
周波または低周波誘導炉を使用するときは、溶融
を一層能率よく行うことができる。溶融は凝固塊
をそのままの形状で行つてもよく、また、必要に
応じて適宜大きさの塊粒状に破砕して行つてもよ
い。鋳造に際して溶湯中の繊維材の含有量を鋳造
体の使途に応じた濃度に調整するために、適宜量
のアルミニウム溶湯を2次的に加えることが望ま
しい。 上記のようにして得られた繊維材と溶融アルミ
ニウムとの混合溶湯は、短繊維材を毛玉状の凝集
粒として分散含有したものであるから、従来の繊
維材をそのままの形状で不規則に含有させた溶湯
に比べて、はるかに湯流れがよく、重力鋳造、連
続水冷鋳造、ダイカスト、溶湯鍛造その他適宜の
方法によつて所望形状の複合体に鋳造することが
できる。また、本発明の方法によつてビレツトま
たはスラブ状に鋳造された鋳造体は、従来の繊維
材を不規則に含有する複合鋳造体に比べて、はる
かに塑性加工性に富み、通常のアルミニウム合金
材の押出しまたは圧延加工と同様にして、容易に
熱間展伸加工を施して無機質短繊維材によつて複
合強化された棒状または板状の複合アルミニウム
材に成形することができる。 発明の効果 上述のように、本発明は、強化材としての無機
質短繊維材をあらかじめ多数の毛玉状の凝集粒と
しておいて、これにアルミニウム溶湯を加圧混合
して得た溶湯をそのまま、または、一度凝固させ
た後再溶融して鋳造する複合鋳造体の製造法であ
るから、特願昭59−65690号におけるような繊維
材とアルミニウム溶湯との複合凝固塊を、微細な
粒状物にまで砕解することを必要とせず、したが
つて、特願昭59−65690号の方法に比べて、生産
コストを低減し、かつ工業的多量生産を容易とし
たものであり、また、短繊維材をそのままアルミ
ニウム溶湯中に分散含有させた従来の複合鋳造体
製造における溶湯に比べて、はるかに鋳造性にお
いて優れており、容易に複雑な形状の鋳造体を鋳
造することができ、しかも、このようにして得た
鋳造体は、塑性加工性を有し、容易に複合展伸加
工を施し得るなどの優れた効果を有する。 実施例 次に、本発明方法の実施例を掲げる。 実施例 1 マトリツクス材として2017Al合金を使用し、
無機繊維材としてアルミナ短繊維(径3μ×長さ
0.1〜1cm)を使用した。 2のアルミナ繊維材を容量5の撹拌翼付容
器内に容れ、約20分間撹拌混合し、平均粒径約
0.6mmの多数の毛玉状の凝集粒を得た。 上記繊維凝集粒0.4Kgを遠心容器内に収容し、
これに加熱溶融したアルミニウム合金溶湯
(A2017合金)4Kgを加えて約15分間遠心混合し
た後、内容物を凝固させた。 上記凝固塊4.4Kgを黒鉛坩堝に容れ、電気炉で
650℃に溶解し、十分にかき混ぜた後、金型を使
用し径40mm×長さ120mmのビレツト状に鋳造した。 上記ビレツト状複合鋳造体に熱間押出成形
(450℃)を施し、径10mmの丸棒とした(試料A) 実施例 2 実施例1と同様にしてアルミナ繊維凝集粒を調
製した。この繊維凝集粒20に微細アルミナ粉末
(平均粒径約0.1μ)5gを添加し、十分にまぶし
た。 上記繊維凝集粒0.4Kgを遠心容器に収容し、こ
れに加熱溶触したアルミニウム合金溶湯(A2017
合金)3.5Kgを注加し遠心混合した後、内容物を
未凝固のままあらかじめ用意されたアルミニウム
溶湯(A2017合金)3.5Kgの中に加えて、十分か
き混ぜた後、円筒型金型に鋳造し、径40mm×長さ
120mmのビレツト状の複合鋳造体を得た。 上記複合鋳造体を径10mmの丸棒状に熱間押出成
形(450℃)した。(試料B) 実施例 3 実施例1と同様にして調製した繊維凝集粒0.4
Kgとアルミニウム合金溶湯(ADC12合金)4Kg
の遠心混合凝固物を約680℃で再溶融して得た溶
湯を250T加圧ダイカスト機を使用して、縦100mm
×横50mm×厚さ5mmの平板状に射出成型鋳造し
た。射出成型によつて、溶湯中に分散していた繊
維凝集粒は単繊維状にほぐされて、アルミニウム
マトリツクス内に均整に分散したダイカスト鋳造
体を得た。(試料C) 実施例1〜3によつて得られた試料A、Bおよ
びCについて、それぞれの機械的特性を測定した
結果は、表示のごとくであつた。
Industrial Application Field The present invention uses an inorganic short fiber material as a reinforcing material, and uses this as a matrix material of aluminum or an aluminum alloy (hereinafter referred to as aluminum).
The present invention relates to a method for manufacturing a composite cast body containing the present invention dispersed therein. Conventional technology Recently, composite materials in which carbon, silicon carbide, alumina, or other inorganic short fiber materials are used as reinforcing materials and are dispersed in aluminum as a matrix material have been developed. In addition, it has excellent mechanical strength and wear resistance, so
Attempts have been made to use it widely as various mechanical components. Conventionally, as a method for obtaining an aluminum cast body containing such a composite inorganic short fiber material, a method is known in which a short fiber material is filled in a mold and molten aluminum is mixed under pressure into the mold. However, in the cast bodies obtained in this manner, the fibrous material contained therein tends to be locally unevenly distributed, making it difficult to obtain a composite containing the fibrous materials evenly dispersed therein. Therefore, as described above, the solidified lump obtained by pressurizing and mixing molten aluminum with the fiber material is heated and remelted either as is or by adding molten aluminum to it, and then recast into a mold of the desired shape. There have also been attempts to do so. However, the molten metal obtained in this way contains a large amount of fiber material irregularly, so it has extremely poor flow and is difficult to cast into a mold with a complicated shape. Composite cast bodies are subject to their own limitations in terms of shape. The present inventors first crushed a solidified lump obtained by pressurizing and mixing molten aluminum with an inorganic short fiber material into fine particles, and then added the crushed particles secondarily. We proposed a method for manufacturing composite cast bodies in which aluminum is melted into molten metal and the molten metal is cast into molds of arbitrary shapes. (Patent Application No. 59-65690) The method of the above-mentioned Japanese Patent Application No. 59-65690 involves first crushing the composite coagulate of inorganic short fiber material and aluminum into fine particles, and then By remelting into the added molten aluminum,
This method improves the flow of the fiber-containing molten metal and facilitates recasting of the composite solidified material, but this method also has the following drawbacks:
However, there were the following drawbacks. That is, in this method, the composite solidified material obtained by pressurizing and mixing molten aluminum with inorganic short fiber material is strongly reinforced by a large amount of irregularly contained fiber material. Since it is solidified, it is extremely difficult to crush it, and it takes a considerable amount of time to industrially obtain a large amount of fine particles. Means for Solving the Problems As a result of further research in order to solve the problems in the above-mentioned conventional method, the inventors of the present invention discovered that a method of stirring and mixing an inorganic short fiber material as a reinforcing material in a container. Therefore, the fibrous materials can become entangled with each other and aggregate to form a large number of fine fluff-like agglomerated particles, and the molten metal obtained by mixing molten aluminum with the fibrous materials aggregated in the form of fluffs does not contain the fibrous materials. Compared to conventional molten metal containing irregularly contained materials, it has much better fluidity and can be easily cast into molds of arbitrary shapes, and the cast bodies cast in this way are comparable to conventional composite cast bodies. We have discovered a series of facts such as that it has much better plastic workability and can be easily made into a composite drawn material by extrusion or rolling. The present invention has been made based on the above findings. That is, in the present invention, an inorganic short fiber material is preliminarily formed into a large number of fluff-like aggregates, and the fiber mixed molten metal obtained by mixing the fiber aggregates with molten aluminum is used as it is or once solidified and then remelted, This is a method for manufacturing fiber-reinforced aluminum composite castings that can be cast into arbitrary shapes. The method of the present invention will be explained in more detail below. In the method of the present invention, the inorganic short fiber material used as a reinforcing material is first made into a large number of fluff-like aggregates, but the inorganic short fiber material used is:
Carbonaceous fibers, silicon carbide fibers, alumina fibers, and other appropriate fiber materials can be used. Agglomeration can be carried out by placing these fiber materials in a mixing container equipped with stirring blades, a rotary mixer, a V-type mixer, etc., and stirring and mixing them for a while. For example, if fibrous materials are placed in a small mixing container equipped with stirring blades and stirred for about 5 to 30 minutes, the fibrous materials in the container will be moderately cut and intertwined with each other, depending on the type of fibrous material. There is a difference in diameter from 0.1 to
A large number of fluff-like agglomerated particles with a particle size of about 3 mm are obtained. Regarding the length of the fiber material for agglomeration, commercially available short fiber materials containing relatively long fibers of about several centimeters can be used as they are, but the length of the fiber material for agglomeration is 1 cm or less, preferably about 0.1 to 1 cm. It is desirable to use a fibrous material whose grain size has been adjusted to shorten the time required for agglomeration and to obtain well-defined agglomerated particles. Agglomeration of the fiber material can be achieved by stirring the dry fiber material as it is, but it is possible to reduce the loss caused by the scattering of finely cut fiber materials caused by stirring and to shorten the time. In order to efficiently aggregate the fibers into green balls, it is desirable to sprinkle a small amount of water on the fibrous material and stir it while providing appropriate moisture to cause the flocculation. Furthermore, agglomeration can also be achieved by stirring the fibrous material in a state in which it is thickly suspended in a suitable dispersion medium such as water or a lower alcohol. Next, after drying the fluff-like fiber aggregates prepared as described above, if necessary, molten aluminum as a matrix material is mixed therein.
As the molten aluminum, 100 series industrial ordinary purity aluminum, 4000 series aluminum for casting, and other suitable alloy materials depending on the purpose can be used. Further, a 6000 series or 7000 series heat-treated alloy for drawing may also be used. In order to mix the molten aluminum into the fiber aggregates, it is desirable to apply pressure to the molten metal so that the molten aluminum sufficiently penetrates into the voids within the fiber granules. This pressurized mixing can also be performed by pressurizing the molten metal into the fiber particles housed in a container using a high-pressure press, but in order to sufficiently penetrate the molten metal into the fiber aggregates, a centrifugal device may be used. When mixing under centrifugal pressure, the molten aluminum can more easily penetrate into the inside of the fiber aggregates. The fiber content in the mixture of fiber agglomerates and molten aluminum obtained in this way is about 5 to 20% by volume, but the fiber agglomerates are kept in a compressed state and the molten metal is mixed under pressure. By this method, a mixed molten metal containing fibers at a high density of about 30% by volume can be obtained. When preparing such a mixed molten metal containing fiber particles at a high density, a small amount of extremely fine inorganic powder with a diameter of several μ or less, such as aluminum oxide, which does not easily react with molten aluminum, is added to the fiber agglomerated particles in advance. It is desirable to sprinkle the fiber particles with the molten metal in order to help uniformly disperse the fiber particles in the molten metal when the mixed molten metal is solidified and then remelted. Next, the molten metal mixed with the fluffy fiber agglomerated grains and molten aluminum obtained as described above is cast into a mold of an arbitrary shape. It is preferable to solidify the composite solidified mass once, re-melt it by heating, and then cast it, as this makes the casting operation easier and it is easier to obtain a well-balanced cast body. Remelting of the composite agglomerates can be done using external heat furnaces normally used for metal melting, but melting can be done more efficiently when using high frequency or low frequency induction furnaces. . The melting may be carried out in the form of the solidified lump as it is, or may be carried out by crushing the solidified lump into lumps and granules of an appropriate size, if necessary. During casting, it is desirable to add an appropriate amount of molten aluminum secondarily in order to adjust the content of fiber material in the molten metal to a concentration appropriate for the intended use of the cast body. The mixed molten metal of the fiber material and molten aluminum obtained as described above contains the short fiber material dispersed in the form of fluff-like aggregates, so the conventional fiber material is irregularly contained in the same shape. It has a much better flow than molten metal, and can be cast into a composite body of a desired shape by gravity casting, continuous water cooling casting, die casting, molten metal forging, or other appropriate methods. In addition, the billet or slab-shaped cast body cast by the method of the present invention has much better plastic workability than the conventional composite cast body containing irregular fiber materials, and has much better plastic workability than ordinary aluminum alloys. In the same manner as extrusion or rolling, the material can be easily hot-stretched to form a composite aluminum material in the form of a bar or plate reinforced with inorganic short fiber material. Effects of the Invention As described above, in the present invention, an inorganic short fiber material as a reinforcing material is prepared in advance as a large number of fluff-like aggregates, and molten aluminum is mixed under pressure with the molten metal, which is obtained by mixing the molten metal as it is, or Since this is a manufacturing method for composite cast bodies that is once solidified and then remelted and cast, it is possible to crush the composite solidified mass of fiber material and molten aluminum into fine granules as in Japanese Patent Application No. 59-65690. Therefore, compared to the method of Japanese Patent Application No. 59-65690, this method reduces production costs and facilitates industrial mass production. Compared to the molten metal used in conventional composite casting production, in which the molten metal is directly dispersed in the molten aluminum, it has far superior castability, and it is possible to easily cast castings with complex shapes. The cast body obtained by this process has excellent effects such as having plastic workability and being able to be easily subjected to complex stretching processing. Examples Next, examples of the method of the present invention are listed. Example 1 Using 2017Al alloy as the matrix material,
Alumina short fiber (diameter 3μ x length
0.1 to 1 cm) was used. The alumina fiber material from No. 2 was placed in a container with a capacity of 5 and equipped with stirring blades, and stirred and mixed for approximately 20 minutes until the average particle size was approximately
A large number of fluff-like aggregates of 0.6 mm were obtained. The above fiber aggregate particles (0.4 kg) were placed in a centrifugal container,
After adding 4 kg of heated molten aluminum alloy (A2017 alloy) to this and centrifugally mixing for about 15 minutes, the contents were solidified. The above solidified mass (4.4 kg) was placed in a graphite crucible and heated in an electric furnace.
After melting at 650°C and stirring thoroughly, it was cast into a billet shape with a diameter of 40 mm and a length of 120 mm using a mold. The billet-shaped composite cast body was hot extruded (450°C) to form a round bar with a diameter of 10 mm (Sample A). Example 2 Alumina fiber aggregates were prepared in the same manner as in Example 1. 5 g of fine alumina powder (average particle size: about 0.1 μm) was added to the fiber aggregate particles 20 and thoroughly sprinkled thereon. The above fiber agglomerates (0.4 kg) were placed in a centrifugal container, and molten aluminum alloy (A2017
After pouring 3.5 kg of molten aluminum (A2017 alloy) and mixing by centrifugation, the contents were added unsolidified into 3.5 kg of molten aluminum (A2017 alloy) prepared in advance, stirred thoroughly, and cast into a cylindrical mold. , diameter 40mm x length
A billet-shaped composite casting of 120 mm was obtained. The above composite cast body was hot extruded (450°C) into a round bar shape with a diameter of 10 mm. (Sample B) Example 3 Fiber aggregate particles prepared in the same manner as Example 1 0.4
kg and molten aluminum alloy (ADC12 alloy) 4 kg
The molten metal obtained by re-melting the centrifugal mixed solidified material at approximately 680℃ is cast into a 100mm vertical die casting machine using a 250T pressurized die casting machine.
It was injection molded into a flat plate with dimensions of 50 mm in width and 5 mm in thickness. By injection molding, the fiber agglomerates dispersed in the molten metal were loosened into single fibers to obtain a die-cast body in which the fibers were uniformly dispersed in the aluminum matrix. (Sample C) The mechanical properties of Samples A, B, and C obtained in Examples 1 to 3 were measured, and the results were as shown.

【表】 量である。
[Table] Quantity.

Claims (1)

【特許請求の範囲】[Claims] 1 無機質短繊維材をあらかじめ多数の毛玉状の
凝集粒としておき、この繊維凝集粒にアルミニウ
ム溶湯を混合して得た繊維混合溶湯をそのまま、
または一度凝固させた後再溶融し、任意形状に鋳
造することを特徴とする繊維強化アルミニウム複
合鋳造体の製造法。
1. The inorganic short fiber material is made into a large number of fluff-like aggregates in advance, and the fiber mixed molten metal obtained by mixing the fiber aggregates with molten aluminum is directly mixed.
Alternatively, a method for manufacturing a fiber-reinforced aluminum composite cast body, which is characterized in that it is once solidified, then remelted, and then cast into an arbitrary shape.
JP60112082A 1984-07-19 1985-05-27 Manufacture of aluminum composite cast body reinforced with fiber Granted JPS61270347A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60112082A JPS61270347A (en) 1985-05-27 1985-05-27 Manufacture of aluminum composite cast body reinforced with fiber
US06/755,148 US4617979A (en) 1984-07-19 1985-07-15 Method for manufacture of cast articles of fiber-reinforced aluminum composite
KR1019850005057A KR910006069B1 (en) 1984-07-19 1985-07-16 Method for manufacture of cast articles of fiber-reinforced aluminium composite
GB08517880A GB2162104B (en) 1984-07-19 1985-07-16 Fibre-reinforced aluminium composite material
CA000487036A CA1227616A (en) 1984-07-19 1985-07-18 Method for manufacture of cast articles of fiber- reinforced aluminum composite
IT21640/85A IT1201432B (en) 1984-07-19 1985-07-19 METHOD FOR THE MANUFACTURE OF ARTICLES OBTAINED BY CASTING FROM A COMPOSITE ALUMINUM MATERIAL REINFORCED WITH FIBERS
FR8511207A FR2567803B1 (en) 1984-07-19 1985-07-19 PROCESS FOR PRODUCING MOLDED OBJECTS BASED ON FIBER REINFORCED ALUMINUM COMPOSITE
DE19853525872 DE3525872A1 (en) 1984-07-19 1985-07-19 METHOD FOR THE PRODUCTION OF MOLDED ITEMS FROM A FIBER REINFORCED COMPOSITE ALUMINUM PRODUCT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112082A JPS61270347A (en) 1985-05-27 1985-05-27 Manufacture of aluminum composite cast body reinforced with fiber

Publications (2)

Publication Number Publication Date
JPS61270347A JPS61270347A (en) 1986-11-29
JPS6410581B2 true JPS6410581B2 (en) 1989-02-22

Family

ID=14577631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112082A Granted JPS61270347A (en) 1984-07-19 1985-05-27 Manufacture of aluminum composite cast body reinforced with fiber

Country Status (1)

Country Link
JP (1) JPS61270347A (en)

Also Published As

Publication number Publication date
JPS61270347A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
CA1218542A (en) Continuous productions of metal alloy composites
KR910006069B1 (en) Method for manufacture of cast articles of fiber-reinforced aluminium composite
Pai et al. Production of cast aluminium-graphite particle composites using a pellet method
CN110590390A (en) Carbon fiber graphite crucible for metallurgical casting furnace and preparation method thereof
US4557605A (en) Apparatus for the continuous production of metal alloy composites
JPS6410581B2 (en)
US5477905A (en) Composites and method therefor
JP3160112B2 (en) Method for manufacturing composite metal member
CN110195182A (en) A kind of double size multiphase granules enhancing magnesium-based composite material and preparation method thereof
JPH0364575B2 (en)
EP0666783B2 (en) Particulate feedstock for metal injection molding
JPS6140724B2 (en)
JPS59218256A (en) Casting method using powder as raw material
RU2177047C1 (en) Method of preparing aluminum-based alloy
JPH0143822B2 (en)
JPS60211025A (en) Manufacture of composite formed body of fiber reinforced aluminum
JPS6186064A (en) Production of composite metallic body compounded with inorganic fibers
CN112921226B (en) Mg-AlN master alloy grain refiner for magnesium-aluminum alloy and preparation method thereof
JPS59145742A (en) Production of particle dispersion-reinforced type composite material
JPS63192830A (en) Manufacture of fiber-reinforced composite casting
AU677601B2 (en) Particulate feedstock for metal injection molding
JPS6153419B2 (en)
CN116730729A (en) Silicon carbide composite material and preparation method and application thereof
JPH02259031A (en) Manufacture of reinforced metallic composite material
JPH07204820A (en) Die casting method for solid-liquid coexisting zone of cast iron