JPS6186064A - Production of composite metallic body compounded with inorganic fibers - Google Patents

Production of composite metallic body compounded with inorganic fibers

Info

Publication number
JPS6186064A
JPS6186064A JP20798784A JP20798784A JPS6186064A JP S6186064 A JPS6186064 A JP S6186064A JP 20798784 A JP20798784 A JP 20798784A JP 20798784 A JP20798784 A JP 20798784A JP S6186064 A JPS6186064 A JP S6186064A
Authority
JP
Japan
Prior art keywords
fibers
die
composite
metallic
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20798784A
Other languages
Japanese (ja)
Inventor
Shuichiro Watanabe
渡辺 修一郎
Kyoji Sato
佐藤 京司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Kako KK
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Kako KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Kako KK, Nippon Light Metal Co Ltd filed Critical Nikkei Kako KK
Priority to JP20798784A priority Critical patent/JPS6186064A/en
Publication of JPS6186064A publication Critical patent/JPS6186064A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure

Abstract

PURPOSE:To obtain a titled composite metallic body which has excellent strength and wear resistance and is free from variance in quality by dispersing small lumps formed by combining inorg. fibers with a metallic material consisting of Al, Mg, etc. into a separately prepd. metallic melt consisting of Al or Mg and subjecting the same to die casting. CONSTITUTION:The above-mentioned primary composite bodies made into small lumps by reworking are added under stirring to the separately prepd. metallic melt of Al or Mg and are dispersed and mixed therewith. Such mixture is ejected from a small hole and is poured fluidly into a cavity, by which the mixture is die-cast. The short fiber reinforcing material in the above-mentioned small lumps is thereby unraveled and uniformly dispersed, by which the intended composite metallic body compounded with the inorg. fibers is obtd. Carbon fibers, silicon carbide fibers, etc. are used as the reinforcing material to be used in this invention.

Description

【発明の詳細な説明】 本発明は無機質#夛維を配合した金属質複合体の製造方
法に係り、アルミニウム質またはマグネシウム質のよう
な金iK無機質繊維を均斉に分散せしめ、優れた強度や
耐摩耗性に加え、これらの特性においてばらつきのない
製品を得ようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metallic composite containing inorganic #tulle fibers, in which gold-iK inorganic fibers such as aluminum or magnesium are uniformly dispersed to provide excellent strength and durability. In addition to wear resistance, the aim is to obtain a product that is consistent in these properties.

産業上の利用分野 アルミニウム質またはマグネシウム質のような金属に無
機質繊維材を分散配合した複合体の製造技術。
Industrial applications A technology for manufacturing composites in which inorganic fibers are dispersed in metals such as aluminum or magnesium.

従来の技術 炭素質、炭化けい素質或いはアルミナ質などの無機質短
繊維強化材をアルミニウム質またはマグネシウム質のよ
うな金属マトリックス中に分散複合させた材料はその耐
摩耗性や強度において優れていることから産業用機械や
車輌などの耐摩耗性・と共に強度を必要とする部材に使
用することに関し検討が重ねられている。
Conventional technology Materials in which inorganic short fiber reinforcing materials such as carbon, silicon carbide, or alumina are dispersed in a metal matrix such as aluminum or magnesium have excellent wear resistance and strength. Many studies are being conducted regarding its use in parts that require wear resistance and strength, such as industrial machinery and vehicles.

然して、このような強化材の分散配合による複合体の強
化特性はマトリックスに対する強化材の分散状態良否に
大きく依存し、従ってその分散複合方法に関してそれな
りの提案がなされている。即ち一般的な複合体製造方法
としては、予め成形した強化材からなる成形体にマ) 
IIラックスなる金属溶融体を加圧鋳造法や遠心鋳造法
等の鋳造技術によって強制的に浸入凝固させ複合体と寸
ろ方法である。なお一部にはこの一般法で得られた複合
体を再び加工して小塊とし、この小塊を適当な割合で別
に準備されたマトリックス溶融体に添加攪拌して分散混
合させた後に鋳造し複合体とする方法がある。
However, the reinforcing characteristics of a composite obtained by dispersing and blending such a reinforcing material greatly depend on the quality of the dispersion of the reinforcing material in the matrix, and therefore, various proposals have been made regarding methods for dispersing and compounding the reinforcing material. In other words, as a general method for manufacturing composites, a molded body made of pre-formed reinforcing material is
This is a method in which a molten metal called II Lux is forcibly infiltrated and solidified using a casting technique such as pressure casting or centrifugal casting to form a composite body. In some cases, the composite obtained by this general method is processed again into small lumps, and the small lumps are added to a separately prepared matrix melt in an appropriate ratio, stirred, dispersed and mixed, and then cast. There is a way to make it a composite.

発明が解決しようとする問題点 しかし前記した一般的方法によるものは予め強化材を成
形し、該成形体にマ) IJラックス融体を強制的に浸
入凝固させて複合体とするものであるから、薄肉で複雑
な形状を有する複合体を製造するには多くの困難性を有
する。又この複合体を再び加工して小塊とし、別のマ)
 IJラックス融体中に分散させるものでは上記の不利
が緩和されるとしても、均斉な分散状態が得られず、な
お強化材の偏在したものとなってその耐摩耗性や強度に
おいて充分に優れたものとならない。
Problems to be Solved by the Invention However, in the general method described above, the reinforcing material is molded in advance, and the IJ lux melt is forcibly infiltrated and solidified into the molded body to form a composite. However, there are many difficulties in manufacturing composites with thin walls and complex shapes. In addition, this composite is processed again into small pieces and made into another ma)
Even if the above-mentioned disadvantages can be alleviated by dispersing IJ lux in the melt, a uniform dispersion state cannot be obtained, and the reinforcing material is unevenly distributed, so that the abrasion resistance and strength are not sufficiently excellent. It doesn't become a thing.

「発明の構成」 問題点を解決するための手段 本発明は上記したような従来のものの問題点を解消する
ように創案されたものであって、アルミニウム質または
マグネシウム質のような金属質に無機質繊維を複合させ
た1次相合体の小塊を形成し、該小塊な別に準備された
アルミニウム質またはマグネシウム質の金属溶融体に分
散させたものなキャビティK ffc動鋳入しダイカス
ト鋳造することを特徴とする無機5fL繊維を配合した
全脂質複合体の製造方法である。
``Structure of the Invention'' Means for Solving the Problems The present invention was devised to solve the problems of the conventional products as described above. Forming small lumps of primary phase coalescence made of composite fibers, dispersing the small lumps in a separately prepared aluminum or magnesium metal melt, and performing die casting by dynamic casting into a cavity Kffc. This is a method for producing a whole lipid complex containing inorganic 5fL fiber, characterized by:

作用 1次襟合体の小塊を別に準備されたアルミニウム質また
はマグネシウム貴金属溶融体に分散させたものを鋳造す
ることにより薄肉或いは複雑な形状をなす複合体の製造
にも有効に適用し得る。b亥浴湯をダイカスト鋳造する
ことにより湯口部分で溶融体の好ましい流動化を図って
配合された無機質繊維を適切に分散せしめることが可能
であり、該纜維の偏在を解消して強度およびそのばらつ
きを改善し、摩耗量の大幅低減?来す。
The present invention can be effectively applied to the production of thin-walled or complex-shaped composites by casting small lumps of the primary collar assembly dispersed in a separately prepared aluminum or magnesium precious metal melt. By die-casting the b-bath water, it is possible to achieve favorable fluidization of the molten material at the sprue part and appropriately disperse the blended inorganic fibers, which eliminates the uneven distribution of the fibers and improves strength and its properties. Improve variation and significantly reduce wear amount? Come.

前記した湯口部分での速度を35 m7’see 以上
、特に50 m / sec以上とすることにより前記
した各作用を的確に得しめることが可能である。
By setting the speed at the sprue to 35 m7'see or more, particularly 50 m/sec or more, each of the above effects can be achieved accurately.

実施例 本発明し【ついて更に説明すると、本発明者等は上記し
た一般法による複合体を再び加工して小塊とし、別の溶
0マトリックスに添加攪拌して分散晶合させたものを小
孔から噴出しダイカスト鋳造することにより小塊中の短
繊維強化材が解体され均斉に分散されることを見出した
EXAMPLE To further explain the present invention, the present inventors reprocessed the composite according to the general method described above into small lumps, added them to another molten matrix and stirred them to disperse and crystallize them. It has been found that the short fiber reinforcing material in the nodules is broken down and uniformly dispersed by die-casting by blowing out the holes.

本発明に用いる強化材としては炭素質杯緋、炭化けい素
質ユ維、アルミナg趣維その他の無機質短仕維を広く採
用し得る。又前記小塊を得るための1次襟合体における
マトリックス材としては、1000系の工業用普通純度
のアルミニウム、4000糸のF)4 %2+用アルミ
ニウム合金などが適宜に使用でき、又6000系や70
00系の熱処理型展伸合金なども使用してもよい。
As the reinforcing material used in the present invention, carbonaceous fibers, silicon carbide fibers, alumina fibers, and other inorganic short fibers can be widely used. As the matrix material in the primary coalescence to obtain the above-mentioned small lumps, 1000 series industrial ordinary purity aluminum, 4000 thread F)4%2+ aluminum alloy, etc. can be used as appropriate; 70
00 series heat-treated wrought alloys may also be used.

然してJI8H2212またはJI8H2118に示さ
れるダイカスト用アルミニウム合金その他のダイカスト
可能なアルミニウム合金を用いるならばダイカスト鋳造
物の組成安定化が計られ好都合である。
However, if an aluminum alloy for die-casting as shown in JI8H2212 or JI8H2118 or other die-castable aluminum alloy is used, the composition of the die-cast casting can be stabilized, which is advantageous.

また、JISH2150に示さねる1種または2紳の如
き普通純度のマグネシウム地金の他JISH2221に
示されるマグネシウム合金を使用することができ、JI
SH2222に示されるダイカスト用マグネシウム合金
地金その他ダイカスト可能なマグネシウム合金を用いる
ならば上記したアルミニウム質金属の場合と同碌にダイ
カスト鋳造後の組成安定化が計られて好都合である。
In addition to magnesium ingots of ordinary purity such as class 1 or 2 not shown in JISH2150, magnesium alloys shown in JISH2221 can be used.
If a die-castable magnesium alloy such as the die-casting magnesium alloy ingot shown in SH2222 is used, it is advantageous because the composition can be stabilized after die-casting in the same manner as in the case of the above-mentioned aluminum metal.

上記した1次襟合体の小塊製造方法としては無機質短繊
維集合体に溶融金風を加圧浸入させて短繊維集合体内の
空隙にアルミニウムまたはマグネシウム貴金属を含浸さ
せるのであるが、この含浸は高圧プレスの如きを使用し
てよいとしても、充分に浴湯を浸透させるためには遠心
鋳造装置を用い遠心加圧下に含浸させることが望ましい
。短繊維集合体に含浸させる溶融金属の量は集合体内部
まで十分に含浸させるに必要な量であるが、著しく過剰
な溶湯使用は単なる溶湯部分が多くなることから避ける
べきである。
The above-mentioned method for producing small lumps of primary collar coalescence involves infiltrating the inorganic short fiber aggregate with molten metal under pressure to impregnate the voids within the short fiber aggregate with aluminum or magnesium precious metals.This impregnation is carried out under high pressure. Even if a press or the like may be used, it is preferable to use a centrifugal casting device and impregnate under centrifugal pressure in order to sufficiently penetrate the bath water. The amount of molten metal to be impregnated into the short fiber aggregate is the amount necessary to sufficiently impregnate the inside of the aggregate, but excessive use of molten metal should be avoided since this simply increases the molten metal portion.

上記のように溶湯を含浸した短#1!維体を冷却凝固さ
せた後、破砕して小塊状とするが、この破砕には砕解圧
砕機、叩解機、インペラブレーカの如きの何れを使用し
てもよい。場合によっては切削することも可能である。
Short #1 impregnated with molten metal as above! After the fibers are cooled and solidified, they are crushed into small pieces, and any one of a crusher, a crusher, a beater, and an impeller breaker may be used for this crushing. It is also possible to cut it depending on the case.

このようにして得られる小塊の繊維含有率は通常10〜
20マof、%程度のものであるが、短繊維集合体に溶
融アルミニウムを含浸させるに当り、集合体を圧縮状態
として加圧含浸させるならばこの繊維含有率を30 v
o 1%程度まで高めたものとすることができる。破砕
された小塊はダイカスト鋳造に際し短繊維の分散性を良
好とするため必要に応じて篩分けし、粒度1〜5覇程度
忙整えておくことが好ましい。
The fiber content of the pellets obtained in this way is usually 10-
However, when impregnating the short fiber aggregate with molten aluminum, if the aggregate is compressed and impregnated under pressure, this fiber content should be reduced to 30 V.
o It can be increased to about 1%. In order to improve the dispersibility of the short fibers during die-casting, the crushed small lumps are preferably sieved as necessary to have a particle size of about 1 to 5 mm.

上記のようにして得られる1次相合体の小塊は、必要に
より酸またはアルカリ液によって表面を清浄化した後、
その所定l′な別に溶融されたアルミニウムまたはアル
ミニウム合金に混合溶融し、キャピテイに流出させそダ
イカスト鋳造する。このダイカスト鋳造は一般的なダイ
カスト法の他、金型キャビティ内を真空もしくは減圧状
態として行う方法、キャビティ内カスを層流状態とする
ダイカスト法、キャビティ内を酸素で置換するダイカス
ト法などのμ孔性ダイカスト法を採用し得る。このダイ
カスト鋳造時における溶湯の湯口速度は、湯口断圃和と
金型キャピテイ容積および充填時間で定まるか、この湯
口速度が35 m / sec以上とすることにより、
前記1次相合体中の短伶維をダイカスト鋳造板の複合体
に均斉に分散させることかでき、好ましくは50 m 
/ sec以上であるが、更に増速して200m/se
c以上としてもその均斉状態に&[がなく、設備の大型
化、エネルギーの無意味な損失となる。
After cleaning the surface of the primary phase agglomerate obtained as described above with an acid or alkali solution if necessary,
The predetermined amount is mixed and melted with separately molten aluminum or aluminum alloy, flowed into a cavity, and die-cast. In addition to the general die-casting method, this die-casting method includes a method in which the inside of the mold cavity is in a vacuum or reduced pressure state, a die-casting method in which the waste inside the cavity is in a laminar flow state, and a die-casting method in which the inside of the cavity is replaced with oxygen. A plastic die casting method can be adopted. The sprue speed of the molten metal during this die casting is determined by the sprue opening, the mold cavity volume, and the filling time, or by setting the sprue speed to 35 m/sec or more,
The short fibers in the primary phase coalescence can be uniformly dispersed in the die-cast plate composite, preferably 50 m
/sec, but the speed is further increased to 200m/sec
Even if it is more than c, the symmetry state will not be satisfied, resulting in an increase in the size of the equipment and a meaningless loss of energy.

本発明によるものの具体的袈造例をアルミニウム質金用
を用いた場合について説明すると以下の如くである。
A specific example of the lining according to the present invention using aluminum material is as follows.

直径70暗、深さ150朋のアルミナ與容器K 1 r
an以下の長さとされたアルミナ短繊維を50喘深さま
で充填し、その上部にルー3%Cu−9.5%5L−1
%Mj−1%N1  合金溶湯を注入し、遠心鋳造機に
設貸し、該遠心鋳造機を回転半径250m+n1回転数
150 Orpmで作動させて遠Ib力を与え、短繊維
集合体内に溶湯な含浸させた。このものを半浴融状態で
取出し、ハンマーで砕解し、砕〃Eされた複合体を篩で
分別し、1〜5mの小塊として準備した。
Alumina vessel K 1 r with a diameter of 70 mm and a depth of 150 mm.
Filled with alumina short fibers with a length of less than 100 mm to a depth of 50 mm, and on top of the alumina fibers, 3% Cu-9.5% 5L-1
%Mj-1%N1 alloy molten metal was injected and placed in a centrifugal casting machine, and the centrifugal casting machine was operated at a rotation radius of 250 m + n1 rotation speed of 150 Orpm to apply a far Ib force to impregnate the short fiber aggregate with the molten metal. Ta. This material was taken out in a semi-molten state, crushed with a hammer, and the crushed composite was separated with a sieve to prepare small pieces of 1 to 5 m.

上記のグ0くしてイ:′?られた1次相合体小塊を別に
溶融準備されたAl−3%Cu−1%均一1%Ni−0
.6%Fs合金溶湯100H中に攪拌しながら添加し、
短繊維をマo1%で0〜10%とさハた各種混合#湯を
つくり、該混合浴湯を湯口速度を沖々に変えてダイカス
ト鋳造した。
The above gu 0 is ii:'? The primary phase coalesced lumps were separately prepared by melting Al-3%Cu-1% homogeneous 1%Ni-0.
.. Added to 6% Fs alloy molten metal 100H while stirring,
Various mixed hot water baths were prepared in which short fibers were mixed with 1% MaO and 0 to 10% MaO, and the mixed hot water baths were die-cast by varying the sprue speed.

また比較のため上記のように調整された混合溶湯を爪力
鉤造して同様な複合体を製造した。
In addition, for comparison, a similar composite was manufactured by using the mixed molten metal prepared as described above.

上述のようにして得られた各複合体について、その万能
引張試料による強度および次の第1表に示すよ5な測定
条件に従い耐摩耗性を測定した。
For each of the composites obtained as described above, the strength using a universal tensile sample and the abrasion resistance were measured according to the five measurement conditions shown in Table 1 below.

即ちこのような測定結果をアルミナ短繊維含有率によっ
て整理要約して比較例と共に示すと、次の第2表の如く
であり、この第2表におい−〔〔J内の数値は強度kL
i/d、c)内の数値はそのばらつき範囲(最大値−最
小値)であり、何等の括弧を有しない数置は摩耗量(■
)である。
In other words, if such measurement results are organized and summarized according to the content of alumina short fibers and shown together with comparative examples, the results are as shown in Table 2 below.
The numerical value in i/d, c) is the variation range (maximum value - minimum value), and the numerical value without any parentheses is the wear amount (■
).

又アルミナ短繊維の含有基を5%とい5一定条件で溶湯
の湯口速度を種々に変化させた場合を要約して示すと次
の第3表の通りである。
Table 3 below summarizes the case where the group content of the alumina short fibers was 5% and the sprue speed of the molten metal was varied under certain conditions.

即ち湯口速度が35m/sec以上となることによって
ばらつきが激減すると共に強度が高まり、しかも摩耗量
が比較例に比し、1桁程度のような大幅な縮減が認めら
れる。湯口速度50m/sec以上ではそれらの測定値
に本質的変化はないものと推定される。強度ばらつきに
関し強度自体が大幅に高められた条件下で2〜4#/−
であることは頗る有意義である。
That is, when the sprue speed is 35 m/sec or more, the variation is drastically reduced and the strength is increased, and the amount of wear is significantly reduced by about one order of magnitude compared to the comparative example. It is estimated that there is no essential change in these measured values when the sprue speed is 50 m/sec or higher. Regarding strength variation, 2 to 4 #/- under conditions where the strength itself is greatly increased.
It is extremely significant that this is the case.

なお上記したところはアルミニウム質金属を用いた場合
であるが、本発明によるものはマグネシウム質金属を用
いた場合においても同様の効果を有することが確認され
た。
Although the above description is for the case where aluminum metal is used, it has been confirmed that the present invention has the same effect even when magnesium metal is used.

「発明の効果」 以上説明したような本発明によればこの種複合体の品質
を大幅に改善し、強度の向上とそのばらつき範囲の低減
を適切に得しめるだけでた九対しても充分通用し得るも
のであるから工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, the quality of this type of composite is greatly improved, and the strength is appropriately improved and the range of variation thereof is appropriately reduced. This invention is industrially very effective.

Claims (1)

【特許請求の範囲】 1、アルミニウム質またはマグネシウム質のような金属
質に無機質繊維を複合させた1次複合体の小塊を形成し
、該小塊を別に準備されたアルミニウム質またはマグネ
シウム質金属溶融体に分散させたものをキャビティに流
動鋳入しダイカスト鋳造することを特徴とする無機質繊
維を配合した金属質複合体の製造方法。 2、ダイカスト鋳造の湯口部における溶融体の速度を3
5m/sec以上とする特許請求の範囲第1項に記載の
無機質繊維を配合した金属質複合体の製造方法。
[Claims] 1. Form a small lump of a primary composite consisting of a metal such as aluminum or magnesium mixed with inorganic fiber, and use the small lump as a separately prepared aluminum or magnesium metal. A method for producing a metallic composite containing inorganic fibers, which comprises dispersing a molten material into a cavity and performing die casting. 2. The speed of the molten material at the sprue of die casting is 3.
A method for manufacturing a metallic composite compounded with the inorganic fiber according to claim 1, wherein the velocity is 5 m/sec or more.
JP20798784A 1984-10-05 1984-10-05 Production of composite metallic body compounded with inorganic fibers Pending JPS6186064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20798784A JPS6186064A (en) 1984-10-05 1984-10-05 Production of composite metallic body compounded with inorganic fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20798784A JPS6186064A (en) 1984-10-05 1984-10-05 Production of composite metallic body compounded with inorganic fibers

Publications (1)

Publication Number Publication Date
JPS6186064A true JPS6186064A (en) 1986-05-01

Family

ID=16548803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20798784A Pending JPS6186064A (en) 1984-10-05 1984-10-05 Production of composite metallic body compounded with inorganic fibers

Country Status (1)

Country Link
JP (1) JPS6186064A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220962A (en) * 1987-03-10 1988-09-14 Nippon Light Metal Co Ltd Production of magnesium alloy product having complicated shape
JPS63220961A (en) * 1987-03-09 1988-09-14 Nippon Light Metal Co Ltd Production of magnesium alloy product having less outer shrinkage and gas blow hole
JPH0382723A (en) * 1989-08-24 1991-04-08 Tokai Carbon Co Ltd Manufacture of aluminum-magnesium series metal matrix composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943835A (en) * 1982-09-07 1984-03-12 Tokai Carbon Co Ltd Production of frm from sic whisker
JPS642178A (en) * 1987-06-25 1989-01-06 Nippon Hoso Kyokai <Nhk> Area extracting method for color picture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943835A (en) * 1982-09-07 1984-03-12 Tokai Carbon Co Ltd Production of frm from sic whisker
JPS642178A (en) * 1987-06-25 1989-01-06 Nippon Hoso Kyokai <Nhk> Area extracting method for color picture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220961A (en) * 1987-03-09 1988-09-14 Nippon Light Metal Co Ltd Production of magnesium alloy product having less outer shrinkage and gas blow hole
JPS63220962A (en) * 1987-03-10 1988-09-14 Nippon Light Metal Co Ltd Production of magnesium alloy product having complicated shape
JPH0382723A (en) * 1989-08-24 1991-04-08 Tokai Carbon Co Ltd Manufacture of aluminum-magnesium series metal matrix composite

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US4657065A (en) Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles
CA2094369C (en) Aluminum-base metal matrix composite
US4617979A (en) Method for manufacture of cast articles of fiber-reinforced aluminum composite
KR20130041354A (en) Magnesium alloy chips and method for manufacturing molded article in which same are used
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
KR20120123685A (en) Particulate aluminium matrix nano-composites and process for producing the same
CN1152969C (en) Process for preparing particle reinforced Mg-base composite
CA2297064A1 (en) Cast metal-matrix composite material and its use
CN110438373B (en) Preparation method of magnesium-based composite material
JPS6186064A (en) Production of composite metallic body compounded with inorganic fibers
WO2020020381A1 (en) Preparation method for low density metal matrix composite
EP0482034B1 (en) Process for production of reinforced composite materials and products thereof
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
JPH0681068A (en) Method for casting heat resistant mg alloy
JP2004230394A (en) Rheocast casting method
JP2646212B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
Bhiftime Microstructure on the TiB and Mg Reinforced of Al356 Alloy with Die Casting Process
RU2142355C1 (en) Method for suspension casting of irons
JPH01247545A (en) Grain dispersion type alloy and its manufacture
JPS61157647A (en) Manufacture of aluminum quality strengthened composite material
JPS60211025A (en) Manufacture of composite formed body of fiber reinforced aluminum
JPS62142702A (en) Production of metallic shape stock containing different material