JPS61157647A - Manufacture of aluminum quality strengthened composite material - Google Patents

Manufacture of aluminum quality strengthened composite material

Info

Publication number
JPS61157647A
JPS61157647A JP27444184A JP27444184A JPS61157647A JP S61157647 A JPS61157647 A JP S61157647A JP 27444184 A JP27444184 A JP 27444184A JP 27444184 A JP27444184 A JP 27444184A JP S61157647 A JPS61157647 A JP S61157647A
Authority
JP
Japan
Prior art keywords
particles
aluminum
fibers
diameter
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27444184A
Other languages
Japanese (ja)
Inventor
Tetsuo Kanda
哲夫 神田
Nobuyuki Suzuki
信幸 鈴木
Kenichi Tanaka
健一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP27444184A priority Critical patent/JPS61157647A/en
Publication of JPS61157647A publication Critical patent/JPS61157647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To develop the titled material superior in various characteristics, by adding and permeating pressedly molten Al or Al alloy, to material in which solid particles for strengthening material are adhered and mixed into wool ball shaped inorganic fiber materials. CONSTITUTION:Inorganic fibers having 1-10mum diameter such as fibers of alumina, carbon, ceramic are dispersed and stirred in water to form wool ball shaped coagulation particles having 0.5-10mm diameter in >=90% thereof. Granular solid particles such as C, Pb, Si3N4, Al2O3, SiC as strengthening solid particle having 1-100mum diameter in >=80% thereof are added, mixed into said wool ball shaped particles by about 0.1-3 times ratio, and the mixture is pressed in a suitable metal vessel. Molten Al or Al alloy is added thereto, these are pressed, permeated and solidified to manufacture the titled material superior in physical, mechanical properties such as high temp. strength, wear resistance, thermal expansion coefft.

Description

【発明の詳細な説明】 「発明の目的」 本発明はアルミニウム質強化複合材の製造法に係り、繊
維および粒子状補強材をアルミニウム質マトリックス中
に均一に分散せしめ緻密に結着一体化されたアルミニウ
ム質強化複合材を得ること↓ のできる方法を提供しよとするものである。
[Detailed Description of the Invention] ``Object of the Invention'' The present invention relates to a method for manufacturing an aluminum reinforced composite material, in which fibers and particulate reinforcing materials are uniformly dispersed in an aluminum matrix and are tightly bound and integrated. The aim is to provide a method for obtaining aluminum reinforced composite materials.

産業上の利用分野 アルミニウム質強化複合材の製造技術。Industrial applications Manufacturing technology for aluminum reinforced composite materials.

従来の技術 各種製品ないし部材において軽量化と共に小型化するこ
とが重要な課題とされるに伴い、アルミニウム合金など
に対する特性要求も次第に厳しくなり、特に高温強さ、
耐摩耗性、熱膨張性の如きに関しても一段と卓越するこ
とが要求されつつあり、このような物理的、機械的特性
を満足させるためにはアルミニウムに単に他の金属を添
加含有させ、或いは鋳造、熱処理方法などを工夫するこ
とによってマトリックス、晶出物、析出物などの形態を
変化し特性の向上を図る程度では不充分であって、近時
においては粒子強化材を添加した強化複合法が採用され
つつある。然してこの粒子強化複合材料を得るには通常
、粉末状のマトリックス材と同じく粉末状の強化粒子と
を混合し、粉末冶金法に従っているが、その工程が複雑
であるばかりでなく、原料たるべき粉末が高価であるた
め大量生産に適しない。
Conventional Technology As weight reduction and miniaturization of various products and components have become important issues, the requirements for properties of aluminum alloys etc. have become increasingly strict, especially high temperature strength,
There is a growing demand for better wear resistance and thermal expansion properties, and in order to satisfy these physical and mechanical properties, it is necessary to simply add other metals to aluminum, or to cast it. It is insufficient to improve properties by changing the morphology of the matrix, crystallized substances, precipitates, etc. by devising heat treatment methods, etc., and recently, reinforced composite methods that add particle reinforcements have been adopted. It is being done. However, in order to obtain this particle-reinforced composite material, a powdered matrix material is usually mixed with powdered reinforcing particles in accordance with the powder metallurgy method, but the process is not only complicated, but also requires a large amount of powder, which is the raw material. is not suitable for mass production because it is expensive.

そこで半溶融状態のアルミニウム合金を攪拌粉末化した
ものにアルミナなどの粉末を混入させることが特開昭5
7−82440号公報に発表されている。
Therefore, in JP-A No. 5, it was proposed to stir a semi-molten aluminum alloy and mix it with powder such as alumina.
It is announced in the publication No. 7-82440.

又特開昭55−24949号公報では八1合金溶湯に黒
鉛粒子を投入攪拌懸濁せしめ加圧凝固することが提案さ
れている。
Furthermore, Japanese Patent Application Laid-Open No. 55-24949 proposes that graphite particles are added to a molten alloy of No. 81, stirred and suspended, and then solidified under pressure.

発明が解決しようとする問題点 然し前記した特開昭57−82440号によるものでも
、その攪拌、温度コントロールが難しく、ばらつきが大
きくて均一な性能を得難いなどの不利がある。
Problems to be Solved by the Invention However, even the method disclosed in Japanese Patent Application Laid-Open No. 57-82440 has disadvantages such as difficulty in stirring and temperature control, large variations, and difficulty in obtaining uniform performance.

又特開昭55−24949号によるものでは、比重差、
表面張力、濡れ性などの影響により溶融金属マ) IJ
ソックス化粒子との分離が起り、上記同様に均一な混合
状態を形成し難く、所期するような特性を有効に求め得
ない。・ 「発明の構成」 問題点を解決するための手段 無機質繊維材を毛球状凝集粒として準備する工゛程と、
この毛球状凝集粒に対し粒径1〜100μの粒子を80
%以上とした特性強化材粒子を付着混合させる工程、こ
の強化材粒子を付着混合した毛球状繊維材にアルミニウ
ムないしアルミニウム合金の溶湯を添加し加圧本通させ
る工程より成ることを特徴とするアルミニウム質強化複
合材の製造法。
Moreover, in the method according to JP-A No. 55-24949, the difference in specific gravity,
Molten metal (IJ) due to the effects of surface tension, wettability, etc.
Separation from the socked particles occurs, making it difficult to form a uniform mixed state as described above, making it impossible to effectively obtain the desired properties.・ "Structure of the Invention" Means for solving the problem A step of preparing an inorganic fiber material as flocculent aggregates,
Particles with a particle size of 1 to 100μ are added to the
% or more, a step of adhering and mixing the reinforcing material particles, and a step of adding a molten metal of aluminum or aluminum alloy to the bulbous fiber material to which the reinforcing material particles have been adhering and mixed, and passing it through under pressure. A method for producing quality-reinforced composites.

作用 無機質繊維材が毛球状凝集粒とされることにより粉粒状
の特性強化材粒子と混合付着せしめられ易く、均一な混
合付着状態を形成することができる。゛ 特性強化材粒子の粒径が1〜100μmのものを80%
以上として準備されることにより上記した毛球状繊維凝
集粒中への進入およびその周面での付着が有効且つ均等
に図られる。
Function: Since the inorganic fiber material is formed into spherical agglomerated particles, it can be easily mixed and adhered with powdery property reinforcing material particles, and a uniform mixed and adhered state can be formed.゛80% of the property reinforcement particles have a particle size of 1 to 100 μm.
By preparing as described above, it is possible to effectively and uniformly enter the hair globular fiber agglomerated grains and adhere to the peripheral surface thereof.

上記のように毛球状無機質繊維材を媒体として特性強化
材粒子を均一に分散させた状態でアルミニウムないしア
ルミニウム合金溶湯を添加し、加圧滲透させることによ
り特性強化材粒子を均一に分散せしめたアルミニウム質
複合材を的確に得しめる。
As mentioned above, aluminum or aluminum alloy molten metal is added to a state in which property reinforcing material particles are uniformly dispersed using a bulbous inorganic fiber material as a medium, and the property reinforcing material particles are uniformly dispersed by applying pressure and permeating the aluminum. Accurately obtain quality composite materials.

実施例 本発明によるものの実施態様について説明すると、本発
明においては前記したような特性強化粒子の均一分散を
図り且つその分離を避けるためにアルミナ繊維その他の
無機質繊維材を毛球状として準備し、このような毛球状
繊維材を媒体として強化粒子の分散を図る。前記繊維材
としてはアルミナ繊維以外に、セラミック繊維、カーボ
ン繊維などがあり、斯様な無機質繊維の径としては1〜
10μm程度が好ましい。毛球状に調整するには、例え
ばミルズ、バルク又はマット状のアルミナ短繊維を水中
に分散攪拌し、次いで毛球状とするが、単に水中での攪
拌後の毛球状化ではその大きさが不揃いであるから更に
もみほぐして毛球の大きさを小さくし、90%以上が0
.5〜101111径の毛球状とする。このように毛球
の径を小さくするのは複合材中での繊維および強化粒子
の分布をできるだけ均一化するために枢要であり、市販
の約3μm径からなるアルミナ短繊維(ICI社製社製
サルイルアルミナ繊維どは扱いも容易で耐熱性もあり、
上述のような調整操作で毛球の径を適切に小さくでき、
引張強度も高いので有利に採用し得る。
EXAMPLE To explain the embodiment of the present invention, in order to uniformly disperse the above-mentioned property-enhancing particles and to avoid their separation, alumina fibers and other inorganic fiber materials are prepared in the form of bulbs. The reinforcing particles are dispersed using the bulb-like fiber material as a medium. In addition to alumina fibers, the fiber materials include ceramic fibers, carbon fibers, etc., and the diameter of such inorganic fibers is 1 to 1.
The thickness is preferably about 10 μm. To adjust the shape of a hair ball, for example, mills, bulk, or matte alumina staple fibers are dispersed and stirred in water, and then the fibers are made into a ball shape.However, simply stirring in water and then forming the hair into a ball shape results in irregular sizes. Because of this, it is further massaged to reduce the size of the hair bulb, and more than 90% of the hair is 0.
.. Shape into a bulb with a diameter of 5 to 101111 mm. Reducing the diameter of the bulb in this way is important in order to make the distribution of fibers and reinforcing particles in the composite material as uniform as possible. Saluyl alumina fibers are easy to handle and heat resistant.
The diameter of the hair bulb can be appropriately reduced by the adjustment operation described above.
It also has high tensile strength, so it can be advantageously used.

上述のように準備された毛球状繊維に対しては強化粒子
を混合し攪拌する。前記のように約3μm径の繊維によ
る毛球を用いた場合、約5μm以下の径を有する特性強
化材固体粒子は毛球の中まで適切に進入して分散せしめ
られ、又10μm以上の径を有する強化粒子は毛球の外
側部分に付着する傾向がある。この固体強化粒子は一般
的に80%以上が1〜100μmであるように調整する
ことが必要で、それによって毛球の中だけ又は外側部分
だけに分散しないようにする。即ちこの粒子径が1μm
以下のものを使用した場合には複合凝固物に砕解性が顕
われ、得られた複合材は脆いものとなってしまい、本発
明の目的とするような強化された複合材を得ることがで
きない。つまりこのように粒子径が小さい場合には溶湯
との濡れ性が悪く、凝固したときにアルミニウム結晶粒
界に付着することとなって離形作用を呈し理解性を示す
ものと推定される。1μm以下のような微細粒子を少く
するならば、粒子がアルミニウム結晶粒子内によくぬれ
た状態で分布せしめられ、この場合には破解性が示され
ない。又この粒子径が100μm以上の大きい粒子を多
量に含むと複合化後の押出加工、切削加工などの加工性
が劣り、しかも複合材の性能も低下するもので、このよ
うな大きい粒子が存在すると応力集中が生じ加工時に割
れの原因となり、又機械的性質低下の原因となり、特に
切削加工時にはハードスポットとなってバイト破(員の
原因となる。
Reinforcing particles are mixed and stirred into the bulbous fibers prepared as described above. When a hair bulb made of fibers with a diameter of about 3 μm is used as described above, the solid particles of the property-enhancing material having a diameter of about 5 μm or less can properly penetrate into the hair bulb and be dispersed, and the solid particles with a diameter of about 10 μm or more can be dispersed. The reinforcing particles that do have a tendency to adhere to the outer portion of the hair bulb. The solid reinforcing particles generally need to be adjusted such that 80% or more are between 1 and 100 μm, so that they are not dispersed only within the hair bulb or only in the outer part. That is, this particle size is 1 μm.
If the following materials are used, the composite coagulum becomes friable and the resulting composite material becomes brittle, making it impossible to obtain a reinforced composite material as the object of the present invention. Can not. In other words, it is presumed that when the particle size is small like this, the wettability with the molten metal is poor, and when it solidifies, it adheres to the aluminum crystal grain boundaries, exhibiting a mold release effect and exhibiting understandability. If the number of fine particles of 1 μm or less is reduced, the particles are distributed in a well-wetted state within the aluminum crystal grains, and in this case, no decomposition property is exhibited. In addition, if a large amount of large particles with a particle diameter of 100 μm or more is included, the processability of extrusion processing, cutting processing, etc. after compounding will be poor, and the performance of the composite material will also deteriorate. Stress concentration occurs, causing cracks during machining, and deterioration of mechanical properties. Particularly during machining, hard spots form and cause tool breakage.

用いられる強化材固体粒子としてはカーボン粒子のよう
に比重の軽いもの、鉛粒子のように比重の重いもの、S
i、N、粒子のようにアルミニウムにぬれ難い粒子、金
属Si粒子のようにAl溶湯中に拡散溶解するもの等の
何れに対しても広く有効である。非金属粒子としてはS
i3N4、黒鉛の外にSiCやA1□03などがあり、
金属粒子としてアルミニウム融点より高い融点をもつも
のはアルミニウム合金溶湯を溶浸してからその冷却を早
めれば粒子複合材が得られる。アルミニウム融点より低
い融点をもった金属粒子においても、pbなどのように
アルミニウム中に溶融しない金属であれば粒子複合材と
して適切に得られることは明らかである。
The reinforcing solid particles used include those with light specific gravity such as carbon particles, those with heavy specific gravity such as lead particles, and S
It is widely effective against particles that are difficult to wet with aluminum, such as i, nitrogen particles, and particles that diffuse and dissolve in molten aluminum, such as metal Si particles. As non-metallic particles, S
In addition to i3N4 and graphite, there are SiC, A1□03, etc.
Metal particles having a melting point higher than that of aluminum can be infiltrated with molten aluminum alloy and then cooled quickly to obtain a particle composite. It is clear that even metal particles having a melting point lower than that of aluminum can be appropriately obtained as a particle composite material if the metal does not melt in aluminum, such as PB.

複合材における複合比については毛球状繊維と強化材粒
子を混合したものを適宜にケースに入れて圧縮し所定の
複合比関係を形成し得るので、アルミナ繊維の毛球とし
ての体積率を3〜30%のように広い範囲で実施でき、
これに固体粒子を混入し該固体粒子を毛球状繊維の体積
に対し0.1〜3倍の範囲内で適宜の割合とすることが
できる。
Regarding the composite ratio in the composite material, a mixture of bulbous fibers and reinforcing material particles can be appropriately placed in a case and compressed to form a predetermined composite ratio relationship. It can be implemented over a wide range such as 30%,
It is possible to mix solid particles into this and adjust the solid particles to an appropriate ratio within the range of 0.1 to 3 times the volume of the bulbous fibers.

即ちこの強化材固体粒子が毛球状繊維に対し0.1倍以
下では粒子複合による強化効果が乏しく、又3倍以上で
あると毛球状繊維から遊離した固体粒子層が形成され、
複合材として不均一なものとなる。毛球状繊維と強化材
固体粒子とを併せた容量%は3.3%〜約40%の範囲
で適当に選ばれ、このような容量%により得られる複合
材の加工性およびその性能が適当に決定される。
That is, if the reinforcing solid particles are less than 0.1 times as large as the hair spherical fibers, the reinforcing effect of the particle composite is poor, and when it is 3 times or more, a layer of solid particles separated from the hair spherical fibers is formed.
The composite material becomes non-uniform. The combined volume percentage of the bulbous fibers and the reinforcing solid particles is appropriately selected in the range of 3.3% to about 40%, and such volume percentage ensures that the processability and performance of the resulting composite material are appropriately controlled. It is determined.

上述したように毛球状繊維と強化材固体粒子との混合材
をケースに入れて所定の容積%となるように圧縮したも
のはアルミニウム合金の融点温度以上に加熱し、これに
アルミニウム合金溶湯を添加進入させ、溶鍛法または遠
心力法などで約3 kg/cIT12以上の圧力を作用
させて溶浸凝固させる。
As mentioned above, a mixture of bulbous fibers and reinforcing solid particles is placed in a case and compressed to a predetermined volume percentage, then heated to a temperature higher than the melting point of the aluminum alloy, and molten aluminum alloy is added to it. The material is infiltrated and solidified by applying a pressure of about 3 kg/cIT12 or more using the hot forging method or centrifugal force method.

斯うして得られる複合材を製品形状とするにはケース形
状から製品形状となし、或いは一旦塊状としてから押出
、鍛造又は圧延工程を経て製品形状とする。
In order to make the composite material thus obtained into a product shape, it is made into a product shape from a case shape, or it is made into a lump shape and then subjected to an extrusion, forging or rolling process to be made into a product shape.

本発明によるものの具体的な製造例について説明すると
以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

長さが約10mで、径が約3μmであるバルク状アルミ
ナ短繊維を水中に投入し、インペラー付攪拌機で約2時
間攪拌し、次いで真空妨過機で脱水後、乾燥室に入れて
更に脱水し、ゞ毛球状繊維材としてからさらにもみほぐ
して2〜5mm程度の径の毛球状繊維材とした。
Bulk short alumina fibers with a length of approximately 10 m and a diameter of approximately 3 μm were placed in water, stirred for approximately 2 hours using a stirrer with an impeller, dehydrated using a vacuum turbulator, and then placed in a drying chamber for further dehydration. Then, it was made into a hair spherical fiber material, which was then further loosened to obtain a hair spherical fiber material with a diameter of about 2 to 5 mm.

一方次の表1に示すような粒度分布を有する各種重版粒
子を準備した。
On the other hand, various types of reprint particles having particle size distributions as shown in Table 1 below were prepared.

然して次の表2に示すような容量%となる100φX1
20111長さのビレ・ノドを作るべく必要重量を測定
した■型・混合機に入れ混合して電球中に粒子を均一に
付着させた。
However, the capacity % shown in the following Table 2 is 100φX1
In order to make a 20111 length fin and throat, the required weight was measured and the mixture was placed in a ■-shaped mixer and mixed to uniformly adhere the particles inside the bulb.

このようにして得られた各混合物は100φ×300顛
長さの庇付鉄製円柱状ケースに入れ、所定のVfになる
ようにプランジャで電球状繊維材と粒子との混合物が高
さ120 n+になるまで圧縮した。
Each of the mixtures thus obtained was placed in an iron cylindrical case with an eave of 100φ x 300mm length, and the mixture of light bulb-shaped fiber material and particles was heated to a height of 120n+ using a plunger so as to achieve a predetermined Vf. I compressed it until it became.

このようにしてケースに入れられたものは予熱したが、
この予熱温度は黒鉛および5i3Naについてはぬれ性
が悪いため850℃とし、その他は800℃とした。な
おこの予熱に際して鉛粉と黒鉛粉は酸化防止のため蓋を
施した。
Items placed in the case were preheated in this way,
The preheating temperature was set at 850°C for graphite and 5i3Na since their wettability was poor, and at 800°C for the others. During this preheating, the lead powder and graphite powder were covered with a lid to prevent oxidation.

以上のようにして予熱されたものはケースの上部よりJ
IS  A6061合金の溶湯を入れ、遠心機で加圧溶
浸したが、この圧力は4〜13kg/cllL2であっ
た。又この加圧を継続しながら冷却してケースより10
0φビレツトを取出し、このものにおける粒子分布を調
べたが、その顕微鏡写真は倍率400倍として表2の実
験1〜5に対応させたものが添付写真(a)〜(e)の
如くであって、各粒子は何れのものも均一に分散してい
ることが確認された。
If the product is preheated as described above,
A molten metal of IS A6061 alloy was charged and infiltrated under pressure using a centrifuge, and the pressure was 4 to 13 kg/cllL2. Also, while continuing this pressurization, cool it down and remove it from the case for 10 minutes.
A 0φ billet was taken out and the particle distribution in it was investigated, and the attached photos (a) to (e) are micrographs taken at a magnification of 400 times and correspond to experiments 1 to 5 in Table 2. It was confirmed that each particle was uniformly dispersed.

なお前記した表2の実験l、2で得られた100φビレ
ツトを熱間で20φの丸棒に押出しT、処理してその機
械的性質および熱膨張率を測定した結果をそのマトリッ
クスであるA6061押出材の標準値と共に示すと、次
の表3の如くであって、引張強さはマトリックス材と略
同じであるが、熱膨張率においては著しく低下している
ことが確認された。
The 100φ billet obtained in Experiments 1 and 2 in Table 2 above was hot extruded into a 20φ round bar, and the mechanical properties and coefficient of thermal expansion were measured. Table 3 below shows the standard values for the material, and it was confirmed that the tensile strength was approximately the same as that of the matrix material, but the coefficient of thermal expansion was significantly lower.

表3 更に前記した実験3.5で得られた試料および耐摩耗A
1合金であるJIS  A4032について、硬質クロ
ムメッキ材との、フリクトロン摩擦摩耗試験機による試
験結果を示すと次の表4の如くであり、試験条件は油中
:摩擦速度0.5m/sec、面圧150 kg/ c
m” 、摩擦距離5000mである。
Table 3 Samples obtained in Experiment 3.5 and wear resistance A
Table 4 below shows the test results of JIS A4032, which is an alloy, with a hard chrome plated material using a Frictron friction and wear tester. Pressure 150 kg/c
m”, and the friction distance is 5000 m.

即ち実験3.5による本発明のものは比較材であるA4
032のものより摩耗量が少く、また低一 摩擦係数である。つまり本発明によるものA 4032
のものより潤滑性があり、しかも耐摩耗性を有している
That is, the material of the present invention according to Experiment 3.5 is the comparative material A4.
The amount of wear is less than that of 032, and the coefficient of friction is also lower. That is, according to the present invention A 4032
It has better lubricity and wear resistance.

本発明によるものは前記した表4のように複合粒子によ
って強化される性能は当該粒子の有する特性に°よって
異ることとなるが、このような粒子のもつ性能例の若干
は以下の通りである。
As shown in Table 4 of the present invention, the performance enhanced by the composite particles varies depending on the characteristics of the particles, but some examples of the performance of such particles are as follows. be.

Si3N4粒子:低熱膨張性、耐摩耗性Si粒子 :耐
摩耗性、低熱膨張性 黒鉛粒子 :吸振性、潤滑性、高弾性、Pb粒子 :潤
滑性、切削性 ゛ これらの特徴を有する固体粒子を選び、その特性を複合
化させることによって得られる材料に求められる特性は
頗る多様化し、それぞれの用途に即した特性を発揮する
。代表的な特性とその用途とを示すと次の表5の如くで
あるが、固体粒子を適宜に選び、又複合化させることに
よって均一に分散し得る本発明のものはその特性を充分
に発揮し、又アルミニウム系合金の用途を大幅に拡大し
得ることは明らかである。
Si3N4 particles: low thermal expansion, wear resistance Si particles: wear resistance, low thermal expansion graphite particles: vibration absorption, lubricity, high elasticity, Pb particles: lubricity, machinability ゛Select solid particles with these characteristics. By combining these properties, the properties required of the materials obtained become extremely diverse, and exhibit properties suited to each application. Typical properties and their uses are shown in Table 5 below, and the products of the present invention, which can be uniformly dispersed by appropriately selecting solid particles and compositing them, fully exhibit their properties. However, it is clear that the applications of aluminum-based alloys can be greatly expanded.

表   5 「発明の効果」 以上説明したような本発明によるときは粒子状特性強化
材をアルミニウム質マトリックス中に均一に分散せしめ
緻密に一体化せしめて夫々の特質を有効に発揮させたア
ルミニウム質強化複合材を的確に提供し得為ものであっ
て、工業的にその効果の大きい発明である。
Table 5 "Effects of the Invention" According to the present invention as explained above, the particulate property reinforcing material is uniformly dispersed in the aluminum matrix and densely integrated to effectively exhibit the respective properties of the aluminum material. This invention enables the accurate provision of composite materials and is industrially highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を示すものであって、本発明に
よる製造例による各製品の倍率400倍による顕微鏡写
真を示すものであって、(A)は実験1、(B)は実験
2、(C)は実験3、(D’)は実験4、(E)は実験
5のものである。 特許出願人    日本軽金属株式会社発明者  神1
)哲夫 同    鉛末 信幸 手続補正書(万人り 昭和  Wo、 5゜物。日
The drawings show embodiments of the present invention, and show micrographs at a magnification of 400 times of each product according to manufacturing examples according to the present invention, in which (A) is Experiment 1, (B) is Experiment 2, (C) is from Experiment 3, (D') is from Experiment 4, and (E) is from Experiment 5. Patent applicant: Nippon Light Metal Co., Ltd. Inventor: Kami 1
) Tetsuo Dou Nobuyuki Proceedings Amendment (Manninri Showa Wo, 5゜ thing. Japan)

Claims (1)

【特許請求の範囲】[Claims]  無機質繊維材を毛球状凝集粒として準備する工程と、
この毛球状凝集粒に対し粒径1〜100μの粒子を80
%以上とした特性強化材粒子を付着混合させる工程、こ
の強化材粒子を付着混合した毛球状繊維材にアルミニウ
ムないしアルミニウム合金の溶湯を添加し加圧滲透させ
る工程より成ることを特徴とするアルミニウム質強化複
合材の製造法。
a step of preparing an inorganic fiber material as hair spherical aggregates;
Particles with a particle size of 1 to 100μ are added to the
% or more, and a step of adding molten aluminum or aluminum alloy to the bulb-shaped fiber material to which the reinforcing material particles have been adhered and mixed, and permeating the aluminum or aluminum alloy under pressure. Manufacturing method for reinforced composites.
JP27444184A 1984-12-28 1984-12-28 Manufacture of aluminum quality strengthened composite material Pending JPS61157647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27444184A JPS61157647A (en) 1984-12-28 1984-12-28 Manufacture of aluminum quality strengthened composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27444184A JPS61157647A (en) 1984-12-28 1984-12-28 Manufacture of aluminum quality strengthened composite material

Publications (1)

Publication Number Publication Date
JPS61157647A true JPS61157647A (en) 1986-07-17

Family

ID=17541720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27444184A Pending JPS61157647A (en) 1984-12-28 1984-12-28 Manufacture of aluminum quality strengthened composite material

Country Status (1)

Country Link
JP (1) JPS61157647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314792A (en) * 1986-07-04 1988-01-21 Rikagaku Kenkyusho Neuacalpha-9neuac sugar donor and production thereof
JPS63192830A (en) * 1987-02-04 1988-08-10 Nippon Light Metal Co Ltd Manufacture of fiber-reinforced composite casting
JPS63200683U (en) * 1987-06-17 1988-12-23

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011925A (en) * 1973-06-08 1975-02-06
JPS579851A (en) * 1980-06-18 1982-01-19 Sumitomo Electric Ind Ltd Wear-resistant aluminum composite material
JPS5893845A (en) * 1981-11-30 1983-06-03 Toyota Motor Corp Fiber reinforced metal type composite material and its manufacture
JPS58117849A (en) * 1982-01-06 1983-07-13 Ryobi Ltd Composite aluminum material
JPS6130608A (en) * 1984-07-19 1986-02-12 Nikkei Kako Kk Manufacture of composite granule consisting of inorganic short fiber and aluminum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011925A (en) * 1973-06-08 1975-02-06
JPS579851A (en) * 1980-06-18 1982-01-19 Sumitomo Electric Ind Ltd Wear-resistant aluminum composite material
JPS5893845A (en) * 1981-11-30 1983-06-03 Toyota Motor Corp Fiber reinforced metal type composite material and its manufacture
JPS58117849A (en) * 1982-01-06 1983-07-13 Ryobi Ltd Composite aluminum material
JPS6130608A (en) * 1984-07-19 1986-02-12 Nikkei Kako Kk Manufacture of composite granule consisting of inorganic short fiber and aluminum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314792A (en) * 1986-07-04 1988-01-21 Rikagaku Kenkyusho Neuacalpha-9neuac sugar donor and production thereof
JPH07107074B2 (en) * 1986-07-04 1995-11-15 理化学研究所 NeuAcα2 → 9 NeuAc sugar donor
JPS63192830A (en) * 1987-02-04 1988-08-10 Nippon Light Metal Co Ltd Manufacture of fiber-reinforced composite casting
JPS63200683U (en) * 1987-06-17 1988-12-23

Similar Documents

Publication Publication Date Title
US10094006B2 (en) Method of fabricating an aluminum matrix composite and an aluminum matrix composite fabricated by the same
US5791397A (en) Processes for producing Mg-based composite materials
CN105102157A (en) Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway
US4943413A (en) Process for producing an aluminum/magnesium alloy
US5865912A (en) SiC-reinforced aluminum alloy composite material
KR20120123685A (en) Particulate aluminium matrix nano-composites and process for producing the same
JPH08104931A (en) Method for imparting superplasticity to ceramic particle reinforced magnesium-base composite material by molten metal stirring method
RU2567779C1 (en) Method of producing of modified aluminium alloys
Kannan et al. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review
JPS61157647A (en) Manufacture of aluminum quality strengthened composite material
US7160503B2 (en) Metal matrix composites of aluminum, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
WO2020020381A1 (en) Preparation method for low density metal matrix composite
JP4220598B2 (en) Method for producing metal / ceramic composite material for casting
JPH0633164A (en) Production of nitride dispersed al alloy member
US3189444A (en) Metallic composition and method of making
RU2177047C1 (en) Method of preparing aluminum-based alloy
US5256183A (en) Process for production of reinforced composite materials and products thereof
RU2487186C1 (en) Method to strengthen light alloys
JP2004230394A (en) Rheocast casting method
JPS6186064A (en) Production of composite metallic body compounded with inorganic fibers
JPS6360251A (en) Aluminum-silicon alloy and its production
JPS60211025A (en) Manufacture of composite formed body of fiber reinforced aluminum
RU2652932C1 (en) Method for ladle modification of cast iron and steels
JPH02194131A (en) Manufacture of metal matrix composite
JPS62142702A (en) Production of metallic shape stock containing different material