JPS6140640B2 - - Google Patents

Info

Publication number
JPS6140640B2
JPS6140640B2 JP53066324A JP6632478A JPS6140640B2 JP S6140640 B2 JPS6140640 B2 JP S6140640B2 JP 53066324 A JP53066324 A JP 53066324A JP 6632478 A JP6632478 A JP 6632478A JP S6140640 B2 JPS6140640 B2 JP S6140640B2
Authority
JP
Japan
Prior art keywords
base material
susceptor
silicon nitride
silicon
carbon base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53066324A
Other languages
Japanese (ja)
Other versions
JPS54157778A (en
Inventor
Toshiro Kagami
Hideyasu Matsuo
Akio Karita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP6632478A priority Critical patent/JPS54157778A/en
Publication of JPS54157778A publication Critical patent/JPS54157778A/en
Publication of JPS6140640B2 publication Critical patent/JPS6140640B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は半導体装置の製造工程におけるエピタ
キシヤル気相成長、各種絶縁膜の気相成長、ある
いは多結晶膜の気相成長等に使用されるサセプタ
ーの改良に関するものである。 従来、この種のサセプターとしては、有害ガス
の放出がなく、化学的、熱的に安定な黒鉛基材に
炭化珪素をコーテイングしたものが用いられてい
る。 しかしながら、上記サセプターを構成する炭化
珪素の熱膨張係数は4.2×10-6/℃で、他方サセ
プターの本体として使用可能な黒鉛基材の熱膨張
係数は2.4×10-6/℃〜4.1×10-6/℃範囲である
ため、このサセプターが熱影響を受けると、不可
避的に熱膨張差を生じる。その結果、炭化珪素の
コーテイング中及び加熱処理に伴ない加熱冷却サ
イクル中に炭化珪素膜にクラツクが発生し、露出
した黒鉛基材部分に含まれる吸着ガスが処理雰囲
気中に放出して半導体基板(シリコンウエハー)
を阻害する欠点がある。また、従来のサセプター
によりH2雰囲気に曝らすエピタキシヤル成長を
行なうと、炭化珪素は極く微量の鉄等が存在する
H2雰囲気下で分解が促進され、炭化珪素膜にピ
ンホールが発生して上記と同様に黒鉛基材中の吸
着ガスが放出してシリコンウエハーを阻害した
り、あるいは分解により分解により生じたカーボ
ンがシリコンウエハー中に拡散してシヤローピツ
ト等の発生原因となり、半導体装置の製造効率を
低下させる問題がある。 なお、サセプターのピンホール発生を抑制する
ために、炭化珪素膜の厚さを厚くすることが考え
られるが、炭化珪素膜を厚くすればするほど加熱
冷却時における黒鉛基板と炭化珪素膜との熱膨張
差による応力が増大し、短期間で炭化珪素膜にク
ラツクが発生する不都合さがある。 このようなことから、本発明者は上記欠点を解
消するために鋭意研究を重ねた結果、窒化珪素の
熱膨張係数が3.6×10-6/℃と一般的な製法で得
られる黒鉛の熱膨張係数(2.4×10-6/℃〜4.1×
10-6/℃)に近似しているとに着目し、この窒化
珪素を適度な気孔を有する炭素基材にコーテイグ
せしめることによつて、窒化珪素膜を厚くしても
急熱急冷サイクルによる亀裂発生を防止し、亀裂
発生に伴なう炭素基材に含まれる吸着ガスの放出
を阻止でき、しかもH2雰囲気中での窒化珪素の
分解による窒化珪素膜のピンホール発生を抑制で
きると共に分解生成物はシリコンと窒素でシリコ
ン半導体装置の品質劣化が招かず長時間安定して
使用できる強度の高いサセブターを見い出した。 すなわち、本発明のサセプターは気孔率10〜30
%の炭素基材の表面層に、厚さ30〜200μの高密
度窒化珪素膜を該窒化珪素が該炭素基材の気孔に
浸入するように形成せしめたことを特徴とするも
のである。 本発明において炭素基材の気孔率を上記範囲に
限定した理由は、その気孔率を10未満にすると、
窒化珪素のコーテイングに際して、窒化珪素が基
材中の十分浸入できるアンカー効果の高い、つま
り高強度の窒化珪素膜を形成できず、かといつて
その気孔率が35%を越えると、炭素基材自在の強
度が低下しひいては得られたサセプターの強度も
低下することになるからである。 なお、本発明における炭素材の熱膨張係数は、
2.4×10-6〜4.1×10-6/℃である。 本発明における高密度窒化珪素膜の厚さを限定
した理由は、膜厚を30μ未満にするとH2雰囲気
下での分解により短期間でピンホールを発生して
内部の炭素基材に含まれる吸着ガスが処理雰囲気
中に放出し半導体装置を汚染するからである。ま
た、200μを越えるとコスト面及びその効果は変
らないばかりか、魚熱急冷によつてクラツクが発
生し易くなるからである。 なお、本発明のサセプターをうるには、たとえ
ば炭素基材にハロゲン化珪素、水素化珪素などの
珪素系ガスと窒素、アンモニアなどの窒素系ガス
とを供給し、常圧もしくは減圧下で両ガスの反応
温度付近にて加熱し炭素基材表面層に窒化珪素膜
を蒸着する方法が採用される。 次に、本発明の実施例を説明する。 実施例 1 寸法270×680×16mmで気孔率18%、熱膨張係数
34×10-6/℃の炭素基材を、石英ガガラス管を炉
心管とした高周波加熱炉に挿入し、誘導加熱によ
り炭素基材表面を1350℃に加熱した後、炉心管内
にSiCl4を毎分5c.c.、H2を毎分500c.c.及びNH3を毎
分40c.c.供給させて炭素基材表面層に厚さ100μの
高密度窒化珪素膜を形成しサセプターを得た。 実施例 2 寸法200×400×100mmで気孔率20%、熱膨張係
数2.4×10-6/℃の炭素基材を、アルミナ管を炉
心管とする外熱型の電気炉内に挿入し、炭素基材
表面を、1300℃に加熱した後、炉心管内を10mmH
gの減圧に保持しながら、、該管内にSiH4毎分0
c.c.、H2を毎分1000c.c.及びNH3を毎分80c.c.供させて
炭素基材表面層に厚さ80μの高密度窒化珪素膜を
形成しサセプターを得た。 実施例 1 実施例1で用いた炭素基材と同一形状で同一の
物性を有する炭素基材を石英ガラス管を炉芯管と
した高周波加熱炉に挿入し、誘導加熱により炭素
基材表面1200℃に加熱した後、炉芯内にトリクロ
ルメチルシランを毎分5c.c.、H2を毎分2c.c.供給
させ炭素基材表面層に厚さ100μの高密度炭化珪
素膜を形成しサセプターを得た。 比較例2及び3 寸法270×680×16mmで気孔率5%、熱膨張係数
3.0×10-6/℃の炭素基材に実施例1と同一条件
で基材表面に厚さ20μ(比較例2)、400μ(比較
例3)の高密度窒化珪素膜を形成し夫々のサセプ
ターを得た。 実施例1,2及び比較例1,2,3のサセプタ
ーを1200℃、HC1中で1時間、5時間及び15時間
エツチングした後、90℃の熱湯中に浸漬し1mmH
g以下の真空にして、表面からの気泡発生の有無
によつてピンホール発生を確認した。結果をピン
ホールの発生が無い場合を〇印、ピンホールの発
生が有る場合を×印として表1に示した。
The present invention relates to improvements in susceptors used in epitaxial vapor phase growth, vapor phase growth of various insulating films, vapor phase growth of polycrystalline films, etc. in the manufacturing process of semiconductor devices. Conventionally, as this type of susceptor, a graphite base material coated with silicon carbide, which does not emit harmful gases and is chemically and thermally stable, has been used. However, the thermal expansion coefficient of silicon carbide constituting the susceptor is 4.2×10 -6 /℃, while the thermal expansion coefficient of the graphite base material that can be used as the main body of the susceptor is 2.4×10 -6 /℃ ~ 4.1×10 -6 /°C range, so when this susceptor is affected by heat, a difference in thermal expansion inevitably occurs. As a result, cracks occur in the silicon carbide film during coating of silicon carbide and during heating and cooling cycles associated with heat treatment, and the adsorbed gas contained in the exposed graphite base material portion is released into the processing atmosphere, causing the semiconductor substrate to silicon wafer)
There are drawbacks that hinder this. Furthermore, when epitaxial growth is performed using a conventional susceptor and exposed to an H 2 atmosphere, silicon carbide contains extremely small amounts of iron, etc.
Decomposition is accelerated in an H 2 atmosphere, pinholes are generated in the silicon carbide film, and the adsorbed gas in the graphite base material is released in the same manner as above, inhibiting the silicon wafer, or carbon generated by decomposition due to decomposition. There is a problem in that the particles diffuse into the silicon wafer and cause shallow pits and the like to occur, reducing the manufacturing efficiency of semiconductor devices. In order to suppress the occurrence of pinholes in the susceptor, it is possible to increase the thickness of the silicon carbide film, but the thicker the silicon carbide film, the more the heat between the graphite substrate and the silicon carbide film during heating and cooling increases. There is a disadvantage that stress due to the expansion difference increases and cracks occur in the silicon carbide film in a short period of time. For this reason, the inventor of the present invention has conducted intensive research to eliminate the above drawbacks, and has found that the thermal expansion coefficient of silicon nitride is 3.6 × 10 -6 /℃, which is the thermal expansion coefficient of graphite obtained by a general manufacturing method. Coefficient (2.4×10 -6 /℃~4.1×
10 -6 /℃), and by coating this silicon nitride on a carbon substrate with appropriate pores, even if the silicon nitride film is thick, it will not crack due to rapid heating and cooling cycles. It is possible to prevent the occurrence of pinholes in the silicon nitride film due to the decomposition of silicon nitride in an H 2 atmosphere, and to prevent the release of adsorbed gases contained in the carbon base material due to the generation of cracks. They discovered a strong susceptor made of silicon and nitrogen that can be used stably for long periods of time without causing quality deterioration of silicon semiconductor devices. That is, the susceptor of the present invention has a porosity of 10 to 30.
% of the carbon base material, a high-density silicon nitride film with a thickness of 30 to 200 μm is formed so that the silicon nitride penetrates into the pores of the carbon base material. The reason why the porosity of the carbon base material is limited to the above range in the present invention is that if the porosity is less than 10,
When coating with silicon nitride, it is not possible to form a silicon nitride film with a high anchoring effect that allows silicon nitride to sufficiently penetrate into the base material, that is, a high strength silicon nitride film, and if the porosity exceeds 35%, it becomes difficult to use the carbon base material. This is because the strength of the susceptor decreases, and as a result, the strength of the obtained susceptor also decreases. In addition, the thermal expansion coefficient of the carbon material in the present invention is
It is 2.4×10 -6 to 4.1×10 -6 /°C. The reason for limiting the thickness of the high-density silicon nitride film in the present invention is that if the film thickness is less than 30 μm, pinholes will be generated in a short period of time due to decomposition in an H 2 atmosphere, and adsorption contained in the internal carbon base material will occur. This is because the gas is released into the processing atmosphere and contaminates the semiconductor device. Moreover, if it exceeds 200μ, not only will the cost and effectiveness remain the same, but cracks will be more likely to occur due to rapid cooling of the fish. In order to obtain the susceptor of the present invention, for example, a silicon-based gas such as silicon halide or silicon hydride and a nitrogen-based gas such as nitrogen or ammonia are supplied to a carbon base material, and both gases are mixed under normal pressure or reduced pressure. A method is employed in which a silicon nitride film is deposited on the surface layer of a carbon base material by heating at around the reaction temperature of . Next, examples of the present invention will be described. Example 1 Dimensions: 270 x 680 x 16 mm, porosity 18%, coefficient of thermal expansion
A carbon base material of 34×10 -6 /°C was inserted into a high-frequency heating furnace with a quartz glass tube as the core tube, and after the surface of the carbon base material was heated to 1350℃ by induction heating, SiCl 4 was injected into the core tube. A susceptor was obtained by forming a high-density silicon nitride film with a thickness of 100 μm on the carbon substrate surface layer by supplying H 2 at 500 c.c./min and NH 3 at 40 c.c./min. . Example 2 A carbon base material with dimensions of 200 x 400 x 100 mm, porosity of 20%, and thermal expansion coefficient of 2.4 x 10 -6 /°C was inserted into an externally heated electric furnace with an alumina tube as the core tube. After heating the base material surface to 1300℃, the inside of the furnace tube was heated to 10mmH.
SiH 4 per minute is injected into the tube while maintaining a reduced pressure of 0 g per minute.
A susceptor was obtained by supplying cc, H 2 at 1000 c.c./min and NH 3 at 80 c.c./min to form a high-density silicon nitride film with a thickness of 80 μm on the carbon substrate surface layer. Example 1 A carbon base material having the same shape and same physical properties as the carbon base material used in Example 1 was inserted into a high frequency heating furnace with a quartz glass tube as the furnace core, and the surface of the carbon base material was heated to 1200°C by induction heating. After heating, trichloromethylsilane was supplied into the furnace core at 5 c.c./min and H 2 was supplied at 2 c.c./min to form a high-density silicon carbide film with a thickness of 100 μm on the surface layer of the carbon base material. I got it. Comparative Examples 2 and 3 Dimensions: 270 x 680 x 16 mm, porosity 5%, thermal expansion coefficient
A high-density silicon nitride film with a thickness of 20μ (Comparative Example 2) and 400μ (Comparative Example 3) was formed on the surface of the carbon substrate at 3.0 × 10 -6 /℃ under the same conditions as in Example 1, and the respective susceptors were I got it. The susceptors of Examples 1 and 2 and Comparative Examples 1, 2, and 3 were etched in HC1 at 1200°C for 1 hour, 5 hours, and 15 hours, and then immersed in hot water at 90°C for 1 mmH.
The vacuum was set to less than g and the occurrence of pinholes was confirmed by the presence or absence of air bubbles from the surface. The results are shown in Table 1 with the mark ◯ indicating that no pinholes were generated and the mark x indicating that pinholes were present.

【表】 この表からも明らかな様に、本発明のサセプタ
ーではHC1で15時間のエツチング後においてもピ
ンホールの発生は確認されなかつたのに対し、炭
化珪素膜を形成した比較例1のサセプター及び膜
厚20μの窒化珪素膜を形成した比較例2のサセプ
ターでは、5時間のエツチングでピンホールの発
生が確認された。また、膜厚400μの密化珪素膜
を形成した比較例3のサセプターでは、本発明の
サセプターと同様15時間のエツチング後もピンホ
ールの発生は認められなかつたが、本発明のサセ
プターーと比較して急熱急冷に弱くクラツクが発
生し易いものであつた。 比較例4及び5 寸法270×680×16mm熱膨張係数3.0××10-6
℃で気孔率5%の炭素基材(比較例4)と気孔率
40%の炭素基材(比較例5)を実施例1と同一条
件で基材表面に膜厚100μで、高密度窒化珪素膜
を形成しサセプターを得た。比較例4で得られた
サセプターはエピタキシヤル気相成長における昇
温、降温の過程で時間の使用で剥離し使用に耐え
るものではなかつた。また、比較例5で得られた
サセプターは機械的強度が弱く、割れ易いため実
用的ではなかつた。 また、本実施例1,2のサセプター及び炭素基
材に炭化珪素膜を形成したサセプター(比較例
6)を用いて、シリコンウエハーをH2雰囲気中
でエピタキシヤル気相成長させ、各サセプター表
面膜の亀裂、ピンホール発生、及びシリコンウエ
ハーのシヤローピツト発生を調べた。その結果、
本実施例1,2のサセプターは窒化珪素膜のクラ
ツク、ピンホール発生が抑制され、従来の炭化珪
素膜を形成したサセプターに比して1.5〜2倍の
耐用度を示し、しかもその間のシリコンウエハー
のシヤローピツト発生は皆無であることがわかつ
た。 以上詳述した如く、本発明よれば炭素基材の保
護膜としての窒化珪素膜を厚くしても急熱急冷サ
イクルによる亀裂発生を防止し、亀裂発生に伴な
う炭素基材に含まれる吸着ガスの放出及びウエハ
ーの特性を劣化させる炭素基材の分解ガスの発生
を阻止でき、しかもH2雰囲気中での窒化珪素の
分解によるピンホール発生を抑制できると共に分
解生成物は無害なシリコンと窒素でシリコン半導
体装置の品質劣化の誘発を防止でき、もつて耐用
寿命が長く、シヤローピツト等のない高品質の半
導体装置を長期間安定して製造し得る実用性の高
いサセプターを提供できるものである。
[Table] As is clear from this table, no pinholes were observed in the susceptor of the present invention even after 15 hours of etching with HC1, whereas the susceptor of Comparative Example 1 on which a silicon carbide film was formed In the susceptor of Comparative Example 2 in which a silicon nitride film with a thickness of 20 μm was formed, pinholes were observed to occur after 5 hours of etching. In addition, in the susceptor of Comparative Example 3 in which a densified silicon film with a film thickness of 400μ was formed, no pinholes were observed even after 15 hours of etching, similar to the susceptor of the present invention, but compared to the susceptor of the present invention. It was susceptible to rapid heating and cooling and was prone to cracks. Comparative Examples 4 and 5 Dimensions: 270 x 680 x 16 mm Coefficient of thermal expansion: 3.0 x x 10 -6 /
Carbon substrate with porosity of 5% at °C (Comparative Example 4) and porosity
A susceptor was obtained by forming a high-density silicon nitride film with a thickness of 100 μm on the surface of a 40% carbon base material (Comparative Example 5) under the same conditions as in Example 1. The susceptor obtained in Comparative Example 4 peeled off over time during the temperature rising and falling process during epitaxial vapor phase growth, and was not durable for use. Furthermore, the susceptor obtained in Comparative Example 5 had low mechanical strength and was easily broken, making it impractical. In addition, using the susceptors of Examples 1 and 2 and a susceptor in which a silicon carbide film was formed on a carbon base material (Comparative Example 6), a silicon wafer was epitaxially grown in an H 2 atmosphere, and each susceptor surface film was The occurrence of cracks, pinholes, and shallow pits in silicon wafers was investigated. the result,
The susceptors of Examples 1 and 2 suppress the occurrence of cracks and pinholes in the silicon nitride film, and exhibit 1.5 to 2 times the durability compared to susceptors formed with conventional silicon carbide films. It was found that there was no occurrence of shallow pits. As described in detail above, according to the present invention, even if the silicon nitride film as a protective film for the carbon base material is thickened, crack generation due to rapid heating and cooling cycles can be prevented, and the adsorption of the carbon base material that accompanies crack generation can be prevented. It can prevent the release of gas and the generation of decomposition gas from the carbon base material that deteriorates the characteristics of wafers. Furthermore, it can suppress the generation of pinholes due to the decomposition of silicon nitride in an H2 atmosphere, and the decomposition products are harmless silicon and nitrogen. Therefore, it is possible to provide a highly practical susceptor that can prevent quality deterioration of silicon semiconductor devices, has a long service life, and can stably manufacture high-quality semiconductor devices without shallow pits or the like over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] 1 気孔率が10〜35%の炭素基材に表面層に、厚
さ30〜200μに高密度窒素化珪素膜を形成せしめ
たことを特徴とするサセプター。
1. A susceptor characterized by forming a high-density silicon nitride film with a thickness of 30 to 200 μm on the surface layer of a carbon base material with a porosity of 10 to 35%.
JP6632478A 1978-06-02 1978-06-02 Susceptor Granted JPS54157778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6632478A JPS54157778A (en) 1978-06-02 1978-06-02 Susceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6632478A JPS54157778A (en) 1978-06-02 1978-06-02 Susceptor

Publications (2)

Publication Number Publication Date
JPS54157778A JPS54157778A (en) 1979-12-12
JPS6140640B2 true JPS6140640B2 (en) 1986-09-10

Family

ID=13312534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6632478A Granted JPS54157778A (en) 1978-06-02 1978-06-02 Susceptor

Country Status (1)

Country Link
JP (1) JPS54157778A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191292A (en) * 1981-05-19 1982-11-25 Toshiba Ceramics Co Ltd Graphite crucible for preparing single crystal of semiconductor
JPS62123094A (en) * 1985-11-22 1987-06-04 Denki Kagaku Kogyo Kk Susceptor for vapor growth of semiconductor
JP3214422B2 (en) * 1997-12-02 2001-10-02 日本電気株式会社 Semiconductor device manufacturing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPS54157778A (en) 1979-12-12

Similar Documents

Publication Publication Date Title
JP3524679B2 (en) High purity CVD-SiC semiconductor heat treatment member and method of manufacturing the same
JP2548949B2 (en) Semiconductor manufacturing components
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
JP2000302577A (en) Graphite member coated with silicon carbide
JPS6140640B2 (en)
JP2000302576A (en) Graphite material coated with silicon carbide
JP2002274983A (en) Member for semiconductor manufacturing apparatus coated with sic film and method of manufacturing the same
JP7294021B2 (en) Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate
JP2821212B2 (en) Refractory material and manufacturing method thereof
JPH10251062A (en) Production of silicon carbide formed body
JPH0586476A (en) Chemical vapor growth device
JPS617622A (en) Manufacture of semiconductor device
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPS5821826A (en) Apparatus for manufacturing semiconductor
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JP7322371B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JPS63225591A (en) Manufacture of silicon carbide-coated graphite material
JPS62293713A (en) Susceptor for epitaxial growth equipment
JP5336307B2 (en) Method for producing silicon carbide single crystal
JP7413768B2 (en) Method for manufacturing polycrystalline substrate
JPS61291484A (en) Graphite crucible
JP2855458B2 (en) Processing material for semiconductor
JP4123319B2 (en) Method for producing p-type cubic silicon carbide single crystal thin film
JPH0471880B2 (en)
JP2020090420A (en) Graphite or ceramic substrate, substrate manufacturing method, silicon carbide film forming method, and silicon carbide substrate manufacturing method