JP2821212B2 - Refractory material and manufacturing method thereof - Google Patents

Refractory material and manufacturing method thereof

Info

Publication number
JP2821212B2
JP2821212B2 JP32266989A JP32266989A JP2821212B2 JP 2821212 B2 JP2821212 B2 JP 2821212B2 JP 32266989 A JP32266989 A JP 32266989A JP 32266989 A JP32266989 A JP 32266989A JP 2821212 B2 JP2821212 B2 JP 2821212B2
Authority
JP
Japan
Prior art keywords
quartz substrate
silicon nitride
silicon carbide
nitride layer
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32266989A
Other languages
Japanese (ja)
Other versions
JPH03187954A (en
Inventor
忠 大橋
勝利 西尾
栄記 安藤
幸夫 伊藤
栄一 外谷
雅之 角谷
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18146286&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2821212(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP32266989A priority Critical patent/JP2821212B2/en
Publication of JPH03187954A publication Critical patent/JPH03187954A/en
Application granted granted Critical
Publication of JP2821212B2 publication Critical patent/JP2821212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は耐火材料及びその製造方法に関し、特に半
導体製造に用いられるサセプター,炉芯管、治具等の部
品に好適な耐火材料に係わるものである。
Description: TECHNICAL FIELD The present invention relates to a refractory material and a method for producing the same, and more particularly to a refractory material suitable for parts such as susceptors, furnace core tubes, and jigs used in semiconductor production. It is.

[従来の技術と課題] 従来、サセプター等の半導体製造用部品は、石英又は
カーボンから形成されたものが使用されている。しかし
ながら、これらの部品で半導体を製造すると、部品内部
に存在する不純物、あるいは洗浄時の洗浄残留による不
純物が温度上昇により外部に拡散して半導体を汚染する
欠点がある。
[Prior art and problems] Conventionally, as a part for manufacturing a semiconductor such as a susceptor, a part formed of quartz or carbon has been used. However, when a semiconductor is manufactured using these components, there is a disadvantage that impurities existing inside the components or impurities due to residual cleaning during cleaning are diffused outside due to a rise in temperature and contaminate the semiconductor.

そこで、石英又はカーボン基材からの不純物拡散によ
る半導体の汚染防止や基材自体の保護を目的として、該
基材表面に炭化珪素層及び/又は窒化珪素層の薄膜をCV
D法等によりコーティングした耐火材料が使用されてい
る。しかし、この耐火材料は基材表面の薄膜が厚さ10μ
m以上であるため、使用時の熱影響による基材と薄膜と
の間の熱膨張差の多少によって該薄膜に剥離が発生し、
薄膜が半導体の汚染防止や基材自体の保護に友好に寄与
できなくなる恐れがある。
Therefore, for the purpose of preventing contamination of the semiconductor due to diffusion of impurities from the quartz or carbon base material and protecting the base material itself, a thin film of a silicon carbide layer and / or a silicon nitride layer is formed on the surface of the base material by CV.
Refractory materials coated by the D method etc. are used. However, this refractory material has a thin film
m or more, peeling occurs in the thin film due to the difference in thermal expansion between the substrate and the thin film due to thermal effects during use,
The thin film may not be able to contribute to prevention of contamination of the semiconductor or protection of the substrate itself.

また、カーボンから形成されたサセプターは、ボトム
部に熱を奪われるため、スリップが発生しやすい。この
ため、ボトムプレートに熱伝導率の低い石英ガラスの使
用が試みられている。しかし、石英ガラスボトムプレー
ト部にSiパーティクルが発生し、半導体の汚染防止や基
材自体の保護に有効に寄与できなくなる恐れがある。ち
なみに、Siパーティクル発声を防止するために石英ガラ
ス製ボトムプレートに炭化珪素層及び/又は窒化珪素層
のコーティングが試みられている。しかし、この場合、
石英基材と炭化珪素層及び/又は窒化珪素層の熱膨張率
の違いにより炭化珪素層及び/又は窒化珪素層が剥離
し、Siパーティクルの発生の防止に有効ではなく、半導
体の汚染防止や基材自体の保護に有効に寄与できない。
Further, the susceptor formed of carbon is liable to slip because heat is taken away by the bottom portion. For this reason, attempts have been made to use quartz glass having a low thermal conductivity for the bottom plate. However, Si particles may be generated in the quartz glass bottom plate, and may not be able to effectively contribute to prevention of contamination of the semiconductor and protection of the base material itself. Incidentally, a coating of a silicon carbide layer and / or a silicon nitride layer on a quartz glass bottom plate has been attempted in order to prevent utterance of Si particles. But in this case,
The silicon carbide layer and / or silicon nitride layer is peeled off due to the difference in thermal expansion coefficient between the quartz substrate and the silicon carbide layer and / or silicon nitride layer, which is not effective in preventing generation of Si particles. It cannot effectively contribute to the protection of the material itself.

この発明はこうした事情を考慮してなされたもので、
表面粗さRaを0.5〜20μmとした石英基材上に炭化珪素
層及び/又は窒化珪素層を形成することにより、熱応力
に対する強度を著しく向上でき、もって使用時の熱影響
による剥離の発生、洗浄時の塩素蒸気等による浸食の発
生を防止しえ、更にはスリップの発生,Siパーティクル
の発生を防止できる耐火材料及びその製造方法を提供す
ることを目的とする。
The present invention has been made in view of such circumstances,
By forming a silicon carbide layer and / or a silicon nitride layer on a quartz substrate having a surface roughness Ra of 0.5 to 20 μm, the strength against thermal stress can be remarkably improved, and thus the occurrence of peeling due to thermal influence during use, An object of the present invention is to provide a refractory material that can prevent erosion due to chlorine vapor or the like during cleaning, and can further prevent generation of slip and generation of Si particles, and a method of manufacturing the same.

[課題を解決するための手段及び作用] 本願第1の発明は、表面粗さRaが0.5〜20μmの石英
基材と、この石英基材上に形成された炭化珪素層及び/
又は窒化珪素層とを具備することを特徴とする耐火材料
である。
[Means and Actions for Solving the Problems] The first invention of the present application provides a quartz substrate having a surface roughness Ra of 0.5 to 20 μm, a silicon carbide layer formed on the quartz substrate, and / or
Alternatively, it is a refractory material including a silicon nitride layer.

本願第2の発明は、表面処理により表面粗さRaを0.5
〜20μmとした石英基材上に、炭化珪素層及び/又は窒
化珪素層を形成することを特徴とする耐火材料の製造方
法である。
The second invention of the present application provides a surface roughness Ra of 0.5
A method for producing a refractory material, comprising forming a silicon carbide layer and / or a silicon nitride layer on a quartz substrate having a thickness of about 20 μm.

本発明について補足説明すれば、この発明に係る炭化
珪素層及び/又は窒化珪素層の厚さは、通常10μm以上
にすればよい。しかし、本発明方法によれば、熱応力に
対する強度を著しく向上させたまま炭化珪素層及び/又
は窒化珪素層の厚さを100μm以上にすることも可能で
ある。
Supplementary explanation of the present invention is that the thickness of the silicon carbide layer and / or the silicon nitride layer according to the present invention may be usually 10 μm or more. However, according to the method of the present invention, it is possible to increase the thickness of the silicon carbide layer and / or the silicon nitride layer to 100 μm or more while significantly improving the strength against thermal stress.

この発明において、石英基材の表面粗さRaを上記のよ
うに規定するのは、Raが0.5μm未満の場合剥離発生防
止効果がなく、逆にRaが20μmを越えるとその上に形成
する炭化珪素層及び/又は窒化珪素層での石英基材の被
覆が困難となり、基材自体の保護に有効に寄与できなく
なるからである。
In the present invention, the surface roughness Ra of the quartz substrate is defined as described above because there is no effect of preventing the occurrence of peeling when Ra is less than 0.5 μm, and conversely, when Ra exceeds 20 μm, carbonization formed thereon is This is because it becomes difficult to coat the quartz substrate with the silicon layer and / or the silicon nitride layer, and it cannot effectively contribute to protection of the substrate itself.

前記石英基材の表面処理の手段としては、例えばフロ
スト処理,サンドブラスト処理,平面研削等が挙げられ
る。また、酸によるエッチングにより、表面処理を行っ
た事による加工応力の残留で脆弱となった部分を取り除
く事ができる。その結果、該石英基材上に炭化珪素層及
び/又は窒化珪素層を形成した後の熱応力により加工応
力の残留で脆弱となった部分が脱落することを防止でき
る。酸によるエッチングは、例えば49wt%HF:H2Oの体積
比を1:1に調整した溶液に10分間浸漬することで行う。
Means for surface treatment of the quartz substrate include, for example, frost treatment, sand blast treatment, surface grinding and the like. In addition, by the etching using an acid, it is possible to remove a portion that has become weak due to the residual processing stress due to the surface treatment. As a result, it is possible to prevent a part which has become weak due to residual processing stress due to thermal stress after the silicon carbide layer and / or the silicon nitride layer is formed on the quartz base material from falling off. Etching with an acid is performed, for example, by immersing in a solution in which the volume ratio of 49 wt% HF: H 2 O is adjusted to 1: 1 for 10 minutes.

この発明によれば、石英基材の表面粗さを0.5〜20μ
mとし、この上に炭化珪素層及び/又は窒化珪素層を形
成することにより、熱応力に対する強度を著しく向上で
き、もって使用時の熱影響による剥離の発生、洗浄時の
塩素蒸気等による浸食の発生を防止しえ、更にはスリッ
プの発生,Siパーティクルの発生を防止できる。
According to the present invention, the surface roughness of the quartz substrate is 0.5 to 20 μm.
By forming a silicon carbide layer and / or a silicon nitride layer thereon, the strength against thermal stress can be remarkably improved, so that peeling occurs due to thermal influence during use and erosion due to chlorine vapor during cleaning. Generation can be prevented, and further, generation of slip and generation of Si particles can be prevented.

以下、この発明の実施例を比較例とともに説明する。 Hereinafter, examples of the present invention will be described together with comparative examples.

[実施例1] まず、熱膨脹係数が5.7×10-7の石英基材を#180でフ
ロスト処理し表面粗さRaを1.2μmにした。次に、この
石英基材を炉内に挿入した後、該基材を1200℃に加熱し
た状態でキャリア−ガスとしてH2を0.5l/分、珪素源ガ
スとしてSiCl4を1.0l/分、炭素源ガスとしてC3H8を0.2l
/分、20分流して厚み20μmの炭化珪素層をコーティン
グし、サセプタを作った。
Example 1 First, a quartz substrate having a thermal expansion coefficient of 5.7 × 10 −7 was subjected to frost treatment with # 180 to have a surface roughness Ra of 1.2 μm. Next, after inserting this quartz substrate into a furnace, the substrate was heated to 1200 ° C., and H 2 was used as a carrier gas at 0.5 L / min, SiCl 4 was used as a silicon source gas at 1.0 L / min, 0.2 l of C 3 H 8 as carbon source gas
At a flow rate of 20 min / min to coat a silicon carbide layer having a thickness of 20 μm to form a susceptor.

即ち、実施例1に係るサセプタは、Raが1.2μmの石
英基材上に厚み20μmの炭化珪素層をコーティングした
構成となっている。
That is, the susceptor according to the first embodiment has a configuration in which a silicon carbide layer having a thickness of 20 μm is coated on a quartz base material having a Ra of 1.2 μm.

[実施例2] まず、熱膨脹係数が5.7×10-7の石英基材を#180でフ
ロスト処理し表面粗さRaを1.2μmにした。次に、この
石英基材を炉内に挿入した後、該基材を1200℃に加熱し
た状態でキャリア−ガスとしてH2を0.5l/分、珪素源ガ
スとしてSiCl4を1.0l/分、窒素源ガスとしてNH3を0.1
/分、20分流して厚み20μmの窒化珪素層をコーティン
グし、サセプタを作った。
Example 2 First, a quartz substrate having a thermal expansion coefficient of 5.7 × 10 −7 was subjected to frost treatment with # 180 to have a surface roughness Ra of 1.2 μm. Next, after inserting this quartz substrate into a furnace, the substrate was heated to 1200 ° C., and H 2 was used as a carrier gas at 0.5 L / min, SiCl 4 was used as a silicon source gas at 1.0 L / min, 0.1% NH 3 as nitrogen source gas
At a flow rate of 20 minutes per minute to coat a silicon nitride layer having a thickness of 20 μm to form a susceptor.

即ち、実施例2に係るサセプタは、Raが1.2μmの石
英基材上に厚み20μmの窒化珪素層をコーティングした
構成となっている。
That is, the susceptor according to the second embodiment has a configuration in which a 20 μm-thick silicon nitride layer is coated on a quartz substrate having an Ra of 1.2 μm.

[実施例3] まず、熱膨脹係数が5.7×10-7の石英基材を#180でフ
ロスト処理し、その後該基材をHF:H2Oの体積比を1:1に
調整した溶液に10分間浸漬し、表面粗さRaを1.0μmに
した。次に、この石英基材を炉内に挿入した後、該基材
を1200℃に加熱した状態でキャリア−ガスとしてH2を0.
5l/分、珪素源ガスとしてSiCl4を1.0l/分、炭素源ガス
としてC3H8を0.2l/分、20分流して厚み20μmの炭化珪
素層をコーティングし、サセプタを作った。
Example 3 First, a quartz substrate having a thermal expansion coefficient of 5.7 × 10 −7 was subjected to frost treatment with # 180, and then the substrate was added to a solution in which the volume ratio of HF: H 2 O was adjusted to 1: 1. Then, the surface roughness Ra was adjusted to 1.0 μm. Next, after inserting the quartz substrate into a furnace, the substrate was heated to 1200 ° C., and H 2 was used as a carrier gas in a furnace.
A 20 μm-thick silicon carbide layer was coated by flowing SiCl 4 as a silicon source gas at 1.0 l / min and C 3 H 8 as a carbon source gas at 0.2 l / min for 20 minutes to form a susceptor.

即ち、実施例3に係るサセプタは、Raが1.0の石英基
材上に厚み20μmの炭化珪素層をコーティングした構成
となっている。
That is, the susceptor according to the third embodiment has a configuration in which a silicon carbide layer having a thickness of 20 μm is coated on a quartz substrate having an Ra of 1.0.

[比較例1] まず、熱膨脹係数が5.7×10-7,表面粗さRaが0.3μm
の石英基材を炉内に挿入した後、該基材を1200℃に加熱
した状態でキャリア−ガスとしてH2を0.5l/分、珪素源
ガスとしてSiCl4を1.0l/分、炭素源ガスとしてC3H8を0.
2l/分、20分流して厚み20μmの炭化珪素層をコーティ
ングし、サセプタを作った。
Comparative Example 1 First, the coefficient of thermal expansion was 5.7 × 10 −7 , and the surface roughness Ra was 0.3 μm.
After inserting the quartz base material into the furnace, the base material was heated to 1200 ° C., and H 2 was used as a carrier gas at 0.5 l / min, SiCl 4 at 1.0 l / min as a silicon source gas, and a carbon source gas. the C 3 H 8 as 0.
A 20 μm thick silicon carbide layer was coated at a flow rate of 2 l / min for 20 minutes to form a susceptor.

即ち、比較例1に係るサセプタは、Raが0.3μmの石
英基材上に厚み20μmの炭化珪素層をコーティングした
構成となっている。
That is, the susceptor according to Comparative Example 1 has a configuration in which a silicon carbide layer having a thickness of 20 μm is coated on a quartz base material having a Ra of 0.3 μm.

[比較例2] まず、熱膨脹係数が5.7×10-7の石英基材を#5でフ
ロスト処理し、該基材の表面粗さRaを25μmとした。そ
の後、該基材を1200℃に加熱した状態で、キャリア−ガ
スとしてH2を0.5l/分、珪素源ガスとしてSiCl4を1.0l/
分、窒素源ガスとしてNH3を0.1/分、20分流して厚み
20μmの窒化珪素層をコーティングし、サセプタを作っ
た。
Comparative Example 2 First, a quartz substrate having a thermal expansion coefficient of 5.7 × 10 −7 was subjected to frost treatment with # 5, and the surface roughness Ra of the substrate was set to 25 μm. Thereafter, while the substrate was heated to 1200 ° C., H 2 was used as a carrier gas at 0.5 L / min, and SiCl 4 was used as a silicon source gas at 1.0 L / min.
And NH 3 as a nitrogen source gas at 0.1 / min for 20 minutes
A 20 μm silicon nitride layer was coated to form a susceptor.

即ち、比較例2に係るサセプタは、Raが25μmの石英
基材上に厚み20μmの窒化珪素層をコーティングした構
成となっている。
That is, the susceptor according to Comparative Example 2 has a configuration in which a silicon nitride layer having a thickness of 20 μm is coated on a quartz base material having a Ra of 25 μm.

しかして、実施例1,2,3及び比較例1,2で得たサセプタ
ーをエピタキシャル製造装置に使用し、エピタキシャル
ウェハを作ったところ、比較例1で得たサセプターは7
回の使用で剥離が発生し、使用不能になった。比較例2
で得たサセプターは、窒化珪素層の被覆が困難で基材自
体の保護に有効に寄与できず、1回の使用で使用不能に
なった。これに対し、実施例1〜3で得たサエプターに
よれば、同一条件下で250回使用しても、剥離が認めら
れず、良好なエピタキシャルウェハを長期間製造でき
た。
When the susceptors obtained in Examples 1, 2, and 3 and Comparative Examples 1 and 2 were used in an epitaxial manufacturing apparatus to produce an epitaxial wafer, the susceptor obtained in Comparative Example 1 was 7
Peeling occurred after repeated use, rendering it unusable. Comparative Example 2
The susceptor obtained in (1) was difficult to coat the silicon nitride layer and could not effectively contribute to the protection of the base material itself, and became unusable after a single use. On the other hand, according to the soapers obtained in Examples 1 to 3, no peeling was observed even when used 250 times under the same conditions, and a good epitaxial wafer could be manufactured for a long period of time.

〔発明の効果〕〔The invention's effect〕

以上詳述した如くこの発明によれば、表面粗さRaを0.
5〜20μmとした石英基材上に炭化珪素層及び/又は窒
化珪素層を形成することにより、熱応力に対する強度を
著しく向上でき、もって使用時の熱影響による剥離の発
生、洗浄時の塩素蒸気等による浸食の発生を防止しえ、
更にはスリップの発生,Siパーティクルの発生を防止で
きる耐火材料及びその製造方法を提供できる。
As described in detail above, according to the present invention, the surface roughness Ra is set to 0.
By forming a silicon carbide layer and / or a silicon nitride layer on a quartz substrate having a thickness of 5 to 20 μm, the strength against thermal stress can be remarkably improved, thereby causing peeling due to thermal influence during use and chlorine vapor during cleaning. Can prevent the occurrence of erosion due to
Further, it is possible to provide a refractory material capable of preventing generation of slip and generation of Si particles, and a method of manufacturing the same.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 幸夫 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社小国製造 所内 (72)発明者 外谷 栄一 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社小国製造 所内 (72)発明者 角谷 雅之 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社小国製造 所内 (56)参考文献 特開 昭62−96349(JP,A) 特開 昭64−45792(JP,A) 特開 昭56−130347(JP,A) 特開 平2−289476(JP,A) 実開 昭63−43423(JP,U) (58)調査した分野(Int.Cl.6,DB名) C03C 15/00 - 23/00 C04B 41/87──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yukio Ito 378 Oguni-machi, Oguni-machi, Oguni-machi, Nishiokitama-gun, Yamagata Prefecture Inside the Oguni Plant of Toshiba Ceramics Co., Ltd. No. 378 Toshiba Ceramics Co., Ltd. Oguni Works (72) Inventor Masayuki Kakuya Yamagata Pref. Oguni-machi, Oguni-machi, Nishiokitama-gun Oji-cho 378 Toshiba Ceramics Co., Ltd. Oguni Works (56) References JP-A-62-96349 A) JP-A-64-45792 (JP, A) JP-A-56-130347 (JP, A) JP-A-2-289476 (JP, A) Japanese Utility Model Application Sho-63-43423 (JP, U) (58) Survey Field (Int.Cl. 6 , DB name) C03C 15/00-23/00 C04B 41/87

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面粗さRaが0.5〜20μmの石英基材と、
この石英基材上に形成された炭化珪素層及び/又は窒化
珪素層とを具備することを特徴とする耐火材料。
1. A quartz substrate having a surface roughness Ra of 0.5 to 20 μm,
A refractory material comprising: a silicon carbide layer and / or a silicon nitride layer formed on the quartz substrate.
【請求項2】表面処理により表面粗さRaを0.5〜20μm
とした石英基材上に、炭化珪素層及び/又は窒化珪素層
を形成することを特徴とする耐火材料の製造方法。
2. A surface roughness Ra of 0.5 to 20 μm by surface treatment.
A method for producing a refractory material, comprising forming a silicon carbide layer and / or a silicon nitride layer on a quartz substrate as described above.
JP32266989A 1989-12-14 1989-12-14 Refractory material and manufacturing method thereof Expired - Lifetime JP2821212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32266989A JP2821212B2 (en) 1989-12-14 1989-12-14 Refractory material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32266989A JP2821212B2 (en) 1989-12-14 1989-12-14 Refractory material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03187954A JPH03187954A (en) 1991-08-15
JP2821212B2 true JP2821212B2 (en) 1998-11-05

Family

ID=18146286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32266989A Expired - Lifetime JP2821212B2 (en) 1989-12-14 1989-12-14 Refractory material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2821212B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473715B2 (en) * 1994-09-30 2003-12-08 信越半導体株式会社 Quartz glass wafer boat
EP0763504B1 (en) * 1995-09-14 1999-06-02 Heraeus Quarzglas GmbH Silica glass member and method for producing the same
JP3985243B2 (en) * 1998-12-01 2007-10-03 信越石英株式会社 Quartz glass jig having large irregularities on the surface and manufacturing method thereof
CN111087228B (en) * 2019-12-04 2022-03-08 宜兴市耐火材料有限公司 Nano-silicon in-situ generated ceramic phase enhanced aluminum-carbon sliding plate and preparation process thereof
JP7162153B1 (en) * 2022-04-01 2022-10-27 テクノクオーツ株式会社 Quartz glass base material with improved adhesion of thermal spray coating, method for producing same, and method for producing quartz glass parts having thermal spray coating

Also Published As

Publication number Publication date
JPH03187954A (en) 1991-08-15

Similar Documents

Publication Publication Date Title
US3479237A (en) Etch masks on semiconductor surfaces
JP2883028B2 (en) Quartz glass member with coating
US4123571A (en) Method for forming smooth self limiting and pin hole free SiC films on Si
JPH0469119B2 (en)
JP2821212B2 (en) Refractory material and manufacturing method thereof
JPH1012692A (en) Dummy wafer
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
US4052251A (en) Method of etching sapphire utilizing sulfur hexafluoride
JPH0561774B2 (en)
EP1193327B1 (en) Silica glass apparatus for semiconductor industry and method for producing the same
JPH0297486A (en) Formation of diamond
JP2021046336A (en) Method for processing surface of graphite support substrate, method for depositing silicon carbide polycrystalline film and method for manufacturing silicon carbide polycrystalline substrate
JP3461120B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JPS5821826A (en) Apparatus for manufacturing semiconductor
JPH11130451A (en) Quartz glass jig for semiconductor heat treatment apparatus
JP3262696B2 (en) Silica glass member having glassy carbon coating
JPS6045154B2 (en) fireproof material
JPS6140640B2 (en)
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same
JPH0825825B2 (en) Silicon carbide coated graphite product and manufacturing method thereof
JP7322371B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP3257645B2 (en) Method of manufacturing ceramic device
JPH0471880B2 (en)
JP3375593B2 (en) Method for diffusing impurities in semiconductor silicon substrate