JPS6140586A - Electronic timepiece - Google Patents

Electronic timepiece

Info

Publication number
JPS6140586A
JPS6140586A JP14001784A JP14001784A JPS6140586A JP S6140586 A JPS6140586 A JP S6140586A JP 14001784 A JP14001784 A JP 14001784A JP 14001784 A JP14001784 A JP 14001784A JP S6140586 A JPS6140586 A JP S6140586A
Authority
JP
Japan
Prior art keywords
rate adjustment
rate
circuit
adjustment
clock rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14001784A
Other languages
Japanese (ja)
Other versions
JPH0476074B2 (en
Inventor
Hiroshi Yabe
宏 矢部
Hitomi Ayusawa
仁美 鮎澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14001784A priority Critical patent/JPS6140586A/en
Priority to GB08516482A priority patent/GB2163575B/en
Priority to US06/750,803 priority patent/US4730286A/en
Priority to CH294785A priority patent/CH664252GA3/fr
Publication of JPS6140586A publication Critical patent/JPS6140586A/en
Priority to HK789/89A priority patent/HK78989A/en
Publication of JPH0476074B2 publication Critical patent/JPH0476074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/04Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses
    • G04F5/06Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses using piezoelectric resonators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)

Abstract

PURPOSE:To simplify the adjustment of clock rate, by setting the opening/closing timing of the switch with a clock rate adjusting value setting circuit by set one step unit for clock rate adjustment to make the adjusting range of one step constant regardless of any variation in a capacitor. CONSTITUTION:DELTAf is subdivided sufficiently with a resolution determined by a frequency division circuit 4 and several subdivided pieces are gathered to set the clock rate adjusting range of one step constant with a clock rate adjusting range setting circuit 3 by one step unit thus set to perform a clock rate adjustment with a clock rate adjusting range setting circuit 7. This can makes the adjusting range of one step constant regardless of any variation in a capacitor 2 to simplify the clock rate adjustment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水晶発振器にコンデンサをスイッチを介して
設け、該スイッチの開閉により歩度調整を行なう手段を
有する電子時計に関し、特にその調整方式に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electronic timepiece having a crystal oscillator equipped with a capacitor via a switch, and having means for adjusting the rate by opening and closing the switch, and particularly relates to the adjustment method thereof. .

〔従来の技術〕[Conventional technology]

従来、時計の歩度を調整するには発振回路系に′ トリ
マーコンデンサを挿入しそのリアクタンス成分を増減す
ることにより発振周波数を変化させる方式や発振器の後
段に可変分局器をおき分局比を変化させる論理緩急方式
などが用いられてきた。
Conventionally, to adjust the rate of a clock, there were two methods: inserting a trimmer capacitor into the oscillation circuit system and increasing or decreasing its reactance component to change the oscillation frequency, or placing a variable divider after the oscillator to change the division ratio. A slow-paced method has been used.

しかし、近年時計の高精度変化が進みさらに信頼性の高
い高精度時計が要求されてきているなかにおいては、前
記の2つの方式だけでは調整がしきれなくなってきてい
る。そζで第2図に示すように時間標準となる水晶発振
器に周波数可変用のコン、デンサ2をスイッチ8を介し
て設け、該スイッチの開閉により発振周波数を変えて歩
度調整を行なう方式が考案され、詳細は例えば特公昭4
6−85007、特開昭58−148292などに開示
されている。この方式では細かb歩度調整を短時間で行
なうことが可能であり、さらに前述の論理緩急と組み合
わせることによって広い温度範囲に渡っての調整ができ
るようになる。
However, as the accuracy of timepieces has changed in recent years, and more reliable and highly accurate timepieces have been required, it has become impossible to make adjustments using only the above two methods. Therefore, as shown in Fig. 2, a method was devised in which a frequency variable capacitor and capacitor 2 was installed in a crystal oscillator serving as a time standard via a switch 8, and the rate was adjusted by changing the oscillation frequency by opening and closing the switch. The details are, for example, in the Tokuko Sho 4
6-85007, Japanese Patent Application Laid-Open No. 58-148292, etc. With this method, it is possible to make fine b-rate adjustments in a short time, and furthermore, by combining it with the above-mentioned logical adjustment, adjustment can be made over a wide temperature range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記スイッチングされるコンデンサ2は、容量
が小さいためスイッチ8とともに工C上に作り込まれる
のが一般的であるので、コンデンサ2の値の作り込みの
バラツキによりコンデンサ2が水晶発振器lに接続され
て騒るときといないときの発振周波数差圧側々のバラツ
キが生じてしまう。そのため同一の比率を与えるタイミ
ングでスイッチ8を制御してもその調整量は個々にばら
つき、歩度調整が非常にやっかいなものになる。
However, since the capacitor 2 to be switched has a small capacity, it is generally built on the circuit C together with the switch 8. Therefore, due to variations in the value of the capacitor 2, the capacitor 2 is connected to the crystal oscillator L. This causes variations in the oscillation frequency differential pressure between when there is noise and when there is no noise. Therefore, even if the switch 8 is controlled at the same timing to give the same ratio, the amount of adjustment varies from one to another, making rate adjustment extremely troublesome.

特に製品がメーカーの手を離れエージングやその他の原
因で歩度調整が必要になったとき、一般の時計店におい
てはその時計自身のデータが無いので(これらのデータ
を時計側々に添付するのはたいへん困難である)、ユー
ザーに開放された調整8一 手段によってどれ程の調整が可能が分からないため、歩
度測定を測定しながら集束法により除々に所望の値に近
づけていかねばならず、非常にめんどうでかつ時間のか
かる作業と力ってしまう。
In particular, when a product leaves the manufacturer's hands and requires rate adjustment due to aging or other reasons, general watch stores do not have the data on the watch itself (it is difficult to attach this data to each watch). Since it is not known how much adjustment is possible with the adjustment means open to the user, it is necessary to gradually approach the desired value by the focusing method while measuring the rate, which is extremely difficult. It's a tedious and time-consuming task.

これを図を用いてもう少し分かりやすく説明する。This will be explained a little more clearly using a diagram.

第3図は、2次の周波数温度特性をもった水晶振動子を
用いた発振器1の歩度の温度特性を示している。(α)
はコンデンサ2の値がバラツキによって小さかった場合
を示し、(b)は大きかった場合を示している。図にお
いてf、ct)はスイッチ3が開のときの特性であり(
ロ)(b)とも同じ特性の水晶を用いている。 t t
(t)、 i z(t)はスイッチ8が閉のときの特性
でちり、Δfsx△f2はスイッチ3が開閉したときの
周波数の偏差である。このΔfは全温度範囲でほぼ一定
値となるので、今2次曲線の頂点温度Tのところで考え
てみる。仮に仁の△fを調整ステップ4ステツプで分割
し調整をしようとすると、その1ステツプの調整中はそ
れぞれ(α)で1  ゛、(b)で2というように個々
にばらついてしまう。
FIG. 3 shows the rate temperature characteristics of the oscillator 1 using a crystal resonator having second-order frequency temperature characteristics. (α)
(b) shows the case where the value of capacitor 2 is small due to variations, and (b) shows the case where it is large. In the figure, f, ct) are the characteristics when switch 3 is open (
(b) Crystals with the same characteristics are used for both (b) and (b). t t
(t) and i z (t) are the characteristics when the switch 8 is closed, and ΔfsxΔf2 is the frequency deviation when the switch 3 is opened and closed. Since Δf has a substantially constant value over the entire temperature range, let us now consider the apex temperature T of the quadratic curve. If an attempt is made to adjust Δf by dividing it into four adjustment steps, during each step of adjustment, there will be individual variations, such as 1 for (α) and 2 for (b).

従って、コンデンサ12のバラツキにより調整巾が個々
異なってしまい、何ステップ調整したら歩度がどの程度
調整できるのか分からないため、前述のような集束法に
よる調整をせざるを得ないのである。従って、本発明の
目的はこのような不具合を無くシ、常に歩度調整量が一
定になるような手段を提供し、簡単に手早く歩度調整が
可能となるようにすることにある。
Therefore, due to variations in the capacitor 12, the adjustment range varies from one unit to another, and it is not known how many steps the rate will need to be adjusted, so adjustment must be performed using the focusing method as described above. Therefore, an object of the present invention is to eliminate such inconveniences, provide a means for always keeping the amount of rate adjustment constant, and make it possible to easily and quickly adjust the rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電子時計は、歩度調整の分解能を決定する基準
信号を作り出す分周回路と、Iステップ浩りの歩度調整
量を設定する歩度調整中設定回路と、歩度調整量を設定
する歩度調整量設定回路とりアクタンス素子を水晶発振
器に接続する時間比率を制御するタイミング回路を有し
、該タイミング回路の出力によって歩度調整を行なうこ
とを特徴とする。
The electronic timepiece of the present invention includes a frequency dividing circuit that generates a reference signal that determines the resolution of rate adjustment, a rate adjustment setting circuit that sets the rate adjustment amount of I step height, and a rate adjustment amount that sets the rate adjustment amount. It is characterized in that it has a timing circuit that controls the time ratio of connecting the setting circuit and the actance element to the crystal oscillator, and the rate is adjusted by the output of the timing circuit.

〔作用〕[Effect]

本発明の作用を述べれば、上述の分周回路によって決定
された分解能で△fを充分11cm分化し、その細分化
されたものをいくりか集めて常にlステップの歩度調整
量が一定値となをように歩度調整中設定回路で設定し、
設定された1ステツプを単位に歩度調整量設定回路でス
イッチ8の開閉タイミングを設定し歩度調整を行なうの
で、コンデンサ2がいか々るバラツキをもとうともlス
テップの調整巾は不変となり歩度調整も簡単にできるよ
うになる。
To describe the operation of the present invention, △f is sufficiently divided into 11 cm with the resolution determined by the above-mentioned frequency dividing circuit, and several of the subdivided parts are collected so that the rate adjustment amount of l step is always a constant value. Set in the rate adjustment setting circuit as follows,
Since the rate is adjusted by setting the opening/closing timing of the switch 8 using the rate adjustment amount setting circuit in units of one set step, the adjustment range of 1 step remains unchanged even if the capacitor 2 has a large variation, and the rate can also be adjusted. It becomes easy to do.

〔実施例〕〔Example〕

第1図は、本発明の概略をプロツク図で表わしたもので
ある。第1図において、1〜8はすでに述べた第2図と
同様であり、4は時計機能5の基準信号IFo と歩度
調整の分解能を決定する基準信号FIm’2を作り出す
分局回路、6は歩度調整中設定回路、7は歩度調整量設
定回路、8はタイミング回路、2は調整巾を決定する数
値でL!−、Lfiはαを設定する端子、Pは調整量を
決定する数値でり、÷1〜LMはPを設定する端子であ
る。この回路を分かりやすく説明するために第4図を用
いる。
FIG. 1 shows an outline of the present invention in the form of a block diagram. In FIG. 1, 1 to 8 are the same as those in FIG. 2 already described, 4 is a branch circuit that produces the reference signal IFo of the clock function 5 and the reference signal FIm'2 that determines the resolution of rate adjustment, and 6 is a branch circuit for rate adjustment. Adjustment setting circuit, 7 is rate adjustment amount setting circuit, 8 is timing circuit, 2 is the numerical value that determines the adjustment width, L! -, Lfi are terminals that set α, P is a numerical value that determines the amount of adjustment, and ÷1 to LM are terminals that set P. FIG. 4 is used to explain this circuit in an easy-to-understand manner.

6一 F2は周波数、 II’−1= 1/P)  である。61 F2 is the frequency, II'-1=1/P).

Sは1ステツプの歩度調整量でS;αdであり、歩度調
整量設定回路6はこの演算式を実現するものである。
S is the rate adjustment amount of one step and is S; αd, and the rate adjustment amount setting circuit 6 realizes this calculation formula.

つまり回路上丁:  は一定値であるので△fがばらつ
くことによりdは変化するが、係数αを調整して Bl
を#1は一定値にするのである。ここでαは整数である
ので分解能dは、要求される時計精度に対して充分歩度
調整が可能な調整ステップ巾Sをコンデンサ2のバラツ
キによる任意の△fにおいて設定できるだけの分解能で
ある必要がある。
In other words, since the circuit is a constant value, d changes as △f varies, but by adjusting the coefficient α, Bl
#1 is set to a constant value. Here, α is an integer, so the resolution d needs to be high enough to set the adjustment step width S, which allows sufficient rate adjustment for the required clock accuracy, at any △f due to variations in the capacitor 2. .

従って、あらかじめ生産工程において、△fを測定しd
を求め所望のSに対するαを個々算出して、歩度調整量
設定回路6にそのαを設定しておけば、見かけ上調整巾
1ステップはすべての製品において一定値とすることが
できる。1ステツプの調整中が決まれば、時計の歩度づ
れに対して何ステップ調整してやれば良いかは簡単に決
まる。つまり第4図のLが調整量だとすればL : P
、Elとなるステップ数Pを設定することによりこの演
算式を定現し、全体の調整量を決定するのが歩度調整置
設7一 定回路7である。従って、とのPの設定をユーザーに開
放することにより時計店での簡単かつスピーディな歩度
調整が可能となる。8のタイミング回路は、7で演算さ
れてきた結果74(I’+とFlのタイミングを取るこ
とによって、実際の歩度調整信号IT’、を形成する回
路である。
Therefore, in the production process, △f is measured in advance.
By determining α for the desired S and setting the α in the rate adjustment amount setting circuit 6, the apparent adjustment width of one step can be made constant for all products. Once it is determined that one step is being adjusted, it is easy to determine how many steps should be adjusted to compensate for the rate deviation of the clock. In other words, if L in Figure 4 is the adjustment amount, then L: P
, El, the rate adjustment installation 7 constant circuit 7 defines this arithmetic expression and determines the overall adjustment amount. Therefore, by opening the setting of P to the user, it becomes possible to easily and speedily adjust the rate at a watch store. The timing circuit 8 is a circuit that forms the actual rate adjustment signal IT' by timing the result 74 (I'+ and Fl) calculated in 7.

以上説明してきたシステムの一実施例を示したのが第5
図であり、そのタイミングチャートを第6図に示した。
The fifth example shows an example of the system explained above.
6, and its timing chart is shown in FIG.

以下、これらの図によってさらに具体的な説明を加える
。第5図において、1〜5及び一点鎖線で囲まれた6〜
8は第1図と同様、破線で囲まれた9はリセット端子付
のバイナリカウンタ、同じ< 10は一致検出回路、”
1−”5は調整ステップ巾設定端子、IJ6〜L9は調
整量設定端子であり、第6図における記号はすべて第5
図のられ、周波数偏差Δfが512分割されることにな
る。今仮にΔf = 0.205sec/dayとする
とd =0゜0004 sec/dαV となる。こと
で希望の時計精度において歩度調整するための歩度調整
量1ステップSが0.0085ttc/dayであると
すると%B=20.dとなり、dの調整量を頷集めて1
ステツプの調整イツチ8を閉にすれば、dの調整量が得
ら、れる)歩度調整量設定回路6は、′L1〜L5にバ
イナリコードでα;幻を設定すれば亢進カウンタとなり
、希望のF s (20)を得ることができ、コンデン
サ2のバラツキでΔfが変化しαが変わりてもそのαを
設定すれば同様に必要とするFs(α)が得られる。
A more specific explanation will be given below with reference to these figures. In Figure 5, 1 to 5 and 6 to 5 surrounded by a dashed line
8 is the same as in Figure 1, 9 surrounded by a broken line is a binary counter with a reset terminal, and 10 is a coincidence detection circuit.
1-"5 is the adjustment step width setting terminal, IJ6 to L9 are the adjustment amount setting terminals, and all symbols in FIG.
As shown in the figure, the frequency deviation Δf is divided into 512. Now, if Δf = 0.205 sec/day, then d = 0°0004 sec/dαV. Therefore, if the rate adjustment amount 1 step S for adjusting the rate at the desired clock accuracy is 0.0085ttc/day, %B=20. d, and by collecting the adjustment amount of d, we get 1
If the step adjustment switch 8 is closed, the adjustment amount d can be obtained.) The rate adjustment amount setting circuit 6 sets 'L1 to L5 in binary code α; Fs (20) can be obtained, and even if Δf changes due to variations in the capacitor 2 and α changes, by setting that α, the required Fs(α) can be obtained in the same way.

又、計算上αが整数にならない場合は、小数点以下を切
り捨て又は切り上けするが、それによる誤差が精度上無
視できない場合は、無視できる範囲になるまで分解能d
を上げてやり(1P1とF2の差を拡げる)、その分だ
け回路6のビット数を上げてやれば良い。このようにし
て生産工程上でαを測定演算して回路6に設定すれば全
製品に対して、そこから後の処理、つまり歩度調整量の
設定は共通化することができる。具体的忙は、前例にお
いてはE = 0.008 sec/ dayであるの
で、必要歩度調整量りを0.0565ecldayとす
ると調整ステップPはL== P、Sより7ステツプと
なる。従って、とのPを歩度調整量設定回路7のLb%
L、に設定するととによりF a (7) =7− I
’ s (20)となり、前述の歩度調整量設定回路の
場合と同様の作用で所望調整量を表わすF 4(P)が
得られる。このように形成されたF4(P)とPlとの
比を表わす信号F5をタイミング回路8で形成し、1+
′5によりスイッチ8を制御することによって所望の歩
度調整を行なうことが可能となるのである。第6図には
、上記各信号の流れを示した。
In addition, if α is not an integer in the calculation, the decimal places are rounded down or rounded up, but if the resulting error cannot be ignored in terms of accuracy, the resolution d is increased until it becomes negligible.
(increase the difference between 1P1 and F2) and increase the number of bits of circuit 6 by that amount. If α is measured and calculated in the production process and set in the circuit 6 in this manner, subsequent processing, that is, setting of the rate adjustment amount, can be made common to all products. In the example, the specific busyness is E = 0.008 sec/day, so if the required rate adjustment amount is 0.0565 eclday, the adjustment step P will be 7 steps from L = = P, S. Therefore, P of and Lb% of rate adjustment amount setting circuit 7
When set to L, F a (7) = 7- I
' s (20), and F 4 (P) representing the desired adjustment amount is obtained by the same operation as in the rate adjustment amount setting circuit described above. A signal F5 representing the ratio of F4(P) and Pl thus formed is formed by a timing circuit 8, and 1+
By controlling the switch 8 with '5, it becomes possible to perform desired rate adjustment. FIG. 6 shows the flow of each of the above signals.

なお、本発明によるシステムの構成は本実施例に限らず
、例えば回路6,7はプリセット端子を持つダウンカウ
ンタを用いても構成可能であり、回路8は回路を構成し
ている素子の遅れが大きいlO− ときはそれを考慮した構成にする必要がある。
Note that the configuration of the system according to the present invention is not limited to this embodiment. For example, circuits 6 and 7 can be configured using down counters having preset terminals, and circuit 8 can be configured by using a down counter with a preset terminal. When the value of lO- is large, it is necessary to take this into account.

〔発明の効果〕〔Effect of the invention〕

本発明を分周回路操作による論理緩急と併用すれば、設
定方法は全く該論理緩急方式と同様でありながら、外部
から眺めれば単なる設定ビット数増加によるだけで該論
理緩急のみでは実現不可能な細かい歩度調整が容易に可
能となる。従ってユーザーは個々の製品のバラツキなど
には気を使わず、定められた歩度調整中と調整が必要々
時計歩度のみを考慮して調整作業を行なうことができ、
アフターサービス上非常に有利な方式となる。
If the present invention is used in conjunction with logical moderation using frequency dividing circuit operation, the setting method is exactly the same as the logic moderation method, but when viewed from the outside, it is simply an increase in the number of setting bits, which is impossible to achieve with logic moderation and moderation alone. Fine rate adjustments can be made easily. Therefore, the user can perform adjustment work without worrying about variations in individual products, considering only the specified rate adjustment and the clock rate that needs adjustment.
This is a very advantageous method in terms of after-sales service.

【図面の簡単な説明】[Brief explanation of drawings]

第1図−一番車発明による電子時計のブロック図 第2図・・・リアクタンス可変方式概略図第3図(α)
(b)を第4図・・水晶発振器の温度特性第5図・・・
本発明の一実施例 第6図・・・第5図の回路のタイミングチャー1・・水
晶発振器 2・・リアクタンス素子3・・スイッチ  
4・・分周器 6・・歩度調整量設定回路 7・・歩度調整量設定回路 8・・タイミング回路 以   上
Figure 1 - Block diagram of the electronic clock invented by the first wheel Figure 2...Schematic diagram of variable reactance system Figure 3 (α)
(b) in Figure 4... Temperature characteristics of crystal oscillator Figure 5...
An embodiment of the present invention Fig. 6 Timing chart of the circuit shown in Fig. 5 1 Crystal oscillator 2 Reactance element 3 Switch
4... Frequency divider 6... Rate adjustment amount setting circuit 7... Rate adjustment amount setting circuit 8... Timing circuit

Claims (1)

【特許請求の範囲】[Claims] 時間標準となる水晶発振器に周波数可変用のコンデンサ
をスイッチを介して設け、該スイッチの開閉により歩度
調整を行なう電子時計において、前記水晶発振器の出力
を分周して歩度調整の分解能を決定する基準信号を作り
出す分周回路と、該分解能をもとに必要な1ステップ当
りの歩度調整巾を設定する歩度調整巾設定回路と、該歩
度調整巾をもとに歩度調整量を設定する歩度調整量設定
回路と、前記基準信号と該歩度調整量設定回路の出力に
応じて前記スイッチの開閉の比率を制御するタイミング
回路を有し、該タイミング回路の出力によって歩度調整
を行なうことを特徴とした電子時計。
A standard for determining the resolution of rate adjustment by dividing the output of the crystal oscillator in electronic watches in which a frequency variable capacitor is installed via a switch in a crystal oscillator serving as a time standard, and the rate is adjusted by opening and closing the switch. A frequency dividing circuit that generates a signal, a rate adjustment width setting circuit that sets the required rate adjustment width per step based on the resolution, and a rate adjustment amount that sets the rate adjustment amount based on the rate adjustment width. An electronic device comprising a setting circuit and a timing circuit that controls the opening/closing ratio of the switch according to the reference signal and the output of the rate adjustment amount setting circuit, and the rate is adjusted by the output of the timing circuit. clock.
JP14001784A 1984-07-06 1984-07-06 Electronic timepiece Granted JPS6140586A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14001784A JPS6140586A (en) 1984-07-06 1984-07-06 Electronic timepiece
GB08516482A GB2163575B (en) 1984-07-06 1985-06-28 Improvements in or relating to electronic timepieces
US06/750,803 US4730286A (en) 1984-07-06 1985-07-01 Circuit and method for correcting the rate of an electronic timepiece
CH294785A CH664252GA3 (en) 1984-07-06 1985-07-08
HK789/89A HK78989A (en) 1984-07-06 1989-10-05 Improvements in or relating to electronic timepieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14001784A JPS6140586A (en) 1984-07-06 1984-07-06 Electronic timepiece

Publications (2)

Publication Number Publication Date
JPS6140586A true JPS6140586A (en) 1986-02-26
JPH0476074B2 JPH0476074B2 (en) 1992-12-02

Family

ID=15258996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14001784A Granted JPS6140586A (en) 1984-07-06 1984-07-06 Electronic timepiece

Country Status (1)

Country Link
JP (1) JPS6140586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189484A (en) * 1985-02-18 1986-08-23 Seiko Epson Corp Electronic clock
JPH05117596A (en) * 1991-10-29 1993-05-14 Sumitomo Bakelite Co Ltd Film adhesive having high thermal conductivity and bondable by hot melt bonding
WO2006060154A1 (en) * 2004-11-12 2006-06-08 E.I. Dupont De Nemours And Company Articles incorporating sulfoisophthalic acid-modified polyester multilayer coextruded structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189484A (en) * 1985-02-18 1986-08-23 Seiko Epson Corp Electronic clock
JPH05117596A (en) * 1991-10-29 1993-05-14 Sumitomo Bakelite Co Ltd Film adhesive having high thermal conductivity and bondable by hot melt bonding
WO2006060154A1 (en) * 2004-11-12 2006-06-08 E.I. Dupont De Nemours And Company Articles incorporating sulfoisophthalic acid-modified polyester multilayer coextruded structures

Also Published As

Publication number Publication date
JPH0476074B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
US4009445A (en) Divider for an electronic timepiece
GB1571235A (en) Electronic timepieces
US4043109A (en) Electronic timepiece
JPS6140586A (en) Electronic timepiece
US4282595A (en) Method for digital frequency trimming an oscillator in an electronic timepiece
US4730286A (en) Circuit and method for correcting the rate of an electronic timepiece
US6381702B1 (en) Electronic clock
JPS6129652B2 (en)
JPH06342088A (en) Timing method, semiconductor device and timer
US3675147A (en) Circuit for regulating the mean frequency of an oscillating system
US4098070A (en) Digital display electronic wristwatch
JPS61189484A (en) Electronic clock
JPS585395B2 (en) Suishiyoudokei no Kankiyuhoushiki
US4250523A (en) Electronic timepiece
JPS61260184A (en) Electronic timepiece
JPH0518286B2 (en)
JPS58168988A (en) Electronic timepiece with temperature compensating function
JPS6057030B2 (en) electronic clock
JPH0241713B2 (en)
SU728089A1 (en) Frequency change rate measuring device
JPH0346408A (en) Clock
JPS58143292A (en) Electronic timepiece provided with temperature compensation
JPS60173492A (en) Electronic timepiece
JPH0259437B2 (en)
JPS6025485A (en) Electronic timepiece

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term