JPS60173492A - Electronic timepiece - Google Patents

Electronic timepiece

Info

Publication number
JPS60173492A
JPS60173492A JP27246884A JP27246884A JPS60173492A JP S60173492 A JPS60173492 A JP S60173492A JP 27246884 A JP27246884 A JP 27246884A JP 27246884 A JP27246884 A JP 27246884A JP S60173492 A JPS60173492 A JP S60173492A
Authority
JP
Japan
Prior art keywords
temperature
crystal oscillator
correction
crystal
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27246884A
Other languages
Japanese (ja)
Other versions
JPS6124667B2 (en
Inventor
Shinji Morozumi
両角 伸治
Tatsuji Asakawa
浅川 辰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP27246884A priority Critical patent/JPS60173492A/en
Publication of JPS60173492A publication Critical patent/JPS60173492A/en
Publication of JPS6124667B2 publication Critical patent/JPS6124667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/04Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses
    • G04F5/06Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses using piezoelectric resonators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)

Abstract

PURPOSE:To facilitate incorporation during manufacture and attain high-accuracy temperature correction by providing masked ROM for storing data on the temperature coefficient of a crystal oscillator, etc., and nonvolatile memory for storing variance in temperature characteristics of the crystal oscillator, etc. CONSTITUTION:The temperature coefficient of secondary curve characteristics of the crystal oscillator which is stored in the masked ROM8 is read out according to detected temperature from a temperature detection part 4 and supplied to a logical operation part 5 together with variance of temperature characteristics of the crystal oscillator read out of the PROM9. Then, an arithmetic part 5 generates a temperature correcting signal through RAM6, a temporary register 7, etc., and impresses it to a logical control part 3, which controls a frequency divider 2 to make a rate adjustment. Consequently, the electronic timepiece which facilitates the incorporation during the manufacture and attain high-accuracy temperature correction is obtained.

Description

【発明の詳細な説明】 本発明の目的は高精度、化コストの電子時計に関する。[Detailed description of the invention] The object of the present invention is to relate to a highly accurate and inexpensive electronic timepiece.

本発明の目的は水晶振動子の温度特性を補正する電子時
計において、水晶振動子の製造時バラツキ、又は温度検
出回路のバラツキの調整を容易にした′電子時計を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electronic timepiece that corrects the temperature characteristics of a crystal oscillator, in which manufacturing variations in the crystal oscillator or variations in the temperature detection circuit can be easily adjusted.

従来の電子時計、特に腕時計においては、基準時間源と
して、音叉型の52.7.68 K Hzの鉄損周波数
の屈曲モードの水晶振動子による水晶発振回路が広く用
いられている。しかしこの屈曲型水晶振動子の欠点とし
ては、温度特性が良好でない、経時変化が太きいなどが
あげられ、従来この点を回路側より解決する手段が考え
られている。例えば温度特性のあるコンデンサにエリ水
晶の発振周波数の信置特性を改善する方法や、2つの水
晶によりビートをとって補正する方法である。しかしこ
れらの方法は調整に手数がかかりすぎること、使用しり
ろ水晶やコンデンサに制限があり水晶に厳しいスペック
を要求せざるを得ないこと等により生産性が悪く、コス
ト高であると同時に部品数が多く、時計のデザインを悪
くする要因でもある。
BACKGROUND OF THE INVENTION In conventional electronic watches, especially wristwatches, a crystal oscillation circuit using a tuning fork type flexural mode crystal oscillator with an iron loss frequency of 52.7.68 KHz is widely used as a reference time source. However, the disadvantages of this bent crystal resonator include poor temperature characteristics and large changes over time, and conventional methods have been considered to solve these problems from the circuit side. For example, there is a method of improving the reliability of the oscillation frequency of a crystal using a capacitor with temperature characteristics, or a method of correcting the beat by using two crystals. However, these methods require too much effort to make adjustments, have limitations on the type of crystals and capacitors that can be used, and have to meet strict specifications for the crystals, resulting in poor productivity, high costs, and limited number of parts. There are many cases where this happens, and it is also a factor that deteriorates the design of watches.

本発明け、IC内に組み込むことのできる温度検出回路
及び歩度調整手段を用いると共に温度補正を行うだめの
新た々湯度補正信号作成のための回路を提供しこの欠点
を解決すると共に、更に、水晶振動子、温度検出回路の
バラツキの調整を容易にして温度補正の高精度化を図る
ものである。
The present invention solves this drawback by using a temperature detection circuit and rate adjustment means that can be incorporated into an IC, and provides a circuit for creating a new hot water temperature correction signal for temperature correction. The purpose is to facilitate the adjustment of variations in the crystal oscillator and temperature detection circuit to improve the accuracy of temperature correction.

第1図は本発明における基本的々ブロック図の一例であ
る。発振器1の出力を分周器2にエリある程度の周波数
に分周した後、これをクロックとして演算処理回路を動
かす、演算処理回路は次のブロックから成る。すなわち
アドレスを発生し、プログラムに従って各ブロックのコ
ントロール回路なうコントロール・バスを出力するPL
Aにより構成されるロジック・コントロール部5、RA
M(ランダム・アクセスメモリー)6、演算のためのテ
ンボラ−・レジスタ7、演算のためのプログラムの外に
水晶振動子の温度特性のデータの一部を記憶して定数を
設電するROM(リード・オノリ・メモリー)8.PR
OIII(プログラマフル・ROM)9である。又デー
タ信号のやりとりはコモンバス14.15を通して行な
う、l更に回路4FifM !センサーとセンソングさ
れた温度をデジタル信号に変換[−、データバスに乗せ
る役割をする温度検出回路であり、10はpROMの書
き込みコントロール回路である。12は表示駆動回路、
+5は表示装置である。2117−j分周器20分局比
を制御するための割込みコントロール信号である。
FIG. 1 is an example of a basic block diagram in the present invention. After the output of the oscillator 1 is divided into a certain frequency by the frequency divider 2, this is used as a clock to operate the arithmetic processing circuit.The arithmetic processing circuit consists of the following blocks. In other words, the PL generates addresses and outputs the control bus, which is the control circuit of each block, according to the program.
A logic control unit 5, RA consisting of
M (Random Access Memory) 6, Temperature register 7 for calculations, ROM (read memory) that stores part of the data of the temperature characteristics of the crystal resonator and sets constants in addition to the program for calculations.・Honoori Memory) 8. PR
It is OIII (programmer full ROM) 9. Data signals are exchanged through common buses 14 and 15, and circuit 4FifM! 10 is a temperature detection circuit that serves to convert the temperature sensed by the sensor into a digital signal and transfer it to the data bus, and 10 is a pROM write control circuit. 12 is a display drive circuit;
+5 is a display device. This is an interrupt control signal for controlling the division ratio of the 2117-j frequency divider 20.

第2図Aは水晶振動子の代表的な塩度特性である。この
特性に対しBは補正曲線であり、まず搗率を検出1.B
の曲線を形成するのは回路ブロック4によって行がねれ
る。填5図はこの回路を具体例として表わI−だもので
あり、MOS)ランジスタにより構成される温度検出器
とMOSトランジスタにより構成される温度信号変換器
からなる。
FIG. 2A shows typical salinity characteristics of a crystal resonator. B is a correction curve for this characteristic, first detect the milling rate 1. B
The lines are twisted by the circuit block 4 to form the curve. Figure 5 shows a specific example of this circuit, which consists of a temperature detector constituted by a MOS transistor and a temperature signal converter constituted by a MOS transistor.

この回路においてMOS)ランジスタ51〜5554〜
57は全く同一の電圧発生回路である。
In this circuit, MOS) transistors 51 to 5554 to
Reference numeral 57 denotes an identical voltage generating circuit.

MOS )ランジスタ50と54は他のMOSトランジ
スタと7キイ値が異なるようイオン打込工程等により形
成される。この時各々の出力Vs、 、 Vs。
The MOS transistors 50 and 54 are formed by an ion implantation process or the like so that their key values are different from those of other MOS transistors. At this time, each output Vs, , Vs.

にはこの50.54と他のMOSトランジスタのシキイ
11uの差が現われる、又MOSトランジスタ50.3
1と54.55のベアーを同一コンダクタンス係数(β
とすると出力は電源電圧依存性と温度依存性の全くない
基準電圧となる。文通にこのβを適当に異ならせるとり
まくm度依存性と電源依存性のある電圧出力となる。本
発明例ではVS。
The difference between this 50.54 and the other MOS transistors' 11u appears, and the MOS transistor 50.3
1 and 54.55 with the same conductance coefficient (β
Then, the output becomes a reference voltage that has no dependence on power supply voltage or temperature. Appropriately varying this β results in a voltage output that is dependent on the surrounding m degrees and dependent on the power source. In the example of the present invention, VS.

は塩度特性のある又バージツキの極めて少ない出方電圧
となり、v8.は湛度係f!i、oの又バラツキの極め
て少ない基準電圧となっている。この具体例では、トラ
ンジスタの7キイ値と移動度の温度特性に工す支配され
るトランジスタのコンダクタンスの温度係数を利用する
。又、本発明にひいては、MOSトランジスタの表面の
みでなく、バルク中の移動度の温度係数を主として利用
してもよい、φ日はサンプリングクロックであり、例え
id’ I Q秒に1度とか、1分に1度の割で、1〜
10m5ecのパルス幅(サンプリング時間)であり、
まずφBがLレベルになると、サンプリングがスタート
しゲート60が開きクロック入力OLがレジスター61
に入力される。するとレジスターの値が順次変化するに
従ってトランジスター49〜56か順次オンされ、VB
、が抵抗aO−,46によって順次異なる公比で分圧さ
れてVθ′2として比較器57に入力される。一方、比
較器57の他方の入力にけVB、が抵抗58.39に工
って分圧された電圧が入力されている。クロック信号c
LKJ:すVθ′2の直を逐次比較を(−1向′1とV
 s/、が一致すると比較器57から出方がなされゲー
ト6oが閉じこのときのレジスター61のデータがスト
アされデコーダ62によりバイナリ−コードに変換され
て、パスラインに出力される。すなわち40〜62はA
−TJコンバータとして動作している。また、このデコ
ーダ62は、論理演算せずに2乗デコード出力としてそ
の出方を直接割込コントロール信号2oとして用いるこ
とができる。第5図の例けφ。−6による8レベル検出
すなわチ湛度ヲ87fつ、・に区切っているが、必要に
応じてaが(も粗くもできることは言うまでもない。
V8. has a salinity characteristic and has an output voltage with extremely little barging. Is a lot of people f! This is a reference voltage with extremely small variations in i and o. In this specific example, the temperature coefficient of the conductance of the transistor, which is controlled by the seven key values of the transistor and the temperature characteristics of the mobility, is used. Further, according to the present invention, the temperature coefficient of mobility in the bulk as well as the surface of the MOS transistor may be mainly used. At a rate of once per minute, 1~
The pulse width (sampling time) is 10m5ec,
First, when φB goes to the L level, sampling starts and the gate 60 opens and the clock input OL is transferred to the register 61.
is input. Then, as the register values change sequentially, transistors 49 to 56 are turned on sequentially, and VB
, are sequentially divided by different common ratios by the resistors aO-, 46 and inputted to the comparator 57 as Vθ'2. On the other hand, to the other input of the comparator 57, a voltage divided by VB by resistors 58 and 39 is input. clock signal c
LKJ: Succeeding direct comparison of Vθ'2 (-1 direction'1 and V
When s/ match, an output is made from the comparator 57, the gate 6o is closed, and the data in the register 61 at this time is stored, converted into a binary code by the decoder 62, and output to the pass line. That is, 40-62 is A
- Operating as a TJ converter. Moreover, this decoder 62 can directly use the output as a square decoded output as the interrupt control signal 2o without performing any logical operation. The example φ in Figure 5. -6 is used for 8-level detection, that is, the density is divided into 87 f times, but it goes without saying that a can be made coarser if necessary.

次に水晶振動子の塩度特性は第2図のように、二次特性
を有するものであるが、その際の二次の係数や中ノb温
度は、製造時の設?及び製造バラツキによって変化する
、そこで水晶振動子のあらかじめ役回された温度係数は
マスクROMエリなるROM8にバイナリデータとして
格納される。更に合わせ込みを精密に行い補正精度を上
げるため先述の温度検出器の係数のバラツキ、振動子の
温度係数り)バラツキ等を完全にキャンセルするために
、時計1つ1つについてFROM9と書込コントロール
回路10を介1〜て外部エリ最適の数値を格納する。w
、pは書込パルスであり、FROMデバイスの一例とし
てF A M OEl (FLOAT工NG−GATK
 AVALANO)IK INJECTION MOS
)lイブの場合、20〜50Vが必要となる。他にはヒ
ユーズタイプメモII−や、ダイオード、絶縁膜破壊式
等の不揮発性メモリー素子であれは(機械的スイッチ、
セVクトボンド、レーザト11ミング)何でもよい。こ
のように振動子の温度特性のデータと、温度信号があり
さえすれは、あとはCPUブロック3と論理演算部5と
メモリー6.7に工り一足の数式に従って補正値が決定
できる。まず温度信号(直線と仮足する)を二乗して、
二次特性とした後、適当が係数をかけると、第4図Cの
如くなる。ここで二次曲線にかける係数はFIOM8か
又はFROM9に記憶された水晶振動子の温度係数に基
づいてだめられる。、、次にこのCの値に従って補正信
号となる割込みコントロール信号20が出力されると、
分周器2にパルスの割込が行なわれ、温度による歩度の
変化が補正される。′第5図の(a)は割込のない時(
b)1・(c)は割込がそれぞれ1゜2が行なわれた時
の例である、この割込方式は具体的に様々な手段がある
ので1つ1つの例示は省略するが、絶対歩度の論理補正
(水晶のf。の補正を発振回路のコンデンサによらずに
、分周器の分周比を調整して行なう方式)と、本発明の
温度補正における論理補正とが全く同一の回路で成し得
ることは、素子の低減の上で大きなメリットである。又
この温度補正は分周器の分周比の制御のみでなく、例え
は水晶発振器のコンデンサを論理的にIC内部で選択す
る方式のように発振器にて行なうことも可能である。
Next, the salinity characteristic of a crystal resonator has a quadratic characteristic as shown in Fig. 2, but the coefficient of the quadratic and the internal temperature are determined by the settings at the time of manufacturing. The temperature coefficient of the crystal resonator, which changes due to manufacturing variations, is stored as binary data in the ROM 8, which is a mask ROM area. Furthermore, in order to make the adjustment more precise and increase the correction accuracy, in order to completely cancel out the variations in the coefficients of the temperature detector and the temperature coefficient of the vibrator, etc., we have created FROM9 and write control for each clock. The optimal numerical value of the external area is stored through the circuit 10. lol
, p is a write pulse, and FAM OEL (FLOAT Engineering NG-GATK) is an example of a FROM device.
AVALANO) IK INJECTION MOS
), 20 to 50V is required. Other non-volatile memory elements such as fuse type memo II-, diodes, and dielectric breakdown types (mechanical switches,
(Section bond, Laser bond) Anything is fine. In this way, as long as the data on the temperature characteristics of the vibrator and the temperature signal are available, the correction value can be determined according to a mathematical formula that requires only the CPU block 3, logic operation section 5, and memory 6.7. First, square the temperature signal (straight line and temporary addition),
After setting it as a quadratic characteristic, if an appropriate coefficient is applied, the result is as shown in FIG. 4C. Here, the coefficient applied to the quadratic curve is determined based on the temperature coefficient of the crystal resonator stored in FIOM8 or FROM9. ,, Next, when the interrupt control signal 20, which is a correction signal, is output according to the value of C,
A pulse is inserted into the frequency divider 2 to compensate for changes in rate due to temperature. '(a) in Figure 5 is when there is no interrupt (
b) 1 and (c) are examples when interrupts are performed at 1° and 2, respectively. There are various concrete methods for this interrupt method, so I will not give examples of each one, but it is absolutely The logical correction of the rate (a method in which the f. of the crystal is corrected by adjusting the dividing ratio of the frequency divider without using the capacitor of the oscillation circuit) and the logical correction in the temperature correction of the present invention are completely the same. What can be achieved with circuits is a great advantage in reducing the number of elements. Moreover, this temperature correction can be performed not only by controlling the frequency division ratio of the frequency divider, but also by the oscillator, for example, by logically selecting the capacitor of the crystal oscillator inside the IC.

第6図りは本発明の具体例としてあげた先述の方式の実
際の歩度温度特性であり、リップルはあるものの、時計
の平均的温度変化を考慮すれば第2図Aに比し、精度は
大分上昇する。又水晶とICは時計内の恒温化にエリ、
温度差は無視できる位小さいので問題はガい。
Figure 6 shows the actual rate temperature characteristics of the above-mentioned method as a specific example of the present invention, and although there are ripples, the accuracy is much higher than that in Figure 2A, considering the average temperature change of the clock. Rise. Also, the crystal and IC are useful for maintaining a constant temperature inside the watch.
The temperature difference is so small that it can be ignored, so it's not a problem.

以上のように本発明は、水晶振動子の温度係数等のデー
タを記憶するマスクROMと個々の水晶振動子又は温度
検出回路のバラツキを記憶する不揮発性メモリーを設け
たことに工す、製造時の合せ込みを容易にして温度補正
の高精度化を可能とすることができる。
As described above, the present invention provides a mask ROM that stores data such as the temperature coefficient of a crystal resonator, and a non-volatile memory that stores variations in individual crystal resonators or temperature detection circuits. It is possible to easily adjust the temperature, thereby making it possible to improve the accuracy of temperature correction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の温度補正時計のm成例5はロジックコ
ントロール部、4は温度検出回路、W、Pは書込パルス 第2図は、A・・・通常の振動子の温度特性、B・・・
補正曲線を表わす図。 第6図は温度検出部、信号変換部の具体例。 纂4図は本発明における補正例。 第5図(a)〜(c)は歩度補正のだめの割込信号の一
例、Cはその補正曲線。 第6図は本発明の温度補正された歩度の温度特性の一例
、Dはその歩度曲線。 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上 務 “”第3図 第4図 第5図
FIG. 1 shows an example of a temperature-compensated timepiece according to the present invention. 5 is a logic control section, 4 is a temperature detection circuit, W and P are write pulses. FIG. B...
A diagram showing a correction curve. FIG. 6 shows a specific example of a temperature detection section and a signal conversion section. Figure 4 shows an example of correction in the present invention. FIGS. 5(a) to 5(c) are examples of interrupt signals for rate correction, and C is the correction curve thereof. FIG. 6 is an example of the temperature characteristic of the temperature-corrected rate of the present invention, and D is its rate curve. Applicant Suwa Seikosha Co., Ltd. Agent Mogami Patent Attorney Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 二次の山鹿係数を有する水晶振動子を用いた水晶発振器
、前記水晶発振器の信号を分局する分周器及び時刻表示
手段工りなる電子時計において、温度検出を行う温度検
出回路、前記温度検出回路の検出出力を入力し温度補正
信号を形成する演算手段、前記演算平膜の出力により歩
度補正を行う補正手段及び記憶手段を有し前記記憶手段
は前記水晶振動子の温度特性の情報を記憶するマスクR
OMと前記水晶撮動子の温度特性のバラツキ又は前記温
度検出回路のバラツキに関する値を記憶する不揮発性メ
モリー素子よりなることを特徴とする電子時計。
A temperature detection circuit for detecting temperature in an electronic watch comprising a crystal oscillator using a crystal oscillator having a second-order Yamaga coefficient, a frequency divider for dividing the signal of the crystal oscillator, and a time display means; a calculation means for inputting the detection output of the quartz crystal to form a temperature correction signal, a correction means for correcting the rate based on the output of the calculation flat film, and a storage means, the storage means storing information on the temperature characteristics of the crystal resonator. Mask R
An electronic timepiece comprising a nonvolatile memory element that stores values related to variations in temperature characteristics of the OM and the crystal sensor or variations in the temperature detection circuit.
JP27246884A 1984-12-24 1984-12-24 Electronic timepiece Granted JPS60173492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27246884A JPS60173492A (en) 1984-12-24 1984-12-24 Electronic timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27246884A JPS60173492A (en) 1984-12-24 1984-12-24 Electronic timepiece

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14115377A Division JPS5473671A (en) 1977-11-25 1977-11-25 Semiconductor integrated circuit for watch

Publications (2)

Publication Number Publication Date
JPS60173492A true JPS60173492A (en) 1985-09-06
JPS6124667B2 JPS6124667B2 (en) 1986-06-12

Family

ID=17514335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27246884A Granted JPS60173492A (en) 1984-12-24 1984-12-24 Electronic timepiece

Country Status (1)

Country Link
JP (1) JPS60173492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148990U (en) * 1986-03-13 1987-09-21
US11669052B2 (en) 2019-03-13 2023-06-06 Seiko Epson Corporation Timepiece and control method of a timepiece

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155660A (en) * 1974-09-16 1976-05-15 Centre Electron Horloger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155660A (en) * 1974-09-16 1976-05-15 Centre Electron Horloger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148990U (en) * 1986-03-13 1987-09-21
US11669052B2 (en) 2019-03-13 2023-06-06 Seiko Epson Corporation Timepiece and control method of a timepiece

Also Published As

Publication number Publication date
JPS6124667B2 (en) 1986-06-12

Similar Documents

Publication Publication Date Title
JPS6124666B2 (en)
US7250825B2 (en) Method and apparatus for calibration of a low frequency oscillator in a processor based system
US5180991A (en) Frequency adjustable RC oscillator
US4192131A (en) Step motor control mechanism for electronic timepiece
EP0872784B1 (en) Oscillation circuit, electronic circuit using the same, and semiconductor device, electronic equipment, and timepiece using the same
US3922844A (en) Electronic timepiece
US4060802A (en) Driving circuit for a liquid crystal display device
US4465379A (en) Temperature detector circuit for timepiece
JPS60173492A (en) Electronic timepiece
US4114363A (en) Electronic timepiece
JPS587584A (en) Electronic timepiece with temperature compensation
JPH0340356B2 (en)
US4093873A (en) Compensating digital counter for quartz crystal oscillator
US4730286A (en) Circuit and method for correcting the rate of an electronic timepiece
JPH06342088A (en) Timing method, semiconductor device and timer
US6653907B2 (en) Frequency-variable RC oscillator and microcomputer
JPH06216705A (en) Variable delaying circuit
JPS586430A (en) Temperature measuring circuit
US4098070A (en) Digital display electronic wristwatch
JP3281757B2 (en) Automatic correction device for oscillation error in electronic timepiece
JP2003270369A (en) Time correction method and time correction device for real time clock
JPS59162478A (en) Electronic timepiece with temperature compensation
JPS6124956Y2 (en)
US4162608A (en) Electronic timepiece frequency regulating circuit
JPS6025485A (en) Electronic timepiece