JPS6057030B2 - electronic clock - Google Patents

electronic clock

Info

Publication number
JPS6057030B2
JPS6057030B2 JP10005676A JP10005676A JPS6057030B2 JP S6057030 B2 JPS6057030 B2 JP S6057030B2 JP 10005676 A JP10005676 A JP 10005676A JP 10005676 A JP10005676 A JP 10005676A JP S6057030 B2 JPS6057030 B2 JP S6057030B2
Authority
JP
Japan
Prior art keywords
frequency
circuit
gate
crystal
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10005676A
Other languages
Japanese (ja)
Other versions
JPS5325469A (en
Inventor
稔 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP10005676A priority Critical patent/JPS6057030B2/en
Publication of JPS5325469A publication Critical patent/JPS5325469A/en
Publication of JPS6057030B2 publication Critical patent/JPS6057030B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/04Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses
    • G04F5/06Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses using piezoelectric resonators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 本発明は、水晶振動子等による2個の発振回路を有す
る電子式時計に関するもので、それぞれの発振器の周波
数誤差を併殺する様にゲート切換えを行ない、精度の高
い時間表示を可能にする事を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic timepiece having two oscillation circuits using crystal oscillators, etc., and which performs gate switching to double-play the frequency error of each oscillator, thereby achieving highly accurate timekeeping. The purpose is to enable display.

電子時計、例えば水晶振動子を用いた時計において、
水晶発振回路は通常1個であるが、この時、水晶振動子
の周波数精度は、これを用いた時計の日差或は月差等に
よつて予め規定してある許容誤差範囲になければならな
い。
In electronic watches, such as watches that use a crystal oscillator,
There is usually one crystal oscillator circuit, but in this case, the frequency accuracy of the crystal oscillator must be within a predetermined tolerance range depending on the daily or monthly difference of the clock that uses it. .

例えば日差±0.1秒の保障をする時計では、水晶振動
子の許容誤差は約0.1×10−5であり日差±0.0
第′の保障をする時計の水晶振動子周波数許容誤差は約
2×10−7てある。これは水晶時計を構成する電子回
路特にカウンタ回路を固定化し、時計精度をすべて発振
回路部に背負わせた結果である。この為、時計回路部の
生産性は極めて良いが、水晶振動子自体の製造工程が複
雑になり振動子のコストが高くなる。振動子の製造工程
は、エッチングその他の技術による振動子の切り出し、
一次雑調整、二次精密調整等による多段の調整工程を要
する。更に所期の精度を得るために、最終的には回路に
トリマコンデンサを付加して微調整を行なう。これら一
連の工程を経て、或は途中で所期の精度を得られないと
された振動子は不良品として排除される。従つて水晶の
歩留を上げる為に各工程の管理は一般の電子部品の管理
に較べて精度の点から数桁以上の高い品質を要求するも
のでなければならず、水晶振動子が他の電子部品に較べ
て高コスト部品とされる所以である。 又振動子一個の
水晶時計にあつては水晶の温度係数が精度を決める要因
であつた。
For example, in a watch that guarantees a daily difference of ±0.1 seconds, the tolerance of the crystal oscillator is approximately 0.1 x 10-5, which means that the daily difference is ±0.0 seconds.
The crystal oscillator frequency tolerance of the watch that provides the 'th guarantee is approximately 2 x 10-7. This is the result of fixing the electronic circuits that make up the crystal clock, especially the counter circuit, and placing all of the clock accuracy on the oscillation circuit. Therefore, although the productivity of the clock circuit section is extremely high, the manufacturing process of the crystal resonator itself becomes complicated and the cost of the resonator increases. The resonator manufacturing process involves cutting out the resonator using etching and other techniques.
A multi-stage adjustment process including primary miscellaneous adjustment and secondary precision adjustment is required. Furthermore, in order to obtain the desired accuracy, a trimmer capacitor is finally added to the circuit for fine adjustment. Vibrators that are found to be unable to achieve the desired accuracy through a series of these steps or during the process are rejected as defective products. Therefore, in order to increase the yield of crystal, the management of each process must be several orders of magnitude higher in quality than the management of general electronic components, and it is necessary to This is why it is considered a high-cost component compared to electronic components. Furthermore, in the case of a quartz watch with a single oscillator, the temperature coefficient of the quartz crystal was a factor that determined the accuracy.

時計に使用される水晶振動子の温度周波数特性は通常2
次又は3次曲線で表わされ、広範囲にわたる温度補正が
困難とされていた。特に広温度範囲で高精度を期待する
時計に対しては水晶振動子にATカットタイプを採用す
る方式が良いと一般に認識されているが、ATカットタ
イプ水晶は振動周波数が他のタイプに較べて、2桁以上
も高く回路の応答性、或は消費電力等の点において他に
劣るとされている。 本発明は、これら欠点を除き低コ
ストで高精度が期待できる電子式時計を得るものである
The temperature frequency characteristics of crystal oscillators used in watches are usually 2.
It is expressed by the following or cubic curve, and it has been difficult to perform temperature correction over a wide range. It is generally recognized that it is better to adopt an AT-cut type crystal oscillator for watches that are expected to have high precision especially over a wide temperature range, but the AT-cut type crystal has a lower vibration frequency than other types. , which is more than two orders of magnitude higher than others in terms of circuit response, power consumption, etc. The present invention aims to eliminate these drawbacks and provide an electronic timepiece that can be expected to have high accuracy at a low cost.

以下図面に従つて説明していく。第1図は従来の電子時
計回路ブロックを示すもので1は、水晶発振回路、2は
秒信号を取り出すための分周用固定カウンタ、3は秒、
分、時等の表示に係るカウンタ、4は3の出力を受けて
時間表示を行うディスプレイ部である。第1図にあつて
は、カウンタ群が全て固定されている為表示時間の精度
は水晶発振回路の精度そのものであり、水晶の精度を回
路に合わせる事の必要性が図から理解できる。
The explanation will be given below according to the drawings. FIG. 1 shows a conventional electronic clock circuit block, in which 1 is a crystal oscillation circuit, 2 is a fixed counter for frequency division to extract the second signal, and 3 is a second,
A counter 4 is used to display minutes, hours, etc., and 4 is a display section that receives the output from 3 and displays the time. In FIG. 1, since all the counter groups are fixed, the precision of the display time is the precision of the crystal oscillation circuit itself, and the necessity of matching the precision of the crystal to the circuit can be understood from the figure.

第2図は本発明になる電子時計の1つの例を回路ブロッ
クで表わしたものである。
FIG. 2 shows one example of the electronic timepiece according to the present invention using circuit blocks.

5及び6は発振回路を表わす。5 and 6 represent oscillation circuits.

7,8はそれぞれの発振回路出力バッファてある。7 and 8 are respective oscillation circuit output buffers.

9,10は発振回路出力を選択するゲート回路て何れか
一方のみが選択状態にある事を示してある。
Reference numerals 9 and 10 indicate that only one of the gate circuits for selecting the output of the oscillation circuit is in the selected state.

11は秒信号出力カウンタ、12は表示用カウンタ、1
3はディスプレイ部を表わす。
11 is a second signal output counter, 12 is a display counter, 1
3 represents a display section.

14は11又は12の一連のカウンタ群の内の、予め設
定されている適当な出力信号或は信号群により、カウン
タ11の入力信号として、5又は6の何れかの出力を選
択する信号を発生する回路であり以下14をゲート制御
回路と呼ぶ。
14 generates a signal for selecting the output of either 5 or 6 as an input signal of the counter 11 by an appropriate output signal or signal group set in advance from a series of counter groups 11 or 12. 14 is hereinafter referred to as a gate control circuit.

第1図及び第2図のカウンタ群が共通の分周比から成る
とする。第1図の回路図によつて仮に誤差が±0の表示
ができたとしてこの時の発振周波数を以下基準発振周波
数tとする。第2図5の発振周波数をち+α、6の発振
周波数をFO−βで表わす。ゲート9を常時ON状態に
して発振回路5だけで時計を動作させる場合1秒間にだ
け時計は進む。
Assume that the counter groups in FIGS. 1 and 2 have a common frequency division ratio. Assuming that an error of ±0 can be displayed using the circuit diagram of FIG. 1, the oscillation frequency at this time will be referred to as the reference oscillation frequency t below. The oscillation frequency in FIG. 2 is expressed as +α, and the oscillation frequency in 6 is expressed as FO-β. When the gate 9 is kept ON all the time and the clock is operated only by the oscillation circuit 5, the clock advances only one second.

逆にゲート9を0FF1ゲート10を0Nにして発振回
路6だけで時計を動作させる場合、1秒間にだけ時間が
遅れることになる。
Conversely, when the gate 9 is set to 0FF1 and the gate 10 is set to ON and the clock is operated only by the oscillation circuit 6, the time will be delayed by one second.

これらの値は第1図の回路による従来の時計における誤
差を表わす値である。これに対し、本発明ではゲート9
,10を交互に切り換え両発振回路出力を使用する。仮
にゲート9とゲート10の0N10FF比率を1対1に
取るとすれば平均的な1秒間の進み時間はとなる。仮に
日差或は月差の規格を換算した周波数許容誤差が±γで
表される時計を作る場合、第1図にあつては水晶振動子
はなる式を満たす周波数のものに限られる。
These values represent errors in a conventional clock based on the circuit of FIG. On the other hand, in the present invention, the gate 9
, 10 are switched alternately to use both oscillation circuit outputs. Assuming that the 0N10FF ratio of gates 9 and 10 is 1:1, the average advance time of 1 second is as follows. If a clock is to be manufactured in which the frequency tolerance calculated from the daily or monthly difference standard is expressed as ±γ, the crystal oscillator shown in FIG. 1 is limited to a frequency satisfying the following formula.

第2図においてゲートの0N..0FF時間を1対1に
した場合、前述の結果からなる不等式を満たすαとβの
組み合わせの一対の水晶を組み合わせれば必ず前記規格
を満足する時計が得られる。
In FIG. 2, the gate 0N. .. When the 0FF time is set on a one-to-one basis, a watch that satisfies the above standard can be obtained by combining a pair of crystals with a combination of α and β that satisfies the inequality resulting from the above-mentioned results.

第3図は水晶振動子量産時の振動周波数の分布曲線例て
ある。
FIG. 3 shows an example of a vibration frequency distribution curve during mass production of crystal resonators.

縦軸15は数量、横軸16は周波数誤差を示す。中心の
0は周波数FOである。一般的に分布は第3図が示す如
くF。を中心に左右対称、中心から離れるにつれて減少
していくと考えてさしつかえない。第3図において17
に示される位置の誤差αなる水晶に対して規格を満足す
る水晶の組合せの他方は18なる斜線部に分布する。又
19の位置でα″なる水晶と対にできる他方の水晶は2
0なる斜線部に分布する。第3図から明らかに、本発明
によれば、従来許容誤差±γをはずれる水晶はすべて規
格外域は不良とみなされたのに対し、±γ以上の誤差が
ある水晶でも同等以上の精度を得ることが可能となる。
然も選別によつてすべての量産水晶を良品として使用で
きる事になる。又は、振動子製造工程において、調整工
程を簡略化できる。更に、同一の規格を満足させるα、
βの組合せの幅を広げる方法について述べる。
The vertical axis 15 shows quantity, and the horizontal axis 16 shows frequency error. The center 0 is the frequency FO. Generally, the distribution is F as shown in Figure 3. It is safe to assume that it is symmetrical around the center and decreases as you move away from the center. 17 in Figure 3
The other crystal combination that satisfies the standard for the crystal with a positional error α shown in is distributed in the shaded area 18. Also, the other crystal that can be paired with the crystal α″ at position 19 is 2
It is distributed in the shaded area of 0. It is clear from FIG. 3 that according to the present invention, whereas conventionally all crystals with an error outside the tolerance range of ±γ were considered defective in the non-standard range, even crystals with an error of ±γ or more can achieve the same or higher accuracy. becomes possible.
However, through selection, all mass-produced crystals can be used as good quality. Alternatively, the adjustment process can be simplified in the vibrator manufacturing process. Furthermore, α that satisfies the same standard,
We will discuss how to expand the range of combinations of β.

第2図ゲート制御回路14は、単なる2進カウンタでよ
い。これはフリップフロップ1段で実現でき、入力クロ
ックのデューティ比でゲート制御回路の出力パルスのデ
ューティを変えることが可能となる。即ち両発振回路の
切り換え比をフリップフロップ1段で任意に変えること
ができることとなる。第4図は温度特性曲線を示す。
The gate control circuit 14 in FIG. 2 may be a simple binary counter. This can be achieved with one stage of flip-flops, and the duty of the output pulse of the gate control circuit can be changed by the duty ratio of the input clock. That is, the switching ratio of both oscillation circuits can be arbitrarily changed using one stage of flip-flops. FIG. 4 shows the temperature characteristic curve.

21は温度、22は周波数誤差、23,24は2個の水
晶の発振周波数特性例である。
21 is a temperature, 22 is a frequency error, and 23 and 24 are examples of oscillation frequency characteristics of two crystals.

上述の説明により使用温度範囲において、23と24の
誤差に対し、合成誤差が規格を満足する様に、23と2
4の特性を選択すると共にM.(5nを設定すれは本発
明になる回路において温度対策も可能となる事は明らか
である。
According to the above explanation, in the operating temperature range, 23 and 2 are set so that the combined error satisfies the standard for the error of 23 and 24.
In addition to selecting the characteristics of M.4. (It is clear that by setting 5n, temperature countermeasures can be taken in the circuit according to the present invention.

ゲート切換時の位相誤差に関しては、発振周波数に対し
て、切換周期を十分長くとり切換時に生する誤差成分が
許容誤差内に収まる様にすればよい。又、切換時に生ず
る、これら誤差は統計的に±0となり長期的に誤の蓄積
は生じないと考えられる。
Regarding the phase error at the time of gate switching, the switching period may be set sufficiently long with respect to the oscillation frequency so that the error component generated at the time of switching falls within the allowable error. Furthermore, these errors that occur during switching are statistically ±0, and it is considered that no accumulation of errors will occur over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の時計回路ブロック、第2図は本発明に
なる時計回路ブロック図の1例、第3図は量産振動子の
周波数分布、第4図は水晶の温度特性曲線を示すもので
ある。
Fig. 1 shows a conventional clock circuit block, Fig. 2 shows an example of a clock circuit block diagram according to the present invention, Fig. 3 shows a frequency distribution of a mass-produced resonator, and Fig. 4 shows a temperature characteristic curve of a crystal. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 基準発振周波数に対して誤差成分を有する第1の発
振回路、前記誤差成分と反対符号の誤差成分を有する第
2の発振回路、前記第1の発振回路の出力を入力する第
1の選択ゲート回路、前記第2の発振回路の出力を入力
する第2の選択ゲート回路、前記第1及び第2のゲート
回路からの信号をともに入力し分周して時刻信号を出力
する分周用カウンタ、前記分周用カウンタの信号を受け
て前記第1と第2のゲート回路を交互に選択する信号を
前記第1と第2のゲート回路に出力する2進カウンタで
構成されたゲート制御回路よりなることを特徴とする電
子時計。
1. A first oscillation circuit having an error component with respect to a reference oscillation frequency, a second oscillation circuit having an error component with an opposite sign to the error component, and a first selection gate inputting the output of the first oscillation circuit. a second selection gate circuit that inputs the output of the second oscillation circuit, a frequency division counter that inputs both the signals from the first and second gate circuits, divides the frequency, and outputs a time signal; A gate control circuit including a binary counter that receives a signal from the frequency dividing counter and outputs a signal for alternately selecting the first and second gate circuits to the first and second gate circuits. An electronic clock characterized by:
JP10005676A 1976-08-20 1976-08-20 electronic clock Expired JPS6057030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10005676A JPS6057030B2 (en) 1976-08-20 1976-08-20 electronic clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10005676A JPS6057030B2 (en) 1976-08-20 1976-08-20 electronic clock

Publications (2)

Publication Number Publication Date
JPS5325469A JPS5325469A (en) 1978-03-09
JPS6057030B2 true JPS6057030B2 (en) 1985-12-12

Family

ID=14263816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10005676A Expired JPS6057030B2 (en) 1976-08-20 1976-08-20 electronic clock

Country Status (1)

Country Link
JP (1) JPS6057030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512177B2 (en) 2019-08-28 2022-11-29 Meidensha Corporation Reforming device and reforming method for porous material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512177B2 (en) 2019-08-28 2022-11-29 Meidensha Corporation Reforming device and reforming method for porous material

Also Published As

Publication number Publication date
JPS5325469A (en) 1978-03-09

Similar Documents

Publication Publication Date Title
JPH0150129B2 (en)
US4415870A (en) Oscillator circuit with digital temperature compensation
US4009445A (en) Divider for an electronic timepiece
JPS588601B2 (en) Temperature compensated crystal oscillator circuit
GB2162974A (en) Electronic timepiece
US3978649A (en) Quartz crystal electronic timepiece
JPS6057030B2 (en) electronic clock
US4453105A (en) Mode coupled quartz crystal tuning fork
JPS5945261B2 (en) Digital frequency adjustment circuit
JPS6147580A (en) Electronic timepiece with temperature compensating function
US4241435A (en) Electronic timepiece oscillator circuit
GB2163575A (en) Improvements in or relating to electronic timepieces
US3629727A (en) Circuit for sustaining oscillation of a resonator by a frequency above the natural frequency of said resonator
US3675147A (en) Circuit for regulating the mean frequency of an oscillating system
JPS5840155B2 (en) densid cay
JPS5860278A (en) Frequency temperature compensation system
JPS585395B2 (en) Suishiyoudokei no Kankiyuhoushiki
US4062178A (en) Electronic timepiece
JPS6039192B2 (en) electronic clock
US4098070A (en) Digital display electronic wristwatch
JPS6124957Y2 (en)
JPS5841379A (en) Electronic time piece with temperature compensation
JPH0518286B2 (en)
JPH0955628A (en) High resolving power offset synthesizer
JPS6140586A (en) Electronic timepiece