JPS6138601B2 - - Google Patents
Info
- Publication number
- JPS6138601B2 JPS6138601B2 JP53049839A JP4983978A JPS6138601B2 JP S6138601 B2 JPS6138601 B2 JP S6138601B2 JP 53049839 A JP53049839 A JP 53049839A JP 4983978 A JP4983978 A JP 4983978A JP S6138601 B2 JPS6138601 B2 JP S6138601B2
- Authority
- JP
- Japan
- Prior art keywords
- pair
- electrodes
- base
- glass
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 2
- 239000000463 material Substances 0.000 description 5
- 239000005394 sealing glass Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
本発明は、ガラス封止対面電極型の抵抗素子、
特にサーミスタの改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a glass-sealed facing electrode type resistance element,
In particular, it relates to improvements in thermistors.
従来提案されているこの種のサーミスタにおい
ては、サーミスタ基体(チツプ)の両面に接着し
たAg等からなる電極に対して一対のリードを封
止用ガラス材で機械的に保持して接触させるよう
になつているため、温度サイクル試験などにおい
て封止用ガラスが熱的な膨張及び収縮をくりかえ
すと容易に電極とリードとの間の接触が断たれ、
断線事故が頻発する欠点があつた。 In this type of thermistor that has been proposed in the past, a pair of leads are mechanically held with a sealing glass material and brought into contact with electrodes made of Ag or the like bonded to both sides of the thermistor base (chip). Therefore, when the sealing glass undergoes repeated thermal expansion and contraction during temperature cycle tests, the contact between the electrode and the lead is easily broken.
The drawback was that disconnection accidents occurred frequently.
本発明の目的は、温度変化による断線事故を防
止した新規なガラス封止対面電極型抵抗素子を提
供することにある。 An object of the present invention is to provide a novel glass-sealed, facing-electrode type resistance element that prevents disconnection accidents caused by temperature changes.
本発明は、この目的を達成するために、サーミ
スタチツプのような抵抗基体及びその両面の電極
を合わせた熱膨張による変化量が封止用ガラス材
の熱膨張による変化量より小さくなるように抵抗
材料、電極材料、及びこれらの材料の厚さを選定
したことを特徴とするものである。すなわち、本
発明は、リードを電極に接触させるのに単に封止
用ガラス材の機械的保持力を利用するのではな
く、構成部品間に生ずる熱的ストレスを逆用して
加圧接触を達成するようにしたものであり、以下
添付図面に示す実施例について本発明を詳述す
る。 In order to achieve this object, the present invention has developed a resistor such that the amount of change due to thermal expansion of a resistance base such as a thermistor chip and the electrodes on both sides thereof is smaller than the amount of change due to thermal expansion of the sealing glass material. It is characterized by the selection of materials, electrode materials, and thicknesses of these materials. That is, the present invention does not simply utilize the mechanical holding force of the sealing glass material to bring the lead into contact with the electrode, but instead achieves pressurized contact by inversely utilizing the thermal stress generated between the components. The present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.
図は、本発明の一実施例によるガラス封止対面
電極型サーミスタの断面構造を示すもので、図に
おいて、1は互いに反対側に位置する一対の主表
面11,12を有するサーミスタ基体、2はサー
ミスタ基体1の両主表面11,12に接着した一
対の電極、3は線状部31とそれの一端に設けら
れたヘツダ部32とから構成され、ヘツダ部32
によつてサーミスタ基体1及び電極2を挾圧する
如くサーミスタ基体の両側に同軸的に配置された
例えばジユメツト線からなる一対のリード、4は
サーミスタ基体1、一対の電極2及び一対のリー
ド3のヘツダ部32を被覆封止するガラス部材で
ある。この構成において、サーミスタ基体1の熱
膨張係数をαT、サーミスタ基体1の、その主表
面と直角をなす方向の厚さをxとし、一対の電極
2の熱膨張係数をαM、サーミスタ基体1の主表
面と直角をなす方向のそれぞれの電極2の厚さを
yとし、ガラス部材4の熱膨張係数をαGとした
とき、これらの間にαG(x+2y)>αT・x+α
M・2yなる関係が成立するようになつている。こ
れは、サーミスタ基体とリードとの間にガラス部
材4で被覆後の冷却時に圧縮力が加わるようにす
るためである。すなわち、△Tなる温度変化があ
つた場合において、ガラス封止後の冷却時にサー
ミスタ基体にリードからガラス収縮による圧縮力
が加わるようにするためには、次の(1)式の関係が
満足される必要がある。 The figure shows a cross-sectional structure of a glass-sealed facing electrode type thermistor according to an embodiment of the present invention. In the figure, 1 is a thermistor base having a pair of main surfaces 11 and 12 located on opposite sides, A pair of electrodes 3 bonded to both main surfaces 11 and 12 of the thermistor base 1 are composed of a linear portion 31 and a header portion 32 provided at one end thereof.
A pair of leads made of, for example, a composite wire are arranged coaxially on both sides of the thermistor base so as to press the thermistor base 1 and the electrodes 2, and 4 is a header of the thermistor base 1, a pair of electrodes 2, and a pair of leads 3. This is a glass member that covers and seals the portion 32. In this configuration, the thermal expansion coefficient of the thermistor base 1 is α T , the thickness of the thermistor base 1 in the direction perpendicular to its main surface is x, the thermal expansion coefficient of the pair of electrodes 2 is α M , and the thermistor base 1 is When the thickness of each electrode 2 in the direction perpendicular to the main surface of is y, and the coefficient of thermal expansion of the glass member 4 is α G , there is a gap between them α
The relationship M・2y is now established. This is to ensure that a compressive force is applied between the thermistor base and the leads during cooling after being covered with the glass member 4. In other words, in the case of a temperature change of △T, the following equation (1) must be satisfied in order for the compressive force due to glass contraction to be applied from the lead to the thermistor base during cooling after glass sealing. It is necessary to
αG(x+2y)×△T>
(αT・x+αM・2y)×△T …(1)
この式(1)を整理すると
αG(x+2y)>αT・x+αM・2y …(2)
なる式が得られる。この式(2)を満足するようにα
G,αT,αM,x,yを選定することにより、サ
ーミスタ基体1とリード3との間には常に圧縮力
が加わることになり温度サイクルにおけるサーミ
スタ基体1の破損、サーミスタ基体1とリードと
の間の接続不良の発生を未然に防止することが出
来る。今、仮りに上記とは反対に各部の熱膨張係
数及び厚さをαG(x+2y)<αT・x+αM・2y
なる関係式を満足するように選定した場合を考え
ると、ガラス被覆後の冷却あるいは使用時の温度
サイクルによつてサーミスタ基体とリードとの間
には引張力が加わるためサーミスタ基体及び電極
からリードがはなれ、断線事故を招くことにな
る。 α G (x+2y)×△T> (α T・x+α M・2y)×△T …(1) Rearranging this equation (1), α G (x+2y)>α T・x+α M・2y …(2) The following formula is obtained. α so as to satisfy this equation (2)
By selecting G , α T , α M , x, and y, a compressive force is always applied between the thermistor base 1 and the lead 3, resulting in damage to the thermistor base 1 during temperature cycling, and damage to the thermistor base 1 and the lead 3. It is possible to prevent the occurrence of poor connection between the Now, contrary to the above, suppose that the thermal expansion coefficient and thickness of each part are α G (x + 2y) < α T・x+α M・2y
Considering the case where the selection satisfies the following relational expression, tensile force is applied between the thermistor base and the lead due to cooling after glass coating or temperature cycling during use, so the lead is removed from the thermistor base and electrode. This could lead to separation and disconnection accidents.
次に各部の熱膨張係数及び厚さをどのように選
ぶかを具体例により説明する。 Next, how to select the thermal expansion coefficient and thickness of each part will be explained using a specific example.
例 1
サーミスタ基体はMn,Co,Ni,Fe,Cu,Al
等の酸化物から成つているためαTは70〜120×
10-7/℃であり、ここでは85×10-7/℃とする。
電極はAgからなるものとし、αMは190×10-7/
℃である。またガラス部材はαGが(91±2)×
10-7/℃程度のガラスからなるものとして、ここ
ではワーストケースとしてαG=89×10-7/℃と
して説明する。式(2)を変形して(αG−αT)・x
>(αM−αG)・2yとし、この式にαG,αT,αM
の数値を入れると、(89−85)・x×10-7>(190−
89)・2y×10-7
x>1/2・101y=50.5y
のようになる。一般にyは10μm程度であるか
ら、x≧500μm=0.5mmとなる。即ち、サーミス
タ基体の厚さを0.5mm以上とすればよいことがわ
かる。尚、こ場合、サーミスタ基体の熱膨張係数
αTがαT>89×10-7/℃(=αG)では解がな
い。換言すればαTがαGより大きくなるためサー
ミスタ基体とリードとの間には引張力が加わり温
度サイクルに対して弱くなる。Example 1 Thermistor base is Mn, Co, Ni, Fe, Cu, Al
α T is 70 to 120 ×
10 -7 /°C, and here it is assumed to be 85×10 -7 /°C.
The electrode is made of Ag, and α M is 190×10 -7 /
It is ℃. Also, α G of the glass member is (91±2)×
Assuming that it is made of glass with a temperature of about 10 -7 /°C, the description here will be made assuming that α G =89×10 -7 /°C as the worst case. Transforming equation (2), (α G − α T )・x
>(α M − α G )・2y, and in this formula α G , α T , α M
Entering the numerical value of (89−85)・x×10 -7 > (190−
89)・2y×10 -7 x>1/2・101y=50.5y. Generally, y is about 10 μm, so x≧500 μm=0.5 mm. That is, it can be seen that the thickness of the thermistor base should be 0.5 mm or more. In this case, there is no solution if the thermal expansion coefficient α T of the thermistor base is α T >89×10 -7 /°C (=α G ). In other words, since α T becomes larger than α G , a tensile force is applied between the thermistor base and the lead, making it weak against temperature cycles.
例 2
この例は、電極としてpt(αM=90×10-7/
℃)を用い、他は例1と同じとした場合であり、
この場合には、x>1/2y×1=0.5yとなり、この
式にyとして10μmを代入すると、x≧5μmと
なる。即ち、この場合にはサーミスタ基体の厚さ
を5μm以上にすればよく、例1に比較してサー
ミスタ基体の厚さを決定する場合の自由度が大幅
に増加し、組立作業も容易になる。Example 2 In this example, the electrode is pt (α M = 90×10 -7 /
°C) and the other conditions were the same as in Example 1.
In this case, x>1/2y×1=0.5y, and when 10 μm is substituted for y in this equation, x≧5 μm. That is, in this case, the thickness of the thermistor base only needs to be 5 μm or more, and the degree of freedom in determining the thickness of the thermistor base is greatly increased compared to Example 1, and the assembly work is also facilitated.
これらの例から、次のことが明らかである。す
なわち、(1)サーミスタ基体としてはαT<αGのも
のを選ぶ必要がある、(2)電極としてもαM>αGが
望ましい、(3)αM<αGでは、Pt電極のように熱膨
張係数が小さいとき電極厚さ、サーミスタ基体の
厚さを考慮しなくともよい、(4)Ag電極のように
熱膨張係数の大きいものを用いるときは式(2)によ
り電極の厚さとサーミスタ基体の厚さを決めてや
らねばならない、等である。 From these examples it is clear that: In other words, (1) it is necessary to select a thermistor substrate with α T < α G , (2) it is desirable that α M > α G for the electrode, and (3) when α M < α G , it is necessary to choose one with α T < α G. When the coefficient of thermal expansion is small, there is no need to consider the electrode thickness and the thickness of the thermistor substrate. (4) When using an electrode with a large coefficient of thermal expansion, such as an Ag electrode, the electrode thickness and For example, the thickness of the thermistor base must be determined.
以上では、電極として、Ag,Ptを使用した場
合を例に採つて説明したが電極材料としてAu
(αM=140×10-7/℃)Pd(αM=110×10-7/
℃)、Pt−Pd合金などを使用してもよい。また本
発明は図面に示された構成に限定されることなく
種々の変形が可能である。例えば、電極をAg,
Au,Pt,Pdから選ばれた2層或いはそれ以上と
してもよいし、又リードをヘツダ部と線状部とを
同一太さとなるように形成してもよい。 In the above, the case where Ag and Pt were used as the electrode was explained as an example, but Au was used as the electrode material.
(α M = 140×10 -7 /℃) Pd (α M = 110×10 -7 /
℃), Pt-Pd alloy, etc. may be used. Further, the present invention is not limited to the configuration shown in the drawings, and various modifications can be made. For example, if the electrode is Ag,
Two or more layers selected from Au, Pt, and Pd may be used, or the lead may be formed so that the header portion and the linear portion have the same thickness.
図は本発明ガラス封止対面電極型サーミスタを
説明するための概略断面図である。
1……サーミスタ基体、2……電極、3……リ
ード、4……ガラス部材。
The figure is a schematic cross-sectional view for explaining the glass-sealed facing electrode type thermistor of the present invention. DESCRIPTION OF SYMBOLS 1... Thermistor base, 2... Electrode, 3... Lead, 4... Glass member.
Claims (1)
抵抗基体の両主表面にそれぞれ接着された一対の
電極と、前記抵抗基体及び前記一対の電極をはさ
んで互いに同軸的に配置されるとともに各々の対
向端部がそれぞれ前記一対の電極に接触された一
対のリードと、前記抵抗基体、前記一対の電極及
び前記一対のリードの少なくとも前記対向端部側
の側部を被覆封止するガラス部材とを具備し、前
記抵抗基体の熱膨張係数をαT、前記抵抗基体の
その主表面と直角をなす方向の厚さをx、前記一
対の電極の熱膨張係数をαM、前記抵抗基体の主
表面と直角をなす方向の前記一対の電極のそれぞ
れの厚さをy、前記ガラス部材の熱膨張係数をα
Gとしたとき、これらの間に αG(x+2y)>αT・x+αM・2y なる関係が成り立つようにしたことを特徴とする
ガラス封止対面電極型抵抗素子。 2 特許請求の範囲第1項において、前記一対の
電極をそれぞれ白金で構成したことを特徴とする
ガラス封止対面電極型抵抗素子。[Scope of Claims] 1. A resistor base having a pair of opposing main surfaces, a pair of electrodes respectively adhered to both main surfaces of the resistor base, and a resistor base and a pair of electrodes disposed coaxially with each other across the resistor base and the pair of electrodes. a pair of leads, each of which is arranged at the opposite end thereof and is in contact with the pair of electrodes, and covers at least a side of the resistor base, the pair of electrodes, and the pair of leads on the opposite end side. a glass member to be sealed, the coefficient of thermal expansion of the resistor base is α T , the thickness of the resistor base in a direction perpendicular to its main surface is x, and the coefficient of thermal expansion of the pair of electrodes is α M , the thickness of each of the pair of electrodes in the direction perpendicular to the main surface of the resistance base is y, and the coefficient of thermal expansion of the glass member is α
1. A glass-sealed, facing-electrode type resistance element characterized in that, when G , the relationship α G (x+2y)>α T・x+α M・2y holds between them. 2. The glass-sealed facing electrode type resistance element according to claim 1, wherein each of the pair of electrodes is made of platinum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4983978A JPS54142561A (en) | 1978-04-28 | 1978-04-28 | Glass sealed opposed electrode type resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4983978A JPS54142561A (en) | 1978-04-28 | 1978-04-28 | Glass sealed opposed electrode type resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54142561A JPS54142561A (en) | 1979-11-06 |
JPS6138601B2 true JPS6138601B2 (en) | 1986-08-30 |
Family
ID=12842238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4983978A Granted JPS54142561A (en) | 1978-04-28 | 1978-04-28 | Glass sealed opposed electrode type resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54142561A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429399Y2 (en) * | 1987-01-13 | 1992-07-16 | ||
JPH06138308A (en) * | 1992-10-28 | 1994-05-20 | Taiho Ind Co Ltd | Light diffusing plate |
JPH0714446U (en) * | 1993-07-28 | 1995-03-10 | 日本無線株式会社 | Strobe lighting device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935782Y2 (en) * | 1980-03-27 | 1984-10-03 | 株式会社ボッシュオートモーティブ システム | Temperature sensor for air conditioning equipment |
JPS59171305U (en) * | 1983-05-01 | 1984-11-16 | ティーディーケイ株式会社 | Glass sealed thermistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4940390A (en) * | 1972-08-25 | 1974-04-15 | ||
JPS49114093A (en) * | 1973-03-07 | 1974-10-31 | ||
JPS5116264A (en) * | 1974-07-31 | 1976-02-09 | Hitachi Ltd | Atsuenkino atsuenhoho |
-
1978
- 1978-04-28 JP JP4983978A patent/JPS54142561A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4940390A (en) * | 1972-08-25 | 1974-04-15 | ||
JPS49114093A (en) * | 1973-03-07 | 1974-10-31 | ||
JPS5116264A (en) * | 1974-07-31 | 1976-02-09 | Hitachi Ltd | Atsuenkino atsuenhoho |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429399Y2 (en) * | 1987-01-13 | 1992-07-16 | ||
JPH06138308A (en) * | 1992-10-28 | 1994-05-20 | Taiho Ind Co Ltd | Light diffusing plate |
JPH0714446U (en) * | 1993-07-28 | 1995-03-10 | 日本無線株式会社 | Strobe lighting device |
Also Published As
Publication number | Publication date |
---|---|
JPS54142561A (en) | 1979-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0062289A3 (en) | Display panel | |
GB2031592A (en) | Pressure transducer | |
CN1035892A (en) | Thermoelectric (al) type infrared detecting set and manufacture method thereof | |
JPS6138601B2 (en) | ||
US5495978A (en) | Bonding diverse thermal expansion materials | |
US3235826A (en) | Pressure transducer | |
JPS5837329A (en) | Heat recovery type pad | |
US2517033A (en) | Thermocouple structure | |
JPH0322706B2 (en) | ||
US3395050A (en) | Surface contacting thermo-couple | |
US3897624A (en) | Method for bonding ceramics with metal | |
JPH06310765A (en) | Thermionic element and thermionic device | |
US3854112A (en) | Piezoresistive glass stress transducer | |
KR930002280B1 (en) | Semiconductor circuit device contact system | |
JPS61231744A (en) | Semiconductor cooling device | |
JPH06337229A (en) | Temperature detection element and applied element thereof | |
JPH0533823B2 (en) | ||
JPH0410703Y2 (en) | ||
US4056306A (en) | Liquid crystal display device and method of manufacturing the same | |
SU453199A1 (en) | METHOD OF CREATING ELECTROACOUSTIC CONTACT | |
JPH0211762Y2 (en) | ||
JP2734840B2 (en) | Contact type thin film thermistor | |
JPH0566537B2 (en) | ||
JPH0516528Y2 (en) | ||
JPS6314358Y2 (en) |