JPH0429399Y2 - - Google Patents

Info

Publication number
JPH0429399Y2
JPH0429399Y2 JP1987003015U JP301587U JPH0429399Y2 JP H0429399 Y2 JPH0429399 Y2 JP H0429399Y2 JP 1987003015 U JP1987003015 U JP 1987003015U JP 301587 U JP301587 U JP 301587U JP H0429399 Y2 JPH0429399 Y2 JP H0429399Y2
Authority
JP
Japan
Prior art keywords
gas
light
shielding plate
light shielding
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987003015U
Other languages
Japanese (ja)
Other versions
JPS63111656U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987003015U priority Critical patent/JPH0429399Y2/ja
Publication of JPS63111656U publication Critical patent/JPS63111656U/ja
Application granted granted Critical
Publication of JPH0429399Y2 publication Critical patent/JPH0429399Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 考案の目的 [産業上の利用分野] 本考案は、内燃機関の排ガスなどの濃度を分析
するガス分析計に係り、特にスパンガスを用いず
にスパン較正及びキヤリブレーシヨンをすること
のできる赤外線分析法を利用したガス分析計に関
する。
[Detailed description of the invention] Purpose of the invention [Field of industrial application] The invention relates to a gas analyzer for analyzing the concentration of exhaust gas from internal combustion engines, and in particular, to perform span calibration and calibration without using span gas. This article relates to a gas analyzer that uses infrared analysis that can perform

[従来の技術] 赤外線分析法を利用したガス分析計、例えば自
動車用内燃機関の排ガスの分析計は、主として分
析しようとするサンプルガスを流入するサンプル
セル、含有する一酸化炭素などのガス濃度が零ま
たは一定のガスである比較ガスが封入された比較
セル、これらの2つのセルにそれぞれ赤外線を照
射する光源、これらのセル内のガスを通過した赤
外光を断続するチヨツパ、及びこれらの断続され
た2つの信号を比較してガス濃度の出力信号を出
す検出器からなつている。この種の排ガス分析計
によつてサンプルガスの濃度を分析しようとする
場合には、予め既知濃度の複数種のシリンダガス
を用いて、このガス濃度と検出器による出力との
関係を較正し、キヤリブレーシヨン曲線を作成し
ておく必要があり、また、排ガスの濃度分析毎に
スパン較正を行う必要があつた。このキヤリブレ
ーシヨン及びスパン較正にはシリンダガスを多種
類必要とし、これらのシリンダガスの管理に多大
な工数を費やしていた。
[Prior Art] Gas analyzers that use infrared analysis, such as analyzers for exhaust gas from automobile internal combustion engines, mainly use a sample cell into which the sample gas to be analyzed flows, and the concentration of gases such as carbon monoxide contained therein. A comparison cell filled with a comparison gas that is zero or a constant gas, a light source that irradiates each of these two cells with infrared rays, a chopper that intermits the infrared light that passes through the gas in these cells, and an intermittent of these two cells. It consists of a detector that compares the two signals and produces an output signal of gas concentration. When attempting to analyze the concentration of a sample gas using this type of exhaust gas analyzer, the relationship between the gas concentration and the output of the detector is calibrated in advance using multiple types of cylinder gases with known concentrations. It was necessary to create a calibration curve in advance, and it was also necessary to perform span calibration every time the exhaust gas concentration was analyzed. This calibration and span calibration requires many types of cylinder gases, and a large amount of man-hours are spent on managing these cylinder gases.

この問題を解決するために、スパン較正及びキ
ヤリブレーシヨン時にシリンダガスを使用せず
に、既知濃度のシリンダガスの赤外線吸収率と同
様なフイルタを赤外線光路中に設けて赤外線の光
量を調節することが行われている。
To solve this problem, instead of using cylinder gas during span calibration and calibration, a filter with the same infrared absorption rate as cylinder gas of known concentration is installed in the infrared light path to adjust the amount of infrared light. is being carried out.

出願人は既に特願昭60−230099にて、上記従来
の技術の一部の欠点を改良している。しかしなが
ら、次の点でいまだ解決すべき問題点があつた。
即ち、従来行われていたこのフイルタ方式のスパ
ン較正またはキヤリブレーシヨンでは光学フイル
タであるために、コストが高い、減光率の調整が
容易でない、任意の減光率が得られにくいといつ
た欠点があり、更に光学フイルタの表面に傷・汚
れが着くと、減光率が変動するといつた精度上の
問題もあつた。
The applicant has already improved some of the drawbacks of the above-mentioned conventional technology in Japanese Patent Application No. 60-230099. However, the following problems still remain to be solved.
In other words, the conventional filter-based span calibration or calibration uses an optical filter, so it is expensive, it is not easy to adjust the light attenuation rate, and it is difficult to obtain a desired light attenuation rate. In addition, there were problems with accuracy, such as the light attenuation rate changing when the surface of the optical filter became scratched or dirty.

[考案が解決しようとする問題点] この問題を解決するには、赤外線の光量調節
を、赤外線不通過の板材、つまり遮光板に貫通孔
の開口密度の異なる領域を複数設け、その遮光板
を回動自在に支持し、その回動中心を中心にして
回転させ、各領域に赤外線が当たるようにすれば
よい。しかし、このとき、遮光板の各領域に当て
られる赤外線の光量は一定でも、赤外線が当てら
れる範囲内の貫通孔の総面積が一定でなければ、
出力される赤外線の光量を一定に保つことはでき
ない。つまり、遮光板の静止位置の微妙なずれに
よつて、赤外線が当たる範囲内の貫通孔の総面積
が変わつてしまい、出力される赤外線の光量が変
化してしまうことになる。このずれを防ぐために
は、精密な調節が必要となり、そのために機器の
精密度を非常に高くする必要があつた。
[Problem to be solved by the invention] To solve this problem, the amount of infrared rays can be adjusted by providing multiple areas with different opening densities of through holes on a plate material that does not transmit infrared rays, that is, a light shielding plate, and then using the light shielding plate. It may be supported rotatably and rotated around the center of rotation so that infrared rays are applied to each area. However, at this time, even if the amount of infrared light applied to each area of the light shielding plate is constant, the total area of the through holes within the range to which infrared light is applied is not constant.
It is not possible to keep the amount of infrared light output constant. In other words, due to a slight shift in the resting position of the light shielding plate, the total area of the through holes within the range of infrared rays will change, and the amount of infrared light that is output will change. Preventing this shift requires precise adjustment, which requires extremely high precision equipment.

考案の構成 そこで、本考案は上記問題点を解決することを
目的とし、次のような構成を採用した。
Structure of the invention Therefore, the present invention aims to solve the above problems and adopts the following structure.

[問題点を解決するための手段] 即ち、本考案の要旨とするところは、 光源から発生する赤外線の一方をサンプルガス
に通過吸収させ、他方を濃度零または一定濃度の
比較ガスに通過吸収させ、これら2つの赤外線光
路のエネルギー差を検出器により検出してガスの
濃度分析を行うガス分析計において、 赤外線不透過の板材に貫通孔の開口密度の異な
る領域を複数設けた遮光板を回動自在に支持する
ことにより、上記赤外線光路中で上記各領域が進
出自在に、設けてなり、 上記各領域の貫通孔の形状が、上記遮光板の回
動中心を中心とする円弧状に形成されてなること
を特徴とするガス分析計にある。
[Means for solving the problem] In other words, the gist of the present invention is to allow one side of the infrared rays generated from the light source to be passed through and absorbed by the sample gas, and to allow the other side to be passed through and absorbed by a comparison gas with a zero concentration or a constant concentration. In a gas analyzer that analyzes the concentration of gas by detecting the energy difference between these two infrared light paths with a detector, a light-shielding plate that is made of a plate that does not transmit infrared rays and has multiple regions with different opening densities of through holes is rotated. By freely supporting the light shielding plate, each of the regions is provided so as to be able to advance freely in the infrared light path, and the shape of the through hole of each of the regions is formed in an arc shape centered on the rotation center of the light shielding plate. This gas analyzer is characterized by:

[作用] 本考案のガス分析計は、スパン較正またはキヤ
リブレーシヨン時に赤外線のエネルギーを減少さ
せるのに、赤外線不通過の板材に貫通孔の開口密
度の異なる領域を複数設けた遮光板を用いてい
る。この遮光板を赤外線光路中に配置すると、赤
外線の内、貫通孔のない部分に照射されている赤
外線は、完全に板材によつて遮蔽されるので、検
出器に到達することがなく、貫通孔のある部分に
照射された赤外線は、すべてが検出器に到達す
る。このようにして孔開き遮光板は、その遮光作
用により光学フイルタの減光作用と同様な作用を
為す。また、本考案で用いる遮光板の場合、回動
自在に支持され、開口密度の異なる各領域におけ
る貫通孔が回動中心を中心とする円弧状に形成さ
れることで構成されている。従つて、この遮光板
を回動中心を軸にして回転させ、領域を切り換え
ることで容易に開口密度を変化させることがで
き、しかも、貫通孔の形状が回動中心を中心とす
る円弧状でなるので、遮光板の静止位置の多少の
ずれが、赤外線の当たる範囲内の貫通孔の総面積
に影響しない。つまり、精密な調節を必要とせず
に、容易に所定の遮光率を保つことができる。
[Function] The gas analyzer of the present invention reduces the energy of infrared rays during span calibration or calibration by using a light-shielding plate that is made of a plate material that does not allow infrared rays to pass through and has multiple regions with different opening densities of through holes. There is. When this light-shielding plate is placed in the infrared light path, the infrared rays that are irradiated to areas without through holes will be completely blocked by the plate material, and will not reach the detector. All of the infrared rays irradiated to a certain part of the body reach the detector. In this way, the perforated light-shielding plate has a light-blocking effect similar to the light-reducing effect of an optical filter. Further, in the case of the light shielding plate used in the present invention, it is rotatably supported, and the through holes in each region having different opening densities are formed in an arc shape centered on the rotation center. Therefore, the aperture density can be easily changed by rotating this light shielding plate around the rotation center and switching the area.Moreover, the shape of the through hole is an arc centered around the rotation center. Therefore, a slight shift in the resting position of the light-shielding plate does not affect the total area of the through-hole within the range of infrared rays. In other words, a predetermined light shielding rate can be easily maintained without requiring precise adjustment.

[実施例] 次に、本考案の実施例を説明する。本考案はこ
れらに限られるものではなく、その要旨を逸脱し
ない範囲の種々の態様のものが含まれる。
[Example] Next, an example of the present invention will be described. The present invention is not limited to these, but includes various embodiments without departing from the gist thereof.

第2図に、本考案の第1実施例であるガス分析
計1の要部縦断面図を示す。赤外線を安定かつ連
続的に放射する一対の光源1,2の下部には、そ
れぞれに対向する位置にサンプルセル3及び比較
セル4が設けられている。このサンプルセル3に
はガス濃度を測定すべきサンプルガス5が導入さ
れ、サンプルガス5中の成分による赤外線の吸収
を起こさせるサンプルガス5と赤外線との接触部
が形成されている。比較セル4中にはゼロガスま
たは一定濃度のガスが封入されており、常に一定
量の赤外線を通過させて前記サンプルセル3を通
過する赤外線の光量と比較されるようになつてい
る。これらのサンプルセル3及び比較セル4は恒
温槽6内に収納され、約150℃乃至200℃の範囲内
で加熱保温されている。
FIG. 2 shows a longitudinal cross-sectional view of essential parts of a gas analyzer 1 which is a first embodiment of the present invention. A sample cell 3 and a comparison cell 4 are provided at opposite positions below a pair of light sources 1 and 2 that stably and continuously emit infrared rays. A sample gas 5 whose gas concentration is to be measured is introduced into the sample cell 3, and a contact portion between the sample gas 5 and infrared rays is formed to cause absorption of infrared rays by components in the sample gas 5. The comparison cell 4 is filled with zero gas or a gas at a constant concentration, and a constant amount of infrared rays is always passed therethrough to be compared with the amount of infrared rays passing through the sample cell 3. These sample cells 3 and comparison cells 4 are housed in a constant temperature bath 6 and heated and kept within a range of about 150°C to 200°C.

サンプルセル3の下面には金属製遮光板7が回
動自在に設けられている。この遮光板7は第1図
に示すように円板状に形成されており、表面には
赤外線乱反射防止用の黒色塗膜が形成されてい
る。この遮光板7の中心点から同一円周上に、遮
光率の異なる6つの円形領域7a,7b,7c,
7d,7e,7fが配置されている。この領域7
a,7b,7c,7d,7e,7fの内、領域7
aは単に孔が開口しているのみであるが、他の領
域7b,7c,7d,7e,7fは、回動中心を
中心とする円弧状帯体Kを残して、円形領域に円
弧状の貫通孔Hが開口せられている。この貫通孔
Hの大きさは領域毎に異なり、領域7b,7c,
7d,7e,7fの順で小さくなつている。回動
中心を中心とする円弧状帯体Kの幅はすべて同一
であるので、領域7b,7c,7d,7e,7f
の順で開口密度が小さくなつていく。また上記領
域7a乃至7fの径は前記サンプルセル3の赤外
線放射口3aの内径より大きく形成され、領域7
a乃至7fのピツチサークルが前記サンプルセル
3の赤外線放射口3aの中心を通るように配設さ
れている。更に上記遮光板7の周縁には上記領域
7a乃至7fに整合する位置に、固定マグネツト
8mに対応してそれぞれ停止位置を決めるマグネ
ツト8a,8b,8c,8d,8e,8fが取り
付けられている。このようにして、上記遮光板7
はモータ9により回転駆動されることにより、所
望の領域7a乃至7fが赤外線放射口3aに配置
可能となつている。
A metal light shielding plate 7 is rotatably provided on the lower surface of the sample cell 3. As shown in FIG. 1, this light shielding plate 7 is formed into a disk shape, and a black coating film for preventing diffuse reflection of infrared rays is formed on the surface. On the same circumference from the center point of this light shielding plate 7, there are six circular areas 7a, 7b, 7c, with different light shielding rates.
7d, 7e, and 7f are arranged. This area 7
Area 7 of a, 7b, 7c, 7d, 7e, 7f
A simply has a hole, but the other regions 7b, 7c, 7d, 7e, and 7f have a circular region with an arc-shaped band K centered around the rotation center. A through hole H is opened. The size of this through hole H differs from region to region, and
The sizes decrease in the order of 7d, 7e, and 7f. Since the widths of the arcuate bands K around the center of rotation are all the same, the areas 7b, 7c, 7d, 7e, 7f
The aperture density decreases in this order. Further, the diameters of the regions 7a to 7f are formed larger than the inner diameter of the infrared radiation opening 3a of the sample cell 3.
Pitch circles a to 7f are arranged so as to pass through the center of the infrared radiation opening 3a of the sample cell 3. Furthermore, fixed magnets are provided on the periphery of the light shielding plate 7 at positions aligned with the regions 7a to 7f.
Magnets 8a, 8b, 8c, 8d, 8e, and 8f are attached to determine the stop positions corresponding to 8 m. In this way, the light shielding plate 7
is rotationally driven by a motor 9, so that desired areas 7a to 7f can be placed in the infrared radiation aperture 3a.

遮光板7の下部には、サンプルセル3及び比較
セル4を通過した赤外線を断続光にするチヨツパ
10が設けられ、このチヨツパ10はチヨツパモ
ータ11によつて定速回転されている。サンプル
セル3と比較セル4を通過しチヨツパ9で断続光
にされた赤外線は検出器12に形成された左右の
受光室12a及び12bにそれぞれ到達するよう
になつている。この検出器12の受光室12a及
び12bの間には可動膜12cが形成されてい、
受光室12aと12bで吸収されたエネルギの差
に相当する分だけ圧力差となつて可動膜12cに
変位を与える。この変位は電気的に検出され、プ
リアンプ13により増幅されて出力信号として取
り出される。
A chopper 10 is provided below the light shielding plate 7 to convert the infrared rays that have passed through the sample cell 3 and comparison cell 4 into intermittent light, and this chopper 10 is rotated at a constant speed by a chopper motor 11. The infrared rays that have passed through the sample cell 3 and comparison cell 4 and have been turned into intermittent light by the chopper 9 reach left and right light receiving chambers 12a and 12b formed in the detector 12, respectively. A movable film 12c is formed between the light receiving chambers 12a and 12b of this detector 12,
A pressure difference corresponding to the difference in energy absorbed by the light receiving chambers 12a and 12b is generated, and the movable film 12c is displaced. This displacement is electrically detected, amplified by the preamplifier 13, and taken out as an output signal.

次に本実施例の動作を説明する。比較セル4に
はゼロガスが封入されているとする。ガス分析計
のゼロ較正を行う場合は、サンプルセル3にゼロ
ガスを流し、遮光板7の周縁のマグネツト8aと
固定マグネツト8mによつて、サンプルセル3の
赤外線放射口3aと領域7aとを正確に位置合わ
せする。この状態において赤外線は遮光されるこ
となく検出器12に入射され、正しくゼロ較正が
行われる。次にスパン較正を行う場合は、ゼロ較
正を行う場合と同様にサンプルセル3にゼロガス
を流す。そしてモータ9を駆動して遮光板7を回
転させて、領域7fを放射口3aに合わせ、遮光
板7の領域7fが赤外線光路に正確に一致した状
態でキヤリブレーシヨン曲線のスパン較正を行な
う。尚、この領域7fに対しては予めスパンガス
によつて出力値を確認しておく必要があり、この
ときの出力値が較正値となる。更に正確な較正あ
るいは新たなキヤリブレーシヨン曲線が必要であ
れば、次に遮光板7に配設された遮光率の異なる
領域7e,7d,7c,7bを同様に順次光路中
に挿入し、検出器12により出力値を求めて較正
値の平均値を得るか、第3図に示すようなキヤリ
ブレーシヨン曲線を作る。このときにサンプルセ
ル3には常にゼロガスを流しておく。
Next, the operation of this embodiment will be explained. It is assumed that the comparison cell 4 is filled with zero gas. When performing zero calibration of the gas analyzer, flow zero gas into the sample cell 3, and use the magnet 8a on the periphery of the light shielding plate 7 and the fixed magnet 8m to accurately align the infrared radiation opening 3a of the sample cell 3 with the area 7a. Align. In this state, infrared rays are incident on the detector 12 without being blocked, and zero calibration is performed correctly. Next, when performing span calibration, zero gas is flowed into the sample cell 3 in the same way as when performing zero calibration. Then, the motor 9 is driven to rotate the light shielding plate 7 to align the region 7f with the radiation opening 3a, and the span calibration of the calibration curve is performed with the region 7f of the light shielding plate 7 accurately matching the infrared light path. Note that it is necessary to check the output value for this region 7f in advance using span gas, and the output value at this time becomes the calibration value. If more accurate calibration or a new calibration curve is required, then the regions 7e, 7d, 7c, and 7b arranged on the light shielding plate 7 with different light shielding rates are sequentially inserted into the optical path and detected. The output value is determined by the device 12 and the average value of the calibration values is obtained, or a calibration curve as shown in FIG. 3 is created. At this time, zero gas is always allowed to flow through the sample cell 3.

サンプルガス5を測定する場合は、サンプルガ
ス5をサンプルセル3内に流し、遮光板7の領域
7aが光路に正確に一致した状態で検出器12に
より出力値を求め、第3図に示すキヤリブレーシ
ヨン曲線によつてサンプルガス5のガス濃度を求
める。この間サンプルセル3及び比較セル4は恒
温槽6によつて常に150℃乃至200℃くらいに加熱
保温されている。
When measuring the sample gas 5, the sample gas 5 is caused to flow into the sample cell 3, and the output value is determined by the detector 12 with the area 7a of the light shielding plate 7 precisely aligned with the optical path. The gas concentration of the sample gas 5 is determined using the Brasion curve. During this time, the sample cell 3 and comparison cell 4 are constantly heated and kept at about 150° C. to 200° C. in a constant temperature bath 6.

本実施例によれば、スパン較正及びキヤリブレ
ーシヨン用の遮光板の各領域7a乃至7fを位置
ずれがなく正確に赤外線光路に挿入できる。さら
に、開口密度の異なる各領域における貫通孔の形
状が、遮光板7の回動中心を中心とする円弧状に
形成されてなるので、遮光板7の静止位置の多少
のずれは、赤外線の当たる範囲内の貫通孔の総面
積に影響しない。つまり、容易に所定の遮光率を
保つことができる。また赤外線を、遮光板7の傷
やほこりに影響されずに検出器12へ到達させる
ことが出来るので、シリンダガスを用いることな
く精度よく測定を行うことができ、スパン較正及
びキヤリブレーシヨン曲線作成も正確になすこと
が出来る。更に、遮光板7として、単に金属板を
用いているので、厚さも1mm以下、例えば数十μ
〜数百μあれば、自己の形状を装置中で維持する
ことが十分となり、サンプルセル3と検出器12
との間を極めて狭く出来る。このため、従来のフ
イルタと比べて光の乱反射による遮光率の変動も
少ない。また、遮光率も単に貫通孔Hの開口率で
決まるので、開口縁部の切削等でその遮光率も容
易に調整できる。更にサンプルセル3及び比較セ
ル4は加熱保温されているのでガスによる汚れを
防止することができ、汚れによるドリフトがなく
なり、正確なガス分析が可能となる。
According to this embodiment, each region 7a to 7f of the light shielding plate for span calibration and calibration can be accurately inserted into the infrared light path without any positional deviation. Furthermore, since the shape of the through-hole in each region with different opening density is formed in an arc shape centered on the rotation center of the light-shielding plate 7, a slight deviation in the resting position of the light-shielding plate 7 will be caused by the infrared rays hitting it. Does not affect the total area of through holes within the range. In other words, a predetermined light shielding rate can be easily maintained. In addition, since infrared rays can reach the detector 12 without being affected by scratches or dust on the light-shielding plate 7, accurate measurements can be made without using cylinder gas, and span calibration and calibration curve creation are possible. can also be done accurately. Furthermore, since a metal plate is simply used as the light shielding plate 7, the thickness is 1 mm or less, for example, several tens of μm.
~ several hundred microns is sufficient to maintain its own shape in the device, and the sample cell 3 and detector 12
The gap between the two can be made extremely narrow. Therefore, compared to conventional filters, there is less variation in the light shielding rate due to diffused reflection of light. Further, since the light shielding rate is determined simply by the aperture ratio of the through hole H, the light shielding rate can be easily adjusted by cutting the opening edge. Furthermore, since the sample cell 3 and the comparison cell 4 are heated and kept warm, they can be prevented from being contaminated by gas, eliminating drift due to contamination, and allowing accurate gas analysis.

第4図は本考案の第2実施例を示す縦断面図で
ある。この図において第2図に示す第1の実施例
と同一または同等部分には同一符号を付して示し
説明を省略する。本実施例は本考案をクロスフロ
ー式赤外線ガス分析計に応用した場合である。ク
ロスフロー式の場合は一定周期で回転するロータ
リーバルブ14によつて2本のサンプルセル15
a,15bに交互にサンプルガスとゼロガスを流
して、サンプルガスそのものの赤外線の吸収によ
つて生ずる変調効果を利用し、検出器12によつ
て出力差を検知するようにしたものである。この
場合もキヤリブレーシヨンガスを用いずに遮光板
16によつてキヤリブレーシヨン、ゼロ較正及び
スパン較正を行う。この遮光板16は第5図に示
すように扇状に開くように多段に重ねられた支持
板16a,16b,16cからなり、領域17
a,17b,17cが各々の支持板16a,16
b,16cに設けられている(領域17cは図示
していない)。この領域の貫通孔の形状は、回動
中心を中心とする円弧状からなつている。そして
この遮光板16は扇形の要部分を中心としてモー
タ9により、前記ロータリバルブ14と連動して
180度回動するようになつている。この遮光板1
6の周縁の前記領域17a,17b,17cの中
心と整合する位置にはそれぞれマグネツト18
a,18b,18cが設けられており、固定マグ
ネツト19に吸引されて領域17a,17b,1
7cの中心が赤外線光路の中心に正確に位置する
ように構成されている。この領域17a,17
b,17cはスパンガスによつて吸収されずに検
出器12に到達する赤外線の光量と同等の光量に
遮光する領域で、予め既知濃度のスパンガスによ
つて遮光量は較正されている。
FIG. 4 is a longitudinal sectional view showing a second embodiment of the present invention. In this figure, the same or equivalent parts as in the first embodiment shown in FIG. 2 are denoted by the same reference numerals and the explanation thereof will be omitted. This embodiment is a case in which the present invention is applied to a cross-flow type infrared gas analyzer. In the case of a cross-flow type, two sample cells 15 are separated by a rotary valve 14 that rotates at a constant cycle.
A sample gas and a zero gas are alternately flowed through a and 15b, and the output difference is detected by the detector 12 by utilizing the modulation effect caused by the absorption of infrared rays by the sample gas itself. In this case as well, calibration, zero calibration, and span calibration are performed using the light shielding plate 16 without using calibration gas. As shown in FIG. 5, this light shielding plate 16 consists of support plates 16a, 16b, and 16c stacked in multiple stages so as to open in a fan shape, and includes an area 17.
a, 17b, 17c are the respective support plates 16a, 16
b, 16c (region 17c is not shown). The shape of the through hole in this region is an arc centered on the rotation center. The light shielding plate 16 is operated in conjunction with the rotary valve 14 by the motor 9, centering on the fan-shaped main part.
It is designed to rotate 180 degrees. This light shielding plate 1
A magnet 18 is provided at a position on the periphery of the magnet 6 that is aligned with the center of the areas 17a, 17b, and 17c, respectively.
a, 18b, 18c are provided, and are attracted by the fixed magnet 19 to form areas 17a, 17b, 1.
7c is configured so that the center thereof is located precisely at the center of the infrared light path. This area 17a, 17
b and 17c are regions that block light to an amount equivalent to the amount of infrared light that reaches the detector 12 without being absorbed by the span gas, and the amount of light blocked is calibrated in advance with a span gas of a known concentration.

次に本実施例の動作を説明する。ゼロ較正時及
びサンプル測定時には、領域17a,17b,1
7cは2つの赤外線光路から外されていて、光源
1,2からの赤外線は遮光されることなく検出器
12に導かれる。一方キヤリブレーシヨン曲線作
成またはスパン較正時においてはサンプルセル1
5a,15bをゼロガス状態とし、領域17a,
17b,17cの何れか一つがロータリバルブ1
4に同期されたモータ9による遮光板16の回転
と、マグネツト18a,18b,18cの何れか
一つとマグネツト19との吸引によつて、サンプ
ルセル15a,15bの赤外線光路に正しく交互
に挿入される。従つて光源1,2からの赤外線
は、領域17a,17b,17cの何れか一つに
よつて、スパンガスを流したときと同じ光量に遮
光されたのち検出器12に導かれる。この場合サ
ンプル測定時には2本のサンプルセル15a,1
5bの両方にサンプルガスが流れ、セル間の汚れ
た状態が同じになるのでセルの汚れによるゼロド
リフトがないので、セルの汚れを防止するための
恒温槽は不要である。その他の効果は第1実施例
と同様である。
Next, the operation of this embodiment will be explained. At the time of zero calibration and sample measurement, areas 17a, 17b, 1
7c is removed from the two infrared light paths, and the infrared light from the light sources 1 and 2 is guided to the detector 12 without being blocked. On the other hand, when creating a calibration curve or calibrating span, sample cell 1
5a and 15b are in a zero gas state, and regions 17a and 15b are in a zero gas state.
Either one of 17b and 17c is rotary valve 1
By rotation of the light shielding plate 16 by the motor 9 synchronized with the sample cell 4 and suction between the magnet 19 and any one of the magnets 18a, 18b, and 18c, the samples are inserted correctly and alternately into the infrared light paths of the sample cells 15a and 15b. . Therefore, the infrared rays from the light sources 1 and 2 are guided to the detector 12 after being blocked by one of the regions 17a, 17b, and 17c to the same amount of light as when the span gas was flowing. In this case, when measuring the sample, two sample cells 15a, 1
Since the sample gas flows through both of the cells 5b and the contamination conditions between the cells are the same, there is no zero drift due to contamination of the cells, so a constant temperature bath for preventing contamination of the cells is not required. Other effects are similar to those of the first embodiment.

尚、本実施例では遮光板16に3つの領域を設
けた場合について説明したが、測定濃度範囲内
で、領域17a,17b,17cから選ばれた領
域を複数個組み合わせて、前記赤外線光路中に進
出させて4種以上の所望の遮光率を得ることが出
来る。
In this embodiment, the case where three regions are provided on the light shielding plate 16 has been described, but within the measurement concentration range, a plurality of regions selected from the regions 17a, 17b, and 17c are combined to form a light beam in the infrared light path. It is possible to obtain four or more desired light shielding rates by advancing the light shielding ratio.

また第1及び第2の実施例では遮光領域を5つ
及び3つ設けた場合について説明したが、この遮
光領域の数はそれらに限定されるものではない。
Further, in the first and second embodiments, the cases where five and three light shielding regions are provided have been described, but the number of light shielding regions is not limited thereto.

また、本実施例では、赤外線の光源を2つ設け
た例について説明したが、1つの光源で、反射ミ
ラーを用いることにより、2つ以上の赤外線光路
を形成することも可能であり、更に遮光領域をサ
ンプルセルの上方に進出自在に設けて、遮光した
後の赤外線がサンプルセルを通過吸収するように
しても同様の効果を得ることが出来る。
Furthermore, in this embodiment, an example in which two infrared light sources are provided has been described, but it is also possible to form two or more infrared light paths with one light source by using a reflecting mirror, and furthermore, it is possible to form two or more infrared light paths. A similar effect can be obtained by providing a region above the sample cell so that it can freely advance so that the infrared rays that have been blocked pass through and are absorbed by the sample cell.

上記各実施例にて用いられた遮光板は通常金属
製の板材が用いられる。例えばステンレススチー
ル、アルミ合金、銅合金等の普通に用いられる金
属、合金が用いられる。その他アルミナ、ジルコ
ニア、窒化珪素等の強靭性セラミツク板等赤外線
を遮断するものであれば、使用可能である。
The light shielding plates used in each of the above embodiments are usually made of metal. For example, commonly used metals and alloys such as stainless steel, aluminum alloy, copper alloy, etc. are used. Other materials that block infrared rays, such as tough ceramic plates such as alumina, zirconia, and silicon nitride, can be used.

更に、遮光板に貫通孔を形成する方法として
は、金属ならば、エツチングによる方法の他、ワ
イヤカツト、放電加工、レーザ加工、プラズマ加
工等が挙げられ、セラミツク等ではそれらの方法
の他に、生の状態の際に打ち抜き加工等により所
望の形状の貫通孔を形成できる。
Furthermore, methods for forming through holes in a light shielding plate include etching, wire cutting, electrical discharge machining, laser machining, plasma machining, etc. for metals, and for ceramics, in addition to these methods, In this state, a through hole of a desired shape can be formed by punching or the like.

考案の効果 本考案は貫通孔の開口密度により、遮光率が調
整されているので、極めて簡単な構造であり、光
学フイルタに比べて低コストとなる。しかも、貫
通孔の形状が遮光板の回動中心を中心とする円弧
状に形成されてなるので、遮光板をこの回動中心
で支持し、回転させ、領域を切り換えることで容
易に開口密度を変化させることができ、しかも、
貫通孔の形状が回動中心を中心とする円弧状でな
るので、遮光板の静止位置の多少のずれが、赤外
線の当たる範囲内の貫通孔の総面積に影響しな
い。このように、容易に所定の遮光率を保つこと
ができる。
Effects of the Invention In the present invention, the light shielding rate is adjusted by the opening density of the through holes, so the structure is extremely simple and the cost is lower than that of an optical filter. Moreover, since the through-hole is formed in an arc shape centered on the rotation center of the light shielding plate, the aperture density can be easily adjusted by supporting the light shielding plate at this rotation center, rotating it, and switching the area. can be changed, and
Since the shape of the through hole is an arc centered on the rotation center, a slight shift in the resting position of the light shielding plate does not affect the total area of the through hole within the range of infrared rays. In this way, a predetermined light shielding rate can be easily maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の遮光板の一例を示す正面図、
第2図は本考案に係るガス分析計の第1実施例を
示す縦断面図、第3図は本実施例により得られた
キヤリブレーシヨン曲線の一例を示すグラフ、第
4図は本考案に係るガス分析計の第2実施例を示
す縦断面図、第5図は第4図の遮光板部分を示す
正面図を表す。 1,2……光源、3,15a,15b……サン
プルセル、4……比較セル、7,16……遮光
板、12……検出器、H……貫通孔。
FIG. 1 is a front view showing an example of the light shielding plate of the present invention;
Fig. 2 is a longitudinal cross-sectional view showing the first embodiment of the gas analyzer according to the present invention, Fig. 3 is a graph showing an example of the calibration curve obtained by this embodiment, and Fig. 4 is a graph showing the first embodiment of the gas analyzer according to the present invention. FIG. 5 is a longitudinal sectional view showing a second embodiment of the gas analyzer, and FIG. 5 is a front view showing the light shielding plate portion of FIG. 4. 1, 2... Light source, 3, 15a, 15b... Sample cell, 4... Comparison cell, 7, 16... Light shielding plate, 12... Detector, H... Through hole.

Claims (1)

【実用新案登録請求の範囲】 光源から発生する赤外線の一方をサンプルガス
に通過吸収させ、他方を濃度零または一定濃度の
比較ガスに通過吸収させ、これら2つの赤外線光
路のエネルギー差を検出器により検出してガスの
濃度分析を行うガス分析計において、 赤外線不透過の板材に貫通孔の開口密度の異な
る領域を複数設けた遮光板を回動自在に支持する
ことにより、上記赤外線光路中で上記各領域が進
出自在に、設けてなり、 上記各領域の貫通孔の形状が、上記遮光板の回
動中心を中心とする円弧状に形成されてなること
を特徴とするガス分析計。
[Claim for Utility Model Registration] One of the infrared rays generated from a light source is passed through and absorbed by a sample gas, the other is passed through and absorbed by a comparison gas of zero concentration or a constant concentration, and the energy difference between these two infrared light paths is detected by a detector. In a gas analyzer that detects and analyzes the concentration of gas, a light-shielding plate having a plurality of regions with different opening densities of through-holes is supported on a plate material that does not transmit infrared rays so as to be rotatable. A gas analyzer characterized in that each region is provided so as to be freely advanced, and the through hole in each region is formed in an arc shape centered on the center of rotation of the light shielding plate.
JP1987003015U 1987-01-13 1987-01-13 Expired JPH0429399Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987003015U JPH0429399Y2 (en) 1987-01-13 1987-01-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987003015U JPH0429399Y2 (en) 1987-01-13 1987-01-13

Publications (2)

Publication Number Publication Date
JPS63111656U JPS63111656U (en) 1988-07-18
JPH0429399Y2 true JPH0429399Y2 (en) 1992-07-16

Family

ID=30782388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987003015U Expired JPH0429399Y2 (en) 1987-01-13 1987-01-13

Country Status (1)

Country Link
JP (1) JPH0429399Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168772A (en) * 2000-12-05 2002-06-14 Kubota Corp Spectroscope
JP2017198631A (en) * 2016-04-28 2017-11-02 アズビル株式会社 Dryness measurement device and method for evaluating measurement error of dryness measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330378A (en) * 1976-08-31 1978-03-22 Siemens Ag Infrared gas analyzer
JPS5453579A (en) * 1977-10-05 1979-04-26 Fujitsu Ltd Infrared ray multicomponent gas analysis apparatus
JPS6138601B2 (en) * 1978-04-28 1986-08-30 Hitachi Seisakusho Kk

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138601U (en) * 1984-08-10 1986-03-11 日本電産コパル株式会社 Neutral density filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330378A (en) * 1976-08-31 1978-03-22 Siemens Ag Infrared gas analyzer
JPS5453579A (en) * 1977-10-05 1979-04-26 Fujitsu Ltd Infrared ray multicomponent gas analysis apparatus
JPS6138601B2 (en) * 1978-04-28 1986-08-30 Hitachi Seisakusho Kk

Also Published As

Publication number Publication date
JPS63111656U (en) 1988-07-18

Similar Documents

Publication Publication Date Title
FI93994C (en) Detector combination for analyzer device
US20050275844A1 (en) Variable Exposure Rotary Spectrometer
US4966458A (en) Optical system for a multidetector array spectrograph
US3944834A (en) Pollution monitor with self-contained calibration and cell-block therefor
FR2624606A1 (en) CORRELATIONAL GAS ANALYZER
JPS61153546A (en) Particle analyzer
DE19926121A1 (en) Analyzer
JPH0429399Y2 (en)
EP0122441B1 (en) Spectroanalysis system
JP3519203B2 (en) X-ray equipment
JPS6137574B2 (en)
JP2000504422A (en) X-ray analyzer having two collimator masks
Ludwig et al. Self-absorption in resonance Raman and Rayleigh scattering: A numerical solution
JPH055483Y2 (en)
JPH05203573A (en) Infrared ray gas analyzer
KR101960223B1 (en) Automatic Changing Variable Path FTIR Mixed Gas Measuring System
FI64464C (en) REFERENCES FOR USE OF CHEMICAL ANALYSIS
JPH11513805A (en) Multi-pass cell and analysis method
JPS6288943A (en) Exhaust gas analyzer
RU103400U1 (en) LABORATORY STAND FOR CREATION AND CONTROL OF CONCENTRATIONS OF GASES IN THE FORMATION OF THE BASIS OF SPECTRAL DATA AND ASSESSMENT OF TECHNICAL CHARACTERISTICS OF FOURIER SPECTRADRADIOMETERS
JPS6122240A (en) X-ray analysis apparatus for minute part
JPS6122241A (en) X-ray analytical apparatus
Bryant et al. Front-face laser fluorescence technique with microabsorption cells
JPH0519839Y2 (en)
WO2022270037A1 (en) Photometry device and analysis device