JPS6136194A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPS6136194A
JPS6136194A JP15402884A JP15402884A JPS6136194A JP S6136194 A JPS6136194 A JP S6136194A JP 15402884 A JP15402884 A JP 15402884A JP 15402884 A JP15402884 A JP 15402884A JP S6136194 A JPS6136194 A JP S6136194A
Authority
JP
Japan
Prior art keywords
crystal
melt
single crystal
compound semiconductor
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15402884A
Other languages
Japanese (ja)
Inventor
Shoichi Washitsuka
鷲塚 章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15402884A priority Critical patent/JPS6136194A/en
Publication of JPS6136194A publication Critical patent/JPS6136194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce a compound semiconductor in high purity in producing the compound semiconductor from a raw material melt in a crucible by the liquid- encapsulated Czochralski (LEC) method, by removing impurities in the melt with a <111> axis seed crystal, and growing the single crystal using a seed crystal in the different orientation. CONSTITUTION:A raw material melt 6 for a compound semiconductor, e.g. GaAs, is placed in a crucible 3 in a closed vessel 1, and B2O3 7 as a sealing agent for carbon is placed thereon. A <111> seed crystal 8 is dipped from above and then slowly pulled up to grow a <111> crystal. At this time, the carbon as an impurity in the melt 6 is removed into the <111> crystal by the facet growth. The <111> crystal is then pulled up, and the vessel 1 is divided into the upper and lower chambers by a shutter 12. The <111> crystal is exchanged with the <100> seed crystal 9 in the upper chamber. The shutter 12 is then opened to dip the seed crystal 9 in the melt 6 free of the impurity carbon and then slowly pulled up to pull up and grow the aimed GaAs semiconductor single crystal of high purity with almost no carbon content.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はLEC法により化合物半導体単結晶を製造する
に際し、原料融液中の不純物、特に偏析係数の大きい不
純物を効果的に除去せしめ高純度な化合物半導体単結晶
を製造する方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention effectively removes impurities in a raw material melt, particularly impurities with a large segregation coefficient, when manufacturing compound semiconductor single crystals by the LEC method, thereby achieving high purity. The present invention relates to a method of manufacturing a compound semiconductor single crystal.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

GaAs 、 GaP 、 InPおよびInSb等の
化合物半導体単結晶は8iでは得られない特徴を持ち、
電子デノ(イス、光デバイス用基板として用いられてい
る。
Compound semiconductor single crystals such as GaAs, GaP, InP and InSb have characteristics that cannot be obtained with 8i,
It is used as a substrate for electronic devices and optical devices.

中でもGaAsはアンドープでも半絶縁性基板が得られ
ることから、近年超高速IC用基板として盛んに使用さ
れるようになってきている。このIC用GaAs単結晶
はアンドープで直接合成したのち液体封止高圧引上げ法
(LFfC法)により製造されている。
Among them, GaAs has been increasingly used as a substrate for ultra-high-speed ICs in recent years, since a semi-insulating substrate can be obtained even when undoped. This GaAs single crystal for IC is directly synthesized by undoping and then manufactured by liquid-filled high-pressure pulling method (LFfC method).

アンドープで熱変成のない半絶縁性基板を再現性良く得
るためには、結晶中の残留不純物を極力低減する必要が
あり、とりわけP型溝電性不純物となるカーボンの低減
化が要求されている。
In order to obtain an undoped semi-insulating substrate without thermal alteration with good reproducibility, it is necessary to reduce residual impurities in the crystal as much as possible, and in particular, it is required to reduce carbon, which is a P-type groove conductive impurity. .

しかしながら使用する結晶原料の純度(通常6N〜7N
 )が十分でないことに加えて、結晶製造炉内の発熱体
および熱遮蔽体は通常カーボン製品であるため、雰囲気
ガス中の微量の酸素、水蒸気等により容易に酸化され、
酸化生成物による原料融液の汚染が生じるという問題が
ある。そのため通常結晶内にはこれらの残留カーボンお
よび汚染カーボンが合せて〜lX10cm  含まれて
いる。
However, the purity of the crystal raw material used (usually 6N to 7N)
) is not sufficient, and the heating elements and heat shields in the crystal manufacturing furnace are usually made of carbon products, so they are easily oxidized by trace amounts of oxygen, water vapor, etc. in the atmospheric gas.
There is a problem in that the raw material melt is contaminated by oxidation products. Therefore, the total amount of these residual carbons and contaminant carbons is usually ~1×10 cm in the crystal.

しかるに、このような融液中のカーボンな封止剤である
B2O3との反応を利用して除去することが試みられて
いるが、その除去機構が不明であり、はとんど制御でき
ていないのが現状である。これがLEC法におけるGa
As単結晶の品質および製造歩留りの困難さを助長して
いた。
However, attempts have been made to remove such carbon by utilizing a reaction with B2O3, which is a carbon sealant in the melt, but the removal mechanism is unknown and the rate of removal has not been controlled. is the current situation. This is Ga in the LEC method.
This contributes to the difficulty in quality and manufacturing yield of As single crystals.

〔発明の目的〕[Purpose of the invention]

本発明はLEC法により化合物半導体単結晶を引上げ製
造する際に上述した欠点を改善したもので、単結晶の品
質および製造歩留りの向上維持を図ることができる化合
物半導体単結晶の製造方法を提供することを目的として
いる。
The present invention improves the above-mentioned drawbacks when producing compound semiconductor single crystals by pulling using the LEC method, and provides a method for producing compound semiconductor single crystals that can improve and maintain the quality of the single crystal and the production yield. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は化合物半導体単結晶育成において、<11 D
軸引上げ結晶ではファセット成長が生じ、その領域では
不純物の実効偏析係数が異常に大きくなる現象に着目し
たもので、これにより融液中の不純物、特に偏析係数の
大きい不純物を効果的に除去せしめたのち、引き続いて
高純度な単結晶を引上げることを特徴とするものである
。すなわち本発明は、ルツボ内の原料融液からLEC法
により化合物半導体単結晶を製造するに際し、<111
>および同種または異種方位の両種子結晶を備え、始め
に<111>種子結晶により<111>単結晶を育成し
、この時ファセット成長を利用して融液中の不純物を除
去する。次に同種または異種方位の種結晶に交換したの
ち、残りの融液から引き続いて高純度な同種または異種
方位の単結晶を引上げるものである。GaAsにおける
カーボンの偏析係数は約1、4であるからこれにより効
果的に除去することができる。
The present invention provides a method for growing compound semiconductor single crystals with <11 D
This method focused on the phenomenon that facet growth occurs in axially pulled crystals, and the effective segregation coefficient of impurities becomes abnormally large in this region.This effectively removes impurities in the melt, especially impurities with large segregation coefficients. This method is characterized by subsequently pulling a highly pure single crystal. That is, the present invention provides a method for producing a compound semiconductor single crystal from a raw material melt in a crucible by the LEC method.
> and both seed crystals with the same or different orientations, a <111> single crystal is first grown using the <111> seed crystal, and at this time, impurities in the melt are removed using facet growth. Next, after replacing the seed crystal with a seed crystal of the same type or a different orientation, a highly pure single crystal of the same type or a different orientation is subsequently pulled from the remaining melt. Since the segregation coefficient of carbon in GaAs is about 1.4, it can be effectively removed.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明により得られる効果は次の如くで
ある。
As described above, the effects obtained by the present invention are as follows.

(1)融液中の不純物とくに偏析係数の大きい不純物を
効果的に除去できるので高純度の単結晶が得られる。
(1) Since impurities in the melt, especially impurities with a large segregation coefficient, can be effectively removed, a highly pure single crystal can be obtained.

(2)  結晶製造の再現性・安定性および結晶品質が
向上する。
(2) The reproducibility and stability of crystal production and crystal quality are improved.

(3)工業的に適用することにより生産性が向上する。(3) Productivity is improved by industrial application.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例を図面を参照しながら説明する。 Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の機能を備えた単結晶製造装置の一例で
ある。図においては1は容器、2は加熱ヒータ、3はル
ツボ、4はルツボ移動回転軸、5はシード移動回転軸、
6は融液、7はB2O3,8は<11 D種子結晶、9
は<ioo>種子結晶、10は排気弁、11は圧力バラ
ンス弁、12はシャッタ、13はシャツタ開閉器、14
はシャッターガイド、15はフランジである。本実施例
では始めに、容器1内に収納された<11 D種子結晶
8を用いてルツボ3内の融液6から<11 D単結晶を
成長させる。この時、結晶は適当な温度条件、引上げパ
ラメータのもとではファセット成長し、ファセット領域
には不純物が高濃度に取り込まれる、そしてこの効果は
偏析係数の大きい不純物はど顕著であることは周知であ
る。そこで適当に<111>単結晶が成長した時点で結
晶を融液6から切り離し容器1の上方に移動させる。次
に、シャッタ12をガイド14に沿って導入器13によ
り移動させて容器1を上下の2室に分離する。このシャ
ッタ12お゛よび開閉器13は公知の磁気結合方式等に
より実施することができる。次に、排気弁10を開いて
容器1の−F室を大気圧に開放すると容器1の下室は圧
力差によりシャッタ12とガイド14で気密に保たれる
ので容器1の王室を不活性ガスでパージしながらフラン
ジ15を開け<111>種子結晶8を<100>種子結
晶9に交換することができる。その後、フランジ15を
閉めて容器1の上室を排気したのち、圧力バランス弁l
を開いて容器1の上下室の圧力をバランスさせ、シャッ
タ12を開ければ、連続して高純度なく100>単結晶
を成長させることができる。
FIG. 1 shows an example of a single crystal manufacturing apparatus equipped with the functions of the present invention. In the figure, 1 is a container, 2 is a heater, 3 is a crucible, 4 is a crucible movement rotation axis, 5 is a seed movement rotation axis,
6 is melt, 7 is B2O3, 8 is <11 D seed crystal, 9
is <ioo> seed crystal, 10 is an exhaust valve, 11 is a pressure balance valve, 12 is a shutter, 13 is a shutter switch, 14
1 is a shutter guide, and 15 is a flange. In this example, first, a <11 D single crystal is grown from the melt 6 in the crucible 3 using the <11 D seed crystal 8 housed in the container 1 . At this time, the crystal grows in facets under appropriate temperature conditions and pulling parameters, and impurities are incorporated into the facet region at a high concentration, and it is well known that this effect is more pronounced for impurities with large segregation coefficients. be. Therefore, when a <111> single crystal has grown appropriately, the crystal is separated from the melt 6 and moved above the container 1. Next, the shutter 12 is moved by the introducer 13 along the guide 14 to separate the container 1 into two upper and lower chambers. The shutter 12 and the switch 13 can be implemented using a known magnetic coupling method or the like. Next, when the exhaust valve 10 is opened and the -F chamber of the container 1 is released to atmospheric pressure, the lower chamber of the container 1 is kept airtight by the shutter 12 and the guide 14 due to the pressure difference, so the royal chamber of the container 1 is closed to the inert gas. The <111> seed crystal 8 can be replaced with the <100> seed crystal 9 by opening the flange 15 while purging. Then, after closing the flange 15 and evacuating the upper chamber of the container 1, the pressure balance valve l
By opening the chamber 1 to balance the pressure between the upper and lower chambers of the container 1 and opening the shutter 12, it is possible to continuously grow a 100> single crystal without high purity.

次に具体的な実施例としてGaAs単結晶を製造する場
合について詳しく説明する。直接合成法により内径10
0朋のルツボ3内に約1 kgのGaAs 融液6を作
成した。始めに取付けられている<111>種子結晶8
を用いて種付けを行なったのち引上は速度5朋/hで引
上げを開始し、直径80mviの1<111>結晶を約
100g成長させた。その後<100>種子結晶9と交
換して、種付けを行なったのち、引上げ速度9myn/
hで引上げを開始し直径50mm、重量800gの(1
00>単結晶を成長させた。
Next, as a specific example, a case of manufacturing a GaAs single crystal will be described in detail. Internal diameter 10 by direct synthesis method
Approximately 1 kg of GaAs melt 6 was prepared in a crucible 3 of 0.0 mm. <111> seed crystal 8 installed at the beginning
After seeding was carried out using the same method, pulling was started at a speed of 5 h/h, and about 100 g of 1<111> crystals with a diameter of 80 mvi were grown. After that, it was replaced with <100> seed crystal 9 and seeded, and the pulling speed was 9 my/min.
Start pulling at h, and pull up (1
00> A single crystal was grown.

このようにして作成した単結晶の断面中央付近のカーボ
ン濃度を赤外吸収法により測定したところ、(111>
単結晶では約3 XIO”/cm ’と極めて高濃度の
カーボンが含まれていることが分った。一方、<100
>単結晶では約4X10’ンα3と従来の半分以下であ
ることが分った。次に<100>結晶の比抵抗を測定し
たところ頭部から尾部まですべて107〜108Ω・笠
の値を示した。さらにA3圧下で800℃、15分間の
熱処理を行なったのちでも107Ω・cm以上の比抵抗
を保っており、すぐれた半絶縁性を示すことが分った。
When the carbon concentration near the center of the cross section of the single crystal thus prepared was measured by infrared absorption method, it was found that (111>
It was found that the single crystal contains an extremely high concentration of carbon, about 3 XIO"/cm'. On the other hand,
>In a single crystal, it was found to be approximately 4×10′ α3, which is less than half of the conventional value. Next, when the resistivity of the <100> crystal was measured, it showed a value of 10 7 to 10 8 Ω·capacity from the head to the tail. Further, even after heat treatment at 800° C. for 15 minutes under A3 pressure, the resistivity remained at 10 7 Ω·cm or more, indicating excellent semi-insulating properties.

以上説明したように従来の方法により製造した結晶内に
は約I X 101@/an’のカーボン汚染があった
が、本発明の方法においては約4 X to’7Crn
3と従来の半分以下に低減でき、高純度ですぐれた半絶
縁性GaAs単結晶が得られた。
As explained above, there was carbon contamination of about I x 101@/an' in the crystal produced by the conventional method, but in the method of the present invention, the amount of carbon contamination was about 4 x to'7 Crn.
3, less than half of the conventional value, and a highly pure and excellent semi-insulating GaAs single crystal was obtained.

また本発明の実施例ではGaAs引上げにおけるカーボ
ン不純物について述べたが他のInP 、 GaP 、
 In8b等においても、特に偏析係数め大きい不純物
を効果的に除去し、高純度単結晶を製造する場合には本
発明が適用されることは勿論である。
Furthermore, in the embodiments of the present invention, carbon impurities in GaAs pulling have been described, but other materials such as InP, GaP,
Of course, the present invention can also be applied to In8b and the like when impurities with particularly large segregation coefficients are effectively removed and high-purity single crystals are produced.

更に本発明の実施例では容器1をシャッタ12により2
分し、種結晶を交換しているが、本実施例に限定される
ものではなく、実質的に本発明の機能を実施できるもの
であれば、同様の効果を得ることができる。
Further, in the embodiment of the present invention, the container 1 is closed to the container 2 by the shutter 12.
Although the seed crystals are separated and the seed crystals are replaced, the present invention is not limited to this example, and the same effects can be obtained as long as the functions of the present invention can be implemented substantially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための概略図面で
ある。 1:容器、2:加熱ヒータ、3ニルツボ、4ニルツボ移
動回転軸、5:シード移動回転軸、6:晶由液、7 :
 B2O3,8: <111>種子結晶、9 : <1
00>種子結晶、10:排気弁、11:FEカバランス
弁、12:シャッタ、13:シャツタ開閉器、14:シ
ャッタガイド、15:フランジ
FIG. 1 is a schematic drawing for explaining one embodiment of the present invention. 1: Container, 2: Heater, 3 Nil acupuncture point, 4 Nil acupoint movement rotation axis, 5: Seed movement rotation axis, 6: Crystal liquid, 7:
B2O3,8: <111> Seed crystal, 9: <1
00> Seed crystal, 10: Exhaust valve, 11: FE balance valve, 12: Shutter, 13: Shutter switch, 14: Shutter guide, 15: Flange

Claims (1)

【特許請求の範囲】[Claims]  高圧容器内に配設されたルツボ内の原料融液からLE
C法により化合物半導体単結晶を製造するに際し、<1
11>および同種または異種方位の両種子結晶を備え、
始めに<111>種子結晶により<111>単結晶をフ
セセツト成長せしめて融液中の不純物を除去する工程と
、引き続いて同種または異種方位の種子結晶により残り
の融液から同種または異種方位の単結晶を成長させる工
程を有することを特徴とする化合物半導体単結晶の製造
方法
LE from raw material melt in a crucible placed in a high-pressure container
When manufacturing a compound semiconductor single crystal by method C, <1
11> and both seed crystals with the same or different orientations,
First, a <111> single crystal is grown offset using a <111> seed crystal to remove impurities from the melt, and then a single crystal of the same or different orientation is grown from the remaining melt using a seed crystal of the same or different orientation. A method for producing a compound semiconductor single crystal, comprising a step of growing a crystal.
JP15402884A 1984-07-26 1984-07-26 Production of compound semiconductor single crystal Pending JPS6136194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15402884A JPS6136194A (en) 1984-07-26 1984-07-26 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15402884A JPS6136194A (en) 1984-07-26 1984-07-26 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS6136194A true JPS6136194A (en) 1986-02-20

Family

ID=15575324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15402884A Pending JPS6136194A (en) 1984-07-26 1984-07-26 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6136194A (en)

Similar Documents

Publication Publication Date Title
JPS6136194A (en) Production of compound semiconductor single crystal
DE10057413B4 (en) Process for the direct synthesis of indium phosphide
JPS63250428A (en) Method for purifying indium
RU2818932C1 (en) Method of producing gallium arsenide (gaas) monocrystals
JPS62230694A (en) Production of gaas single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH06116082A (en) Production of single crystal
JPH0124760B2 (en)
JPH02196082A (en) Production of silicon single crystal
JPH06172098A (en) Production of gaas single crystal
RU1809847C (en) Method of crystalline gallium arsenide preparing
JPS61215292A (en) Apparatus for producing compound semiconductor single crystal
JPS5912639B2 (en) crystal growth method
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPS60118696A (en) Method for growing indium phosphide single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPS63159291A (en) Production of compound semiconductor single crystal
JPS58145691A (en) Production of single crystal
JPS6385099A (en) Production of indium phosphide single crystal
JPS60221388A (en) Manufacture of gaas single crystal
JPS6321288A (en) Production of single crystal of compound semiconductor
JPH03252385A (en) Production of single crystal having high dissociation pressure
JPS62197397A (en) Production of single crystal
JPS6313960B2 (en)
JPS62229929A (en) Manufacture of semiconductor wafer