JPS58145691A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS58145691A
JPS58145691A JP57025926A JP2592682A JPS58145691A JP S58145691 A JPS58145691 A JP S58145691A JP 57025926 A JP57025926 A JP 57025926A JP 2592682 A JP2592682 A JP 2592682A JP S58145691 A JPS58145691 A JP S58145691A
Authority
JP
Japan
Prior art keywords
melt
inert
crucible
single crystal
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57025926A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kokubu
国分 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57025926A priority Critical patent/JPS58145691A/en
Publication of JPS58145691A publication Critical patent/JPS58145691A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:A means is set to control the partial pressure of volatile components in the raw materials for single crystal in the space between the inert melt covering the melted raw materials and the inert melt seal at the top, thus producing single crystals of highly decomposable compound having high accuracy of stoichiometric composition. CONSTITUTION:After the inside of the pressure vessel 1 is evacuated, a male- female type cap 6 is fitted on the top of the crucible 2 in the state that the pulling-up shaft 12 penetrates through the cap 6, then the B2O3 7 in the cap is melted with heater 8 to effect sealing. An inert gas is introduced into the vessel 1 and the arsenic 9 in the subcrucible 10 is heated with heater 11 to form its vapor. Thus, the inside of the crucible is filled with the vapor of arsenic and simultaneously, GaAs is heated with the heater 5 to form its melt 4 covered with B2O3 melt 15. At this time, the vapor pressure of arsenic is made controllable by the temperature of the crusible 10. Then, the seed crystal 13 is brought into contact with the melt 15 and pulled up while rotating to produce the single crystal of GaAs.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は高い分解圧を有する化合物の単結晶を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for producing a single crystal of a compound having a high decomposition pressure.

〔従来技術とその問題点〕[Prior art and its problems]

GaAs 、GaP 、 ZnPなどの高分解圧化合物
車結晶の製造方法として液体力ブセル引上げ法が知られ
ている。この方法は化合物の原料融液の表面を8203
などの不活性液体で覆い、さらに上から化合物の分解圧
以上の不活性ガスでカロ圧しながら単結晶の引北げを行
うものである。ところで、この方法では前記不活性液体
被覆の上方に引上げられた単結晶は高【晶ドで前記不活
性ガスの雰囲気にさらされるだめ単結晶表面から揮発性
成分が解離しやすくなる。このため、成長した結晶は化
学ψ論的組成からずれて、特に単結晶表面近傍は仝イW
などの欠陥を多く含むようになり結晶性が阻害される。
A liquid force pull-up method is known as a method for producing high decomposition pressure compound crystals such as GaAs, GaP, and ZnP. In this method, the surface of the raw material melt of the compound is
This method involves covering the single crystal with an inert liquid such as, and then pulling the single crystal upward while applying Calo pressure from above with an inert gas that is higher than the decomposition pressure of the compound. By the way, in this method, the single crystal pulled above the inert liquid coating is exposed to the inert gas atmosphere at a high crystal density, so that volatile components are likely to dissociate from the surface of the single crystal. For this reason, the grown crystal deviates from the chemical ψ theoretical composition, and especially near the surface of the single crystal, there is no
It contains many defects such as, and the crystallinity is inhibited.

また不揮発性成分が析出物として残り、これが双晶や多
結晶発生の原因となるだめ単結晶化率が著しく低Fする
という問題がある。このような問題点を解決すべく特開
昭54−123585号公報には、るつぼ内の単結晶に
させんとする高分解圧化合物融液をるつぼの上端部に形
成した酸化はう素融液ノールと相まって2重融液ンール
を構成するだめの酸化はう素融液で被覆すると、高分解
圧化合物融液中の揮発性成分のみが酸化はう素融液被覆
(i−通して選択的に蒸発気化して酸化はう素融液被覆
と酸化はう素融液シールとの間に揮発性成分の雰囲気が
形成されるようになるため、成長単結晶表面から揮発性
成分が4Mして単結晶表面近傍の結晶性が阻害されにく
くなることが記憶されている。しかし、この方法でも酸
化はう素融液被覆上の揮発性成分雰囲気の蒸気圧は高分
解圧化合物融液から酸化はう素融液被覆を通しての蒸#
:量によるので再現性良く制御できないという問題点が
ある。
In addition, non-volatile components remain as precipitates, which cause the generation of twins and polycrystals, resulting in an extremely low F single crystallinity. In order to solve these problems, Japanese Patent Application Laid-Open No. 123585/1985 discloses an oxidized boron melt in which a high decomposition pressure compound melt is formed at the upper end of the crucible to form a single crystal in the crucible. When the oxidation of the pool constituting the double melt tube in conjunction with the nol is coated with the borium melt, only the volatile components in the high decomposition pressure compound melt are oxidized and selectively coated with the boron melt (i- As a result, an atmosphere of volatile components is formed between the boron oxide melt coating and the boron oxide melt seal, and the volatile components are removed from the surface of the growing single crystal. It is remembered that the crystallinity near the surface of the single crystal is less likely to be inhibited. However, even with this method, the vapor pressure of the volatile component atmosphere on the boron melt coating is lowered by the oxidation from the high decomposition pressure compound melt. Steaming through boron melt coating
:There is a problem that it cannot be controlled with good reproducibility because it depends on the amount.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のような観点に基き、化学量論理的組成
を制御して結晶性の良い高分解圧化合物の単結晶を再現
性良く製造する方法を提供するものである。
Based on the above-mentioned viewpoints, the present invention provides a method for producing a single crystal of a high decomposition pressure compound with good crystallinity with good reproducibility by controlling the stoichiometric composition.

〔発明の概要〕[Summary of the invention]

本発明は、上記の目的を達成するため、内部に不活性融
液で被覆した原料融液を保持したるつぼの上端部を不活
性融液で7−ルするとともに、前記るつぼ内の前記不活
性融液被覆と前記不活性融液ンールとの間の空間に原料
融液の揮発性成分元素を保持する補助るつぼを設け、補
助るつぼの温度を制御することにより、前記空間の前記
揮発性成分の蒸気圧を制御して単結晶を製造する方法で
ある。
In order to achieve the above object, the present invention covers the upper end of a crucible holding a raw material melt coated with an inert melt inside with an inert melt, and the inert melt in the crucible. An auxiliary crucible for holding volatile component elements of the raw material melt is provided in the space between the melt coating and the inert melt channel, and by controlling the temperature of the auxiliary crucible, the volatile components in the space are This is a method of manufacturing single crystals by controlling vapor pressure.

〔発明の効果」 本発明は高分解用化合、吻単結晶の引上げにお・いて、
不活性融液被覆上の揮発性成分の蒸気圧を制御して単結
晶の製造を行うため成長単結晶表面から揮発性成分が解
離して単結晶表面近傍の結晶性が阻害されることがなく
高品質の単結晶の製造が可能となるとともに、双晶や多
結晶の発生も抑えられ単結晶化率の向上もはかることが
できる。
[Effects of the invention] The present invention provides high decomposition compounds and the pulling of snout single crystals.
Since the single crystal is manufactured by controlling the vapor pressure of the volatile components on the inert melt coating, the volatile components do not dissociate from the surface of the growing single crystal and the crystallinity near the surface of the single crystal is not inhibited. In addition to making it possible to manufacture high-quality single crystals, the generation of twins and polycrystals can be suppressed, and the single crystallization rate can also be improved.

〔発明の実施例〕[Embodiments of the invention]

以ド本発明を不活性融液被覆および/−ル材としてB2
O3を用いGaAs単結晶を作成するときの実施例をも
とに説明する。このGaAs単結晶を作成するとき図に
示すような製造装置を用いている。ヒータ8によって加
熱されて融液となる82037を収容したはめ込み蓋6
を装着するとともに、先端部に種子結晶13を取付けた
回転引上軸12と、ヒータ11によって加熱され所望の
蒸気圧を与えるひ素9を収容する補助るつぼ10が付き
、ヒータ5によって加熱され融液被&15となるB2O
3とGaAs融液4となるGaAs原料を収容し、サセ
プタ3によって支持されたるつぼ2とを圧力容器1内に
密閉装着する。ついで圧力容器1内を排気して真空とし
だ後、はめ込み蓋6を引上軸12が威通した状態でるつ
ぼ2の北端部にはめ込み、引続いてはめ込み蓋6内の8
2037をヒータ8によって加熱して融液とすることに
よってるつぼ2の上端部をンールし、窒素などの不活性
ガスを圧力容器l内に導入し゛〔るつぼ2の外部を不活
性ガス謬囲気とする。ついで、補助るつぼ10内のひ素
9をヒータ11によって加熱してひ素蒸気を発生させ、
るつぼ2の内部をひ水雰囲気とするとともに、るつぼ2
内のB2O3とGaAs原料をヒータ5によって加熱し
て、B2O3融解物15で覆われたGaAs融液4とす
る。このとき、るつぼ2の壁の温度は常に補助るつぼ1
0の幌iより高くしておき、るつぼ2内のひ水界囲気圧
力を補助るつぼ10の温度で制御できるようにしておく
。つぎに種子結晶13をB2O3融解物15を介してG
aAs融液4に接触させ回転させながら上方向に引上げ
ることによってGaAs単結晶が製造される。
Hereinafter, the present invention will be applied to B2 as an inert melt coating and/or material.
A description will be given based on an example in which a GaAs single crystal is produced using O3. When producing this GaAs single crystal, a manufacturing apparatus as shown in the figure is used. A fitting lid 6 containing 82037 which is heated by the heater 8 and becomes a melt.
At the same time, a rotating pulling shaft 12 with a seed crystal 13 attached to the tip and an auxiliary crucible 10 containing arsenic 9 heated by a heater 11 to give a desired vapor pressure are attached. B2O to be received &15
3 and a crucible 2 containing a GaAs raw material to become a GaAs melt 4 and supported by a susceptor 3 are hermetically installed in a pressure vessel 1. After the inside of the pressure vessel 1 is evacuated to create a vacuum, the fitting lid 6 is fitted into the north end of the crucible 2 with the lifting shaft 12 pushed through, and then the 8 in the fitting lid 6 is inserted.
The upper end of the crucible 2 is cooled by heating 2037 with the heater 8 to form a melt, and an inert gas such as nitrogen is introduced into the pressure vessel 1. . Next, the arsenic 9 in the auxiliary crucible 10 is heated by the heater 11 to generate arsenic vapor,
The inside of the crucible 2 is made into a hydrogen atmosphere, and the crucible 2
The B2O3 and GaAs raw materials inside are heated by a heater 5 to form a GaAs melt 4 covered with a B2O3 melt 15. At this time, the temperature of the wall of crucible 2 is always the same as that of auxiliary crucible 1.
The temperature of the auxiliary crucible 10 is set to be higher than the hood i of 0, so that the atmospheric pressure inside the crucible 2 can be controlled by the temperature of the auxiliary crucible 10. Next, the seed crystal 13 is passed through the B2O3 melt 15 to G
A GaAs single crystal is produced by bringing it into contact with the aAs melt 4 and pulling it upward while rotating it.

このような方法で得られたGaAs単結晶は結晶表面か
らひ素の蒸発が全く認められなかった。またエッチピッ
ト密度のウニ・・中央部と周辺部での差がほとんどなく
ウニ・・全体が103cIrL−2台と従来の引上げ結
晶のi/10に減少しており、欠陥による深い準位も検
出されないなど、成長した結晶の品質が著しく向上して
いることが明確となった。また、双晶や多結晶の発生が
大幅に減少し、単結晶化率が従来の60%から90%七
大幅に向旧した。
In the GaAs single crystal obtained by such a method, no evaporation of arsenic was observed from the crystal surface. In addition, there is almost no difference in the etch pit density between the center and the periphery, and the overall etch pit density is on the order of 103cIrL-2, which is reduced to i/10 of the conventional pulled crystal, and deep levels due to defects are also detected. It became clear that the quality of the grown crystals was significantly improved. In addition, the occurrence of twins and polycrystals has been significantly reduced, and the single crystallization rate has been significantly improved from 60% to 90%.

なお、本発明の詳細な説明にあたっては、特にGaAs
単結晶の引上げを例にとって説明したが、OaPやIn
Pなど他のどんな高分解圧化合物の結晶の引上げ法に適
用できることはもちろんである。
In addition, in the detailed explanation of the present invention, GaAs
The explanation was given using single crystal pulling as an example, but OaP and In
Of course, the present invention can be applied to any other method for pulling crystals of high decomposition pressure compounds such as P.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の単結晶の製造方法を説明するだめの製造
装置の断面図である。 図において、lは高圧容器、2はるつぼ、3はサセプタ
、4はGaAs融液、5はヒータ、6ははめ込み蓋、7
はソール用B2O3,8はシール用ヒータ、9はひ素、
10は補助るつぼ、11は雰囲気制御用ヒータ、12は
回転引上軸、13は種子結晶、14はGaAs単結晶、
■5はB2O3融解物である。
The drawing is a cross-sectional view of a preliminary manufacturing apparatus for explaining the single crystal manufacturing method of the present invention. In the figure, l is a high-pressure container, 2 is a crucible, 3 is a susceptor, 4 is a GaAs melt, 5 is a heater, 6 is a fitting lid, 7
is B2O3 for sole, 8 is heater for seal, 9 is arsenic,
10 is an auxiliary crucible, 11 is an atmosphere control heater, 12 is a rotational pulling shaft, 13 is a seed crystal, 14 is a GaAs single crystal,
(2) 5 is a B2O3 melt.

Claims (4)

【特許請求の範囲】[Claims] (1)不活性ガスによる圧力室内にト端部を不活性融液
でシールし、内部に前記不活性融液/−ルと相まって2
重融液シールを構成するだめの不活性融液で被覆した高
分解圧化合物融液を保持したるつほを設け、このるつぼ
内に先端部に種子結晶を取付けた引上軸を前記不活性融
液シールおよび前記不活性融液被覆を貫通して仲人し、
前記高分解圧化合物融液に種子結晶を接触させ、この種
子結晶を引上げて単結晶を製造する際、前記不活性融液
シールと前記不活性不活性融液被覆との間の前記高分解
圧化合物の揮発性成分の蒸気圧を制御する手段を有し、
かつ前記蒸気圧制御手段で前記揮発性成分の蒸気圧を制
御することを特徴とする単結晶の製造方法。
(1) Seal the end with an inert melt in a pressure chamber with an inert gas, and combine with the inert melt inside.
A crucible holding a high-decomposition-pressure compound melt coated with an inert melt forming a heavy melt seal is provided, and a pulling shaft with a seed crystal attached to the tip is inserted into the crucible to hold the inert melt. passing through the melt seal and the inert melt coating;
When a seed crystal is brought into contact with the high decomposition pressure compound melt and the seed crystal is pulled up to produce a single crystal, the high decomposition pressure between the inert melt seal and the inert inert melt coating is having means for controlling the vapor pressure of volatile components of the compound;
A method for producing a single crystal, characterized in that the vapor pressure of the volatile component is controlled by the vapor pressure control means.
(2)高分解圧化合物の揮発性成分の蒸気圧を制御する
手段として、るつぼ内に高分解圧化合物の揮発性成分元
素を保持した補助るつぼを設け、前記るつぼの壁の温度
を前記補助るつぼの温度より旨い温度に保つとともに、
前記補助るつぼの温rLによって前記揮発性成分の蒸気
圧を制餌することを特徴とする特許 晶の製造方法。
(2) As a means for controlling the vapor pressure of the volatile components of the high decomposition pressure compound, an auxiliary crucible holding the volatile component elements of the high decomposition pressure compound is provided in the crucible, and the temperature of the wall of the crucible is controlled by the auxiliary crucible. In addition to keeping the temperature at a temperature that is better than that of
A method for producing a patented crystal, characterized in that the vapor pressure of the volatile component is controlled by the temperature rL of the auxiliary crucible.
(3)高分解圧化合物が化合物半導体である前記特許請
求の範囲第1項記載の単結晶の製造方法。
(3) The method for producing a single crystal according to claim 1, wherein the high decomposition pressure compound is a compound semiconductor.
(4)化合物半導体がdaAs 、GaP, fnP 
テアる前記特許請求の範囲第3項記載の単結晶の製造方
法。
(4) Compound semiconductors are daAs, GaP, fnP
A method for producing a single crystal according to claim 3, wherein the single crystal is torn.
JP57025926A 1982-02-22 1982-02-22 Production of single crystal Pending JPS58145691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025926A JPS58145691A (en) 1982-02-22 1982-02-22 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025926A JPS58145691A (en) 1982-02-22 1982-02-22 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS58145691A true JPS58145691A (en) 1983-08-30

Family

ID=12179374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025926A Pending JPS58145691A (en) 1982-02-22 1982-02-22 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS58145691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264390A (en) * 1984-06-08 1985-12-27 Sumitomo Electric Ind Ltd Growing method for single crystal
JPS62288187A (en) * 1986-06-05 1987-12-15 Katsumi Mochizuki Production of compound semiconductor single crystal and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264390A (en) * 1984-06-08 1985-12-27 Sumitomo Electric Ind Ltd Growing method for single crystal
JPH0142919B2 (en) * 1984-06-08 1989-09-18 Sumitomo Electric Industries
JPS62288187A (en) * 1986-06-05 1987-12-15 Katsumi Mochizuki Production of compound semiconductor single crystal and device therefor

Similar Documents

Publication Publication Date Title
JPH07257995A (en) Production of semiconducting gaas and device therefor
US3647389A (en) Method of group iii-v semiconductor crystal growth using getter dried boric oxide encapsulant
JPS58145691A (en) Production of single crystal
US3649193A (en) Method of forming and regularly growing a semiconductor compound
US3902860A (en) Thermal treatment of semiconducting compounds having one or more volatile components
JP2719673B2 (en) Single crystal growth method
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JPS57170891A (en) Manufacture of single crystal
JP2734813B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6335600B2 (en)
JPS6153186A (en) Heater for resistance heating
JPS6127358B2 (en)
JPH02233588A (en) Growth of single crystal
JPS62230694A (en) Production of gaas single crystal
JPS6395194A (en) Production of compound single crystal
JPH0446097A (en) Doping method for growing single crystal of compound semiconductor
JPH0616493A (en) Method for growing gallium arsenide single crystal
JP2900577B2 (en) Method and apparatus for growing compound single crystal
JPS63307193A (en) Production of single crystal of compound of high dissociation pressure
JPS63288989A (en) Production of iii-v compound semiconductor crystal
JPS59182297A (en) Production of single crystal
JP2005200224A (en) Apparatus for growing single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal