JPH0616493A - Method for growing gallium arsenide single crystal - Google Patents

Method for growing gallium arsenide single crystal

Info

Publication number
JPH0616493A
JPH0616493A JP17347392A JP17347392A JPH0616493A JP H0616493 A JPH0616493 A JP H0616493A JP 17347392 A JP17347392 A JP 17347392A JP 17347392 A JP17347392 A JP 17347392A JP H0616493 A JPH0616493 A JP H0616493A
Authority
JP
Japan
Prior art keywords
arsenic
container
single crystal
sealed container
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17347392A
Other languages
Japanese (ja)
Inventor
Koichi Sasa
紘一 佐々
Hiroyuki Shiraki
弘幸 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP17347392A priority Critical patent/JPH0616493A/en
Publication of JPH0616493A publication Critical patent/JPH0616493A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the gallium arsenide single crystal which is low in oxygen content and high in purity. CONSTITUTION:Gallium (Ga) and arsenic (As) are charged respectively into a crucible 7 and an arsenic vessel 16 and a pump 4a is operated to evacuate the inside of an outer vessel 4 to a vacuum. Heaters 10a, 10b are operated to raise the temp. in the respective parts of the hermetic vessel 1 up to 200 to 600 deg.C. This temp. is maintained until the arsenic oxide in the arsenic vessel 16 and a vapor pressure control section 11 and the gallium oxide on the surface of the gallium raw material in the crucible 7 are removed to the outside of the hermetic vessel 1. A pushing up shaft 17 is then risen to press the seal 5 of the hermetic vessel 1 and to hermetically seal the hermetic vessel 1; thereafter, the single crystal is grown by the method similar to the conventional methods.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ICや半導体レーザー
用の基板等に用いられるガリウム砒素単結晶の製造に係
り、特に酸素含有量の低い高純度結晶の成長を可能にす
るガリウム砒素単結晶の成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of gallium arsenide single crystals used for substrates for ICs and semiconductor lasers, and in particular, gallium arsenide single crystals enabling the growth of high purity crystals with a low oxygen content. About how to grow.

【0002】[0002]

【従来の技術】ガリウム砒素単結晶(以下、単結晶と称
する)の成長方法の一つとして従来より蒸気圧制御引き
上げ法が知られている。蒸気圧制御引き上げ法による単
結晶の製造について、図2を参照しつつその概略を説明
する。
2. Description of the Related Art A vapor pressure control pulling method has been known as one of the methods for growing a gallium arsenide single crystal (hereinafter referred to as a single crystal). The outline of the production of a single crystal by the vapor pressure controlled pulling method will be described with reference to FIG.

【0003】図2は、蒸気圧制御引き上げ装置による単
結晶の製造状況を示すものである。符号4はポンプ4a
により真空排気可能な外部容器で、外側容器4内にはシ
ール部5にて上下に分割可能な上部容器2および下部容
器3からなる密封容器1が設けられている。また、密封
容器1の内部には下部回転軸8がその軸線を中心として
回転可能に設置され、下部回転軸8上にはサセプター6
を介してpBN製のルツボ7が支持されている。更に、
ルツボ7の上方には上部回転軸12がサセプター8と同
軸に回転可能かつ上下動可能に設置されている。一方、
符号11は蒸気圧制御部で、上部容器2および下部容器
3の外側および蒸気圧制御部11の周囲にはそれぞれヒ
ーター10a,10bおよび11aが設置されている。
FIG. 2 shows a production state of a single crystal by a vapor pressure control pulling apparatus. Reference numeral 4 is a pump 4a
An outer container capable of being evacuated by means of the above, and a sealed container 1 composed of an upper container 2 and a lower container 3 which are vertically separable by a seal portion 5 is provided in the outer container 4. A lower rotary shaft 8 is installed inside the sealed container 1 so as to be rotatable about its axis, and the susceptor 6 is mounted on the lower rotary shaft 8.
The crucible 7 made of pBN is supported via. Furthermore,
An upper rotary shaft 12 is installed above the crucible 7 coaxially with the susceptor 8 so as to be rotatable and vertically movable. on the other hand,
Reference numeral 11 is a vapor pressure control unit, and heaters 10a, 10b and 11a are installed outside the upper container 2 and the lower container 3 and around the vapor pressure control unit 11, respectively.

【0004】なお、符号13は密封容器1内の状況を観
察するための観察窓、符号14は上部回転軸12と上部
容器2、下部回転軸8と下部容器3、およびシール部5
をそれぞれシールするB23である。また、符号16は
密封容器1の底部に設置された砒素容器である。
Reference numeral 13 is an observation window for observing the inside of the sealed container 1, and reference numeral 14 is an upper rotary shaft 12 and an upper container 2, a lower rotary shaft 8 and a lower container 3, and a seal portion 5.
Is B 2 O 3 that seals each. Reference numeral 16 is an arsenic container installed at the bottom of the sealed container 1.

【0005】ルツボ7内にはガリウム砒素の融液Yが投
入されている。加熱はヒーター10a,10bにより行
い、単結晶Tは上部回転軸12を徐々に引き上げること
により得られる。この場合、引き上げ雰囲気ガスは砒素
蒸気を主体にしたガスで、その圧力は蒸気圧制御部11
におけるヒーター11aのコントロールにより一定に保
時される。
A melt Y of gallium arsenide is placed in the crucible 7. The heating is performed by the heaters 10a and 10b, and the single crystal T is obtained by gradually pulling up the upper rotary shaft 12. In this case, the atmosphere gas to be pulled up is a gas mainly containing arsenic vapor, and the pressure thereof is the vapor pressure control unit 11.
It is kept constant by the control of the heater 11a.

【0006】[0006]

【発明が解決しようとする課題】ここで、蒸気圧制御引
き上げ法の場合、結晶中には以下のような経路で酸素が
取り込まれる。まず、蒸気圧制御の際には、結晶成長の
最後まで一定量以上の砒素を凝縮する必要があるため、
成長操作終了後、蒸気圧制御部11には相当量の砒素が
残留する。この砒素凝縮相は、次回の成長操作のための
準備の間大気に曝されて表面が酸化する。また、酸化砒
素は原料として毎回チャージされる砒素の表面上にも、
わずかながら存在する。
In the vapor pressure controlled pulling method, oxygen is taken into the crystal through the following route. First, when controlling the vapor pressure, it is necessary to condense a certain amount or more of arsenic until the end of crystal growth.
After the growth operation is completed, a considerable amount of arsenic remains in the vapor pressure control unit 11. This arsenic condensed phase is exposed to the atmosphere during preparation for the next growth operation, and the surface is oxidized. Arsenic oxide is also charged on the surface of arsenic, which is charged as a raw material every time.
Exist, though slightly.

【0007】これらの酸化砒素は合成操作初期の加熱に
より昇華して雰囲気ガスの成分となり、融液Yが合成さ
れる際に、融液Y内に取り込まれる。また、密封容器1
の内壁面は大気に曝される間に水分の吸着を受けるが、
この水分は成長中の高温で分解して酸素源となる。しか
も、融液Y中に取り込まれなかった残りの酸素分は、成
長操作が終了した段階で再び蒸気圧制御部11に戻り固
定される。そのため、成長操作を繰り返すと、蒸気圧制
御部11に固定される酸素量は徐々に増加する。
These arsenic oxides are sublimed by heating at the beginning of the synthesis operation to become a component of the atmospheric gas, and are taken into the melt Y when the melt Y is synthesized. Also, the sealed container 1
The inner wall surface of the will absorb water while exposed to the atmosphere,
This moisture decomposes at a high temperature during growth to become an oxygen source. Moreover, the remaining oxygen content not taken into the melt Y returns to the vapor pressure control unit 11 again and is fixed at the stage when the growth operation is completed. Therefore, when the growth operation is repeated, the amount of oxygen fixed in the vapor pressure control unit 11 gradually increases.

【0008】更に、他の原料成分であるガリウムは室温
で液体であり、原料としてチャージされる際に表面が酸
化されるので、酸化砒素と同様酸素源となりうる。ま
た、この酸化ガリウム(Ga2O)は500℃前後で昇
華が始まることが知られている(Gmelins Handbuch der
Anorganischen Chemie,36,P166,Verlag Chemie Berin1
936)。
Further, gallium, which is another raw material component, is a liquid at room temperature, and its surface is oxidized when it is charged as a raw material, so that it can be an oxygen source like arsenic oxide. It is known that this gallium oxide (Ga 2 O) begins to sublime at around 500 ° C (Gmelins Handbuch der
Anorganischen Chemie, 36, P166, Verlag Chemie Berin1
936).

【0009】これらの酸素は、ガリウム砒素結晶中にお
いては、少なくとも2つの格子位置をとる(J.Schneide
r他 Applied Physics Letters 54,10,1989)。その一
つは砒素原子空孔−酸素で対をなすもの(VAs−O)で
電気的に活性であり、深い欠陥準位となる。他の一つは
酸素がガリウムと砒素との結合の間に入り、格子間位置
を取るものであり、この場合は電気的に不活性となる。
These oxygens have at least two lattice positions in the gallium arsenide crystal (J. Schneide
r Other Applied Physics Letters 54,10,1989). One of them is a pair of arsenic vacancy-oxygen (VAs-O), which is electrically active and has a deep defect level. The other one is that oxygen enters between the bonds of gallium and arsenic and takes an interstitial position, and in this case, it becomes electrically inactive.

【0010】更に、ガリウム砒素結晶中の酸素として
は、EL2準位と極めて近いエネルギー準位を形成す
る、ELO準位と名付けられたものが知られている(J.
Lagowski他 Applied Physics Letters 44,336,198
4)。 このELO準位はEL2準位と同等、あるいはそ
れ以上の濃度(1016cm-3台)で結晶中に存在する。
Further, as the oxygen in the gallium arsenide crystal, one named ELO level, which forms an energy level extremely close to the EL2 level, is known (J.
Lagowski et al Applied Physics Letters 44,336,198
Four). This ELO level exists in the crystal at a concentration equal to or higher than the EL2 level (10 16 cm −3 level).

【0011】このように、ガリウム砒素中に取り込まれ
た酸素は少なくとも2種類の深い欠陥準位を形成するの
で、単結晶をIC等に用いられるような半絶縁体にする
ためには、それを補償するだけのアクセプター不純物
(炭素)が余分に必要となる。つまり、結晶はそれだけ
不純となり、デバイスの特性上不利になる。更に、禁制
帯中央付近に位置するELOの存在はキャリアの発生も
しくは再結合の中心として作用し、デバイスの逆方向耐
圧性等の特性を劣化させると考えられる他、前記キャリ
ヤの補償関係で重要な状況では、酸素の有する高い拡散
係数によりデバイス工程上の熱処理時に前記特性が不安
定となるとともに、転位セルと相関した特性の不均一を
生じる。従って、結晶中の酸素含有量を低下させ、低い
炭素濃度でも半絶縁性が実現可能な高純度結晶の成長法
が必要である。
As described above, the oxygen taken into gallium arsenide forms at least two kinds of deep defect levels. Therefore, in order to make a single crystal into a semi-insulating material used for ICs, it is necessary to change it. An extra acceptor impurity (carbon) is required to compensate. That is, the crystal becomes so impure that it is disadvantageous in terms of device characteristics. Further, it is considered that the presence of ELO located near the center of the forbidden band acts as a center of generation or recombination of carriers and deteriorates characteristics such as reverse breakdown voltage resistance of the device, and is important in the carrier compensation relation. Under the circumstances, due to the high diffusion coefficient of oxygen, the characteristics become unstable during the heat treatment in the device process, and nonuniformity of the characteristics correlated with the dislocation cells occurs. Therefore, there is a need for a method of growing a high-purity crystal that can reduce the oxygen content in the crystal and achieve semi-insulating properties even at low carbon concentrations.

【0012】[0012]

【課題を解決するための手段】本発明は上記事情に鑑み
てなされたもので、真空排気可能な外側容器と、この外
側容器内に配置された開閉可能な密封容器と、この密封
容器内に自らの軸線を中心として回転自在に配置された
ルツボと、このルツボ内に収容された原料融液に種結晶
を浸漬して単結晶を引き上げる引き上げ機構と、前記密
封容器と連通された蒸気圧制御部と、前記密封容器を取
り巻いて前記密封容器を加熱する複数のヒーターとを具
備する引き上げ装置を用い、前記ルツボ内に保持したガ
リウムと前記密封容器下部に配置した砒素原料を前記ヒ
ーターで加熱して前記ルツボ内にガリウム砒素の原料融
液を合成した後、前記砒素原料の一部を前記蒸気圧制御
部内に凝縮させることにより、前記密封容器の内部に満
たされる砒素ガスの圧力を制御しつつガリウム砒素単結
晶の引き上げを行うガリウム砒素単結晶の成長方法にお
いて、前記密封容器を開封した状態で前記引き上げ装置
全体を真空排気しながら前記密封容器を200〜600
℃に保持した後、改めて前記密封容器を封止して前記原
料融液の合成を行うことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and includes an outer container that can be evacuated, an openable and closable sealed container disposed in the outer container, and a sealed container that can be opened and closed. A crucible rotatably arranged around its own axis, a pulling mechanism for immersing a seed crystal in a raw material melt contained in the crucible to pull up a single crystal, and vapor pressure control in communication with the sealed container Section, and using a pulling device comprising a plurality of heaters surrounding the sealed container and heating the sealed container, the gallium held in the crucible and the arsenic raw material placed under the sealed container are heated by the heater. After synthesizing a raw material melt of gallium arsenide in the crucible and condensing a part of the arsenic raw material in the vapor pressure control unit, arsenic gas filled in the sealed container is obtained. In the growth method of a gallium arsenide single crystal which performs the raising of the gallium arsenide single crystal while controlling the pressure, the sealed container while evacuating the entire puller while opening the sealed container 200 to 600
After the temperature is maintained at 0 ° C., the sealed container is sealed again to synthesize the raw material melt.

【0013】[0013]

【作用】本発明のガリウム砒素単結晶の成長方法におい
ては、毎回の原料合成に先だち、密封容器を開封した状
態で前記引き上げ装置全体を真空排気しながら前記密封
容器を200〜600℃に保持した後、前記密封容器を
密封する工程を挿入することにより、前記密封容器内の
砒素原料および蒸気圧制御部内に残留する砒素およびガ
リウムの表面に形成された酸化物が、原料融液の合成に
先立ち、予め前記密封容器外に除去される。
In the method for growing a gallium arsenide single crystal of the present invention, prior to each raw material synthesis, the sealed container is kept at 200 to 600 ° C. while the whole of the pulling device is evacuated while the sealed container is opened. After that, by inserting a step of sealing the hermetically sealed container, the arsenic raw material in the hermetically sealed container and the oxide formed on the surface of arsenic and gallium remaining in the vapor pressure control unit are mixed prior to the synthesis of the raw material melt. , Previously removed outside the sealed container.

【0014】[0014]

【実施例】以下、図面に基づき、本発明の実施例につい
て更に詳しく説明する。図1および図2はいずれも本発
明に係る単結晶引き上げ装置の例を示すもので、図1
に、原料合成前の状態を、図2に単結晶引き上げ中の状
況をそれぞれ示す。
Embodiments of the present invention will now be described in more detail with reference to the drawings. 1 and 2 each show an example of a single crystal pulling apparatus according to the present invention.
2 shows the state before the raw material synthesis, and FIG. 2 shows the state during the single crystal pulling.

【0015】ここで、本発明に係る単結晶引き上げ装置
においては、その構成は従来の単結晶引き上げ装置と全
く異なるところがない。すなわち、符号1はシール部5
を介して上部容器2と下部容器3とに分割された密封容
器であり、この密封容器1は更にポンプ4aで真空排気
可能な外側容器4内に収容されている。密封容器1の周
囲には符号10a,10bで示すヒーターが設置される
とともに、蒸気圧制御部11の周囲には符号11aで示
すヒーターが設置され、所定の温度分布、すなわちルツ
ボ7に対応する領域で最高温度となり、蒸気圧制御部1
1で最低かつ均一な温度になるように密封容器1を加熱
する。
Here, the structure of the single crystal pulling apparatus according to the present invention is completely the same as that of the conventional single crystal pulling apparatus. That is, reference numeral 1 is the seal portion 5.
It is a hermetically sealed container divided into an upper container 2 and a lower container 3 via a container, and the hermetically sealed container 1 is further housed in an outer container 4 which can be evacuated by a pump 4a. Heaters 10a and 10b are installed around the sealed container 1, and heaters 11a are installed around the vapor pressure control unit 11 to provide a predetermined temperature distribution, that is, a region corresponding to the crucible 7. The maximum temperature is reached and the vapor pressure control unit 1
The sealed container 1 is heated so that the lowest and uniform temperature is 1.

【0016】符号12は密封容器1の天板部を貫通して
配置された上部回転軸で、その下端には種結晶Sが固定
されている。また、符号8は密封容器1の底部を貫通し
て配置された下部回転軸で、その上端にはルツボ7を保
持するサセプター6が設置されている。更に、符号14
は上部回転軸12と上部容器2、下部回転軸8と下部容
器3、およびシール部5をそれぞれシールするためのB
23、符号16は原料砒素を投入する砒素容器、符号1
7は下部容器3の下端に固定され、かつ下部回転軸8の
周囲を下部回転軸8と同軸をなすように上下動可能に覆
う押し上げ軸である。
Reference numeral 12 is an upper rotary shaft arranged so as to penetrate the top plate portion of the sealed container 1, and a seed crystal S is fixed to the lower end thereof. Further, reference numeral 8 is a lower rotary shaft arranged so as to penetrate the bottom of the sealed container 1, and a susceptor 6 holding a crucible 7 is installed at the upper end thereof. Further, reference numeral 14
Is B for sealing the upper rotary shaft 12 and the upper container 2, the lower rotary shaft 8 and the lower container 3, and the seal portion 5, respectively.
2 O 3 , reference numeral 16 is an arsenic container into which raw material arsenic is charged, reference numeral 1
Reference numeral 7 denotes a push-up shaft that is fixed to the lower end of the lower container 3 and covers the lower rotary shaft 8 so as to be vertically movable so as to be coaxial with the lower rotary shaft 8.

【0017】ここで、ルツボ7および砒素容器16内に
はそれぞれ単結晶の原料となるガリウムGaおよび砒素
Asが投入されている。また、前回までの成長操作によ
って、蒸気圧制御部11には砒素Asが凝縮している。
Here, in the crucible 7 and the arsenic container 16, gallium Ga and arsenic As, which are the raw materials for the single crystal, are placed. In addition, arsenic As has condensed in the vapor pressure control unit 11 due to the growth operation up to the previous time.

【0018】上記装置を用いて単結晶の製造する場合、
まず、ルツボ7および砒素容器16内にそれぞれガリウ
ムGaおよび砒素Asをチャージし、図1に示すように
密封容器1を開封した状態で、ポンプ4aを作動させて
外側容器4内を真空排気するとともに、ヒーター10
a,10bを作動させて密封容器1各部の温度を200
℃〜600℃まで昇温し、所定時間(密封容器1および
蒸気圧制御部11内における砒素酸化物から酸素が密封
容器1外に除去されるまで)そのまま保持する。ここ
で、密封容器1各部の温度を200℃〜600℃とする
理由は、密封容器1各部の温度が200℃以下だと、前
記砒素酸化物からの酸素の昇華が不十分で、また、ガリ
ウムGaに形成された酸化ガリウムの昇華が500℃以
上で起こるためである。
When a single crystal is produced using the above apparatus,
First, gallium Ga and arsenic As are charged in the crucible 7 and the arsenic container 16 respectively, and the pump 4a is operated to evacuate the inside of the outer container 4 while the sealed container 1 is opened as shown in FIG. , Heater 10
Operate a and 10b to increase the temperature of each part of the sealed container 1 to 200
C. to 600.degree. C., and kept as it is for a predetermined time (until oxygen is removed from the arsenic oxide in the sealed container 1 and the vapor pressure controller 11 to the outside of the sealed container 1). Here, the temperature of each part of the sealed container 1 is set to 200 ° C. to 600 ° C. When the temperature of each part of the sealed container 1 is 200 ° C. or lower, the sublimation of oxygen from the arsenic oxide is insufficient, and This is because the sublimation of gallium oxide formed on Ga occurs at 500 ° C. or higher.

【0019】この場合、酸化ガリウムの除去を完全に行
おうとすると、密封容器1各部の温度を500℃以上と
することが望ましいが、密封容器1の全ての部分の温度
を高めると、砒素Asそのものの蒸気圧が高くなり、砒
素Asの飛散損失分が増えるので、密封容器1各部の温
度は500℃以下に設定する。なお、ルツボ7内のガリ
ウムGaのみを500〜600℃とし、他の部分を50
0℃以下にしても、真空排気による分子の流れにより、
酸化ガリウムの除去が期待できるうえ、砒素の飛散損失
も大きくせずにすむ。
In this case, in order to completely remove gallium oxide, it is desirable to set the temperature of each part of the sealed container 1 to 500 ° C. or higher. However, if the temperature of all parts of the sealed container 1 is raised, arsenic As itself will be generated. Since the vapor pressure of H 2 increases and the amount of arsenic As scattered off increases, the temperature of each part of the sealed container 1 is set to 500 ° C. or lower. In addition, only gallium Ga in the crucible 7 is set to 500 to 600 ° C.
Even if it is below 0 ℃, due to the flow of molecules by vacuum exhaust,
The removal of gallium oxide can be expected, and the scattering loss of arsenic does not have to be increased.

【0020】次いで、押し上げ軸17を上昇させ、密封
容器1のシール5を押し付けて密封容器1を密封すると
ともに、ヒーター10a,10bを作動させてガリウム
Gaの温度をガリウム砒素の融点(1238℃)以上に
加熱するとともに、砒素Asを加熱して砒素分圧を高
め、ルツボ7内にガリウム砒素の融液Yを合成する。
Next, the push-up shaft 17 is raised, the seal 5 of the hermetic container 1 is pressed to hermetically seal the hermetic container 1, and the heaters 10a and 10b are operated to change the temperature of gallium Ga to the melting point of gallium arsenide (1238 ° C.). In addition to the above heating, the arsenic As is heated to increase the arsenic partial pressure, and the melt Y of gallium arsenide is synthesized in the crucible 7.

【0021】融液Yの合成がほぼ完了した後、ヒーター
11aにより蒸気圧制御部11の温度を制御しつつ所定
時間放置し、融液Yの組成を均一にする。更に、上部回
転軸8を下げ融液Yに種結晶Sを浸漬した後、図2に示
すように、ヒーター10a,10b,11aの出力を調
整しつつ種結晶Sを上方に引き上げてゆくと、単結晶T
が拡径しながら成長する。単結晶Tが所定の長さに成長
した段階で、引き上げ温度をやや早め、テイル部を形成
しルツボ7の位置を下げて単結晶Tの下端部を残存する
融液Yから切り離す。更に、ヒーター10a,10b,
11aの出力を徐々に下げて単結晶Tを徐冷して成長操
作を完了する。
After the synthesis of the melt Y is almost completed, the composition of the melt Y is made uniform by allowing the heater 11a to control the temperature of the vapor pressure control unit 11 and leaving it for a predetermined time. Further, after lowering the upper rotating shaft 8 and immersing the seed crystal S in the melt Y, as shown in FIG. 2, while pulling up the seed crystal S while adjusting the outputs of the heaters 10a, 10b, 11a, Single crystal T
Grows while expanding its diameter. When the single crystal T has grown to a predetermined length, the pulling temperature is slightly accelerated, the tail portion is formed, the position of the crucible 7 is lowered, and the lower end portion of the single crystal T is separated from the remaining melt Y. Furthermore, the heaters 10a, 10b,
The output of 11a is gradually reduced to gradually cool the single crystal T and the growth operation is completed.

【0022】その結果、酸素含有量の低い、高純度の半
絶縁性結晶の育成が可能になる。なお、この方法は、密
封容器1を繰り返し使用し、かつ蒸気圧制御部11を持
つ縦型ブリッジマン装置、あるいはVGF法においても
同様に適用できる。
As a result, it becomes possible to grow a high-purity semi-insulating crystal having a low oxygen content. Note that this method can be similarly applied to a vertical Bridgman device that repeatedly uses the sealed container 1 and has a vapor pressure control unit 11, or a VGF method.

【0023】[0023]

【実験例】以下に実験例を示し、本発明の効果について
説明する。まず、4.6kgの砒素Asを、密封容器1
の底部に配置した砒素原料容器16に投入するととも
に、4kgのガリウムGaをルツボ7の中に投入した。
なお、この際、前回までの成長操作によって、蒸気圧制
御部11内には砒素Asが凝縮したままになっている。
[Experimental Examples] Experimental effects will be described below with reference to experimental examples. First, 4.6 kg of arsenic As was added to the sealed container 1
Into the crucible 7 was placed 4 kg of gallium Ga while being placed in the arsenic raw material container 16 arranged at the bottom of the.
At this time, arsenic As remains condensed in the vapor pressure control unit 11 due to the growth operation up to the previous time.

【0024】ここで、4kgのガリウムGaからガリウ
ム砒素を得るには、化学量論的には4298gの砒素A
sが必要である。従って、本実験例の場合、約300g
の砒素As過剰分の内訳は、密封容器1内に気体として
存在する分、または飛散損失分に、蒸気圧制御部11に
おける凝縮分である。この砒素As補充量は前回の成長
における砒素As飛散量から算出した砒素残量から決定
する。なお、ルツボ7中には、単結晶Tを、接合容量の
過渡応答測定に必要な1016cm-3 程度のキャリア濃
度とするため、微量のSi不純物を添加した。
To obtain gallium arsenide from 4 kg of gallium Ga, stoichiometrically, 4298 g of arsenic A is used.
s is required. Therefore, in the case of this experimental example, about 300 g
The excess content of arsenic As is the amount existing in the sealed container 1 as a gas, or the amount of scattering loss, and the amount of condensation in the vapor pressure control unit 11. The arsenic As supplement amount is determined from the arsenic remaining amount calculated from the arsenic As scattering amount in the previous growth. A small amount of Si impurity was added to the crucible 7 in order to make the single crystal T have a carrier concentration of about 10 16 cm −3, which is necessary for measuring the transient response of the junction capacitance.

【0025】次いで、密封容器1のシール部5を開けた
まま外側容器4内を真空排気するとともに、ヒーター1
0a,10bにより、密封容器各部の温度を、ルツボ近
傍で500〜600℃、他の部分を200〜500℃に
なるよう昇温し、約30分間そのまま保持した。しかる
後、密封容器1を密封し、その後、ガリウムGaの温度
をガリウム砒素の融点以上に上げるとともに、砒素As
の温度を上げていくと、ルツボ7内にガリウム砒素の融
液Yが合成された。以後の引き上げ成長は従来と同様で
ある。
Next, the outer container 4 is evacuated while the seal portion 5 of the hermetic container 1 is opened, and the heater 1
The temperature of each part of the hermetically sealed container was raised to 500 to 600 ° C near the crucible and to 200 to 500 ° C in the other parts by 0a and 10b, and the temperature was maintained for about 30 minutes. Then, the hermetically sealed container 1 is sealed, and then the temperature of gallium Ga is raised to the melting point of gallium arsenide or higher and arsenic
As the temperature was raised, the melt Y of gallium arsenide was synthesized in the crucible 7. The subsequent pull-up growth is the same as the conventional one.

【0026】このようにして成長させた直径約4インチ
の単結晶Tと、本願のプロセスを除いた従来の蒸気圧引
き上げ法で引き上げた同等の結晶およびLEC法により
得た典型的な単結晶について、各々所定の熱処理を施し
た後、酸素の関与する上記2つの準位に関して、その含
有量を測定し比較したものを表1に示す。ここで、結晶
成長法としては、比較例1が、従来の蒸気圧引き上げ法
による場合、比較例2がLEC法による場合である。
A single crystal T having a diameter of about 4 inches thus grown, an equivalent crystal pulled by the conventional vapor pressure raising method excluding the process of the present application and a typical single crystal obtained by the LEC method Table 1 shows the measured and compared contents of the above two levels in which oxygen is involved after the respective predetermined heat treatments. Here, as the crystal growth method, Comparative Example 1 is a conventional vapor pressure raising method, and Comparative Example 2 is a LEC method.

【0027】[0027]

【表1】 (注) 熱処理 1)結晶育成後、急冷。 2)結晶育成後、徐冷。かつ炉外にて950℃、20hr
の熱処理後、徐冷。
[Table 1] (Note) Heat treatment 1) Rapid growth after crystal growth. 2) Gradually cool after crystal growth. And outside the furnace, 950 ℃, 20hr
After heat treatment, slowly cool.

【0028】表1より、いずれの準位も、本願のプロセ
スを入れることにより、LEC結晶と比較して同等ある
いはそれ以上の水準まで低減されていることがわかる。
しかも、得られた単結晶Tの均一性も、蒸気圧制御法の
特徴を損なわない十分良好なものであった。
It can be seen from Table 1 that all levels are reduced to the same level as or higher than that of the LEC crystal by incorporating the process of the present invention.
Moreover, the uniformity of the obtained single crystal T was sufficiently good without impairing the characteristics of the vapor pressure control method.

【0029】引き上げ成長後の砒素Asの飛散損失分は
70〜80g程度であり、本願の工程を入れない従来法
における飛散損失分である50〜70gに比べその損失
増加分は実用上問題のない程度に十分小さいものであっ
た。
The scattered loss of arsenic As after the pulling growth is about 70 to 80 g, and the increased loss is practically no problem compared to the scattered loss of 50 to 70 g in the conventional method without the process of the present invention. It was small enough.

【0030】[0030]

【発明の効果】以上説明した通り、本発明においては、
密封容器を開封した状態で前記引き上げ装置全体を真空
排気しながら前記密封容器を200〜600℃に保持し
た後、前記密封容器を密封する工程を挿入することによ
り、前記密封容器内における砒素酸化物とガリウム酸化
物が、原料融液の合成に先だち予め前記密封容器外に除
去される。その結果、酸素含有量が低く、純度の高いガ
リウム砒素単結晶を得ることができる。
As described above, according to the present invention,
Arsenic oxide in the hermetically sealed container is inserted by inserting a step of hermetically sealing the hermetically sealed container after the hermetically sealed container is kept at 200 to 600 ° C. while the whole of the pulling device is evacuated in an opened state. And gallium oxide are removed from the sealed container in advance prior to the synthesis of the raw material melt. As a result, a gallium arsenide single crystal having a low oxygen content and high purity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る化合物半導体単結晶引き上げ装置
の結晶成長開始前の状況を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a state before starting crystal growth of a compound semiconductor single crystal pulling apparatus according to the present invention.

【図2】本発明に係る化合物半導体単結晶引き上げ装置
における結晶成長中の状況を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a situation during crystal growth in the compound semiconductor single crystal pulling apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 密封容器 2 上部容器 3 下部容器 4 外側容器 4a ポンプ 5 シール部 6 サセプター 7 ルツボ 8 下部回転軸 10a,10b,11a ヒーター 11 蒸気圧制御部 12 上部回転軸 13 観察窓 14 B23 16 砒素容器 17 押し上げ軸 S 種結晶 T 単結晶 Y 融液 Ga ガリウム As 砒素1 Sealed Container 2 Upper Container 3 Lower Container 4 Outer Container 4a Pump 5 Sealing Part 6 Susceptor 7 Crucible 8 Lower Rotating Shaft 10a, 10b, 11a Heater 11 Vapor Pressure Control Unit 12 Upper Rotating Shaft 13 Observation Window 14 B 2 O 3 16 Arsenic Container 17 Push-up axis S Seed crystal T Single crystal Y Melt Ga Gallium As Arsenic

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空排気可能な外側容器と、この外側容
器内に配置された開閉可能な密封容器と、この密封容器
内に自らの軸線を中心として回転自在に配置されたルツ
ボと、このルツボ内に収容された原料融液に種結晶を浸
漬して単結晶を引き上げる引き上げ機構と、前記密封容
器と連通された蒸気圧制御部と、前記密封容器を取り巻
いて前記密封容器を加熱する複数のヒーターとを具備す
る引き上げ装置を用い、前記ルツボ内に保持したガリウ
ムと前記密封容器下部に配置した砒素原料を前記ヒータ
ー加熱して前記ルツボ内にガリウム砒素の原料融液を合
成した後、前記砒素原料の一部を前記蒸気圧制御部内に
凝縮させることにより、前記密封容器の内部に満たされ
る砒素ガスの圧力を制御しつつガリウム砒素単結晶の引
き上げを行うガリウム砒素単結晶の成長方法において、 前記密封容器を開封した状態で前記外部容器内を排気し
ながら前記密封容器を200〜600℃に保持した後、
改めて前記密封容器を封止して前記原料融液の合成を行
うことを特徴とするガリウム砒素単結晶の成長方法。
1. An outer container that can be evacuated, an openable and closable sealed container disposed in the outer container, a crucible that is rotatably disposed in the sealed container about its own axis, and the crucible. A pulling mechanism for immersing the seed crystal in the raw material melt contained in the pulling mechanism to pull up a single crystal, a vapor pressure control unit in communication with the hermetic container, and a plurality of heating the hermetic container surrounding the hermetic container. Using a pulling device equipped with a heater, the gallium held in the crucible and the arsenic raw material placed under the sealed container are heated by the heater to synthesize a raw material melt of gallium arsenide in the crucible, and then the arsenic By condensing a part of the raw material in the vapor pressure control unit, the pressure of the arsenic gas filled in the sealed container is controlled to pull up the gallium arsenide single crystal. In the method for growing a muarsenic single crystal, after holding the sealed container at 200 to 600 ° C. while evacuating the inside of the outer container with the sealed container opened,
A method for growing a gallium arsenide single crystal, characterized in that the sealed container is sealed again to synthesize the raw material melt.
JP17347392A 1992-06-30 1992-06-30 Method for growing gallium arsenide single crystal Withdrawn JPH0616493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17347392A JPH0616493A (en) 1992-06-30 1992-06-30 Method for growing gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17347392A JPH0616493A (en) 1992-06-30 1992-06-30 Method for growing gallium arsenide single crystal

Publications (1)

Publication Number Publication Date
JPH0616493A true JPH0616493A (en) 1994-01-25

Family

ID=15961139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17347392A Withdrawn JPH0616493A (en) 1992-06-30 1992-06-30 Method for growing gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPH0616493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394838B1 (en) * 2017-07-04 2018-09-26 住友電気工業株式会社 Gallium arsenide crystal and gallium arsenide crystal substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394838B1 (en) * 2017-07-04 2018-09-26 住友電気工業株式会社 Gallium arsenide crystal and gallium arsenide crystal substrate
WO2019008663A1 (en) * 2017-07-04 2019-01-10 住友電気工業株式会社 Gallium arsenide crystalline body and gallium arsenide crystal substrate
US10822722B2 (en) 2017-07-04 2020-11-03 Sumitomo Electric Industries, Ltd. Gallium arsenide crystal body and gallium arsenide crystal substrate

Similar Documents

Publication Publication Date Title
JP3201305B2 (en) Method for producing group III-V compound semiconductor crystal
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
USRE42279E1 (en) Method of preparing a compound semiconductor crystal
US3344071A (en) High resistivity chromium doped gallium arsenide and process of making same
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JP4416040B2 (en) Compound semiconductor crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPH0616493A (en) Method for growing gallium arsenide single crystal
JPH06298600A (en) Method of growing sic single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
ITMI992423A1 (en) INDIO PHOSPHIDE DIRECT SYNTHESIS PROCEDURE
JP3725700B2 (en) Compound single crystal growth apparatus and method
US20240209546A1 (en) Preparation device and method for semi-insulating indium phosphide
JPH08188499A (en) Production of gallium-arsenic single crystal
JPS62230694A (en) Production of gaas single crystal
JP3551607B2 (en) Method for producing GaAs single crystal
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JPH0446097A (en) Doping method for growing single crystal of compound semiconductor
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JPH06172098A (en) Production of gaas single crystal
JPH089517B2 (en) Single crystal manufacturing method
JPH0699234B2 (en) Compound semiconductor single crystal growth equipment
JPH03252385A (en) Production of single crystal having high dissociation pressure
JPH04305086A (en) Production of single crystal of high-dissociation pressure compound semiconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831