JPH04305086A - Production of single crystal of high-dissociation pressure compound semiconductor - Google Patents

Production of single crystal of high-dissociation pressure compound semiconductor

Info

Publication number
JPH04305086A
JPH04305086A JP9169091A JP9169091A JPH04305086A JP H04305086 A JPH04305086 A JP H04305086A JP 9169091 A JP9169091 A JP 9169091A JP 9169091 A JP9169091 A JP 9169091A JP H04305086 A JPH04305086 A JP H04305086A
Authority
JP
Japan
Prior art keywords
single crystal
carbon
dissociation pressure
gas
airtight container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9169091A
Other languages
Japanese (ja)
Inventor
Koichi Sasa
佐々 紘一
Takashi Atami
貴 熱海
Takaharu Shirata
敬治 白田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Research Development Corp of Japan filed Critical Mitsubishi Materials Corp
Priority to JP9169091A priority Critical patent/JPH04305086A/en
Publication of JPH04305086A publication Critical patent/JPH04305086A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the single crystal of a high-dissociation pressure compd. semiconductor which is controlled in carbon impurity concn. with high accuracy by adding >=1 kind selected from CO, CO2 and gaseous hydrocarbon at prescribed ratios to the gaseous high-dissociation pressure component in a hermetic vessel. CONSTITUTION:A crucible is disposed in the hermetic vessel which can be divided and hermetically sealed. The single crystal of the semiconductor is pulled up from the melt of the high-dissociation pressure compd. semiconductor (e.g.; GaAs) stored in the crucible while the pressure of the gaseous high- dissociation pressure component (e.g.: gaseous As) in the hermetic vessel is controlled. At least one kind selected from gaseous carbon monoxide, carbon dioxide and hydrocarbon are added at <=1.5X10<-6>mol per 1kg high-dissociation pressure compd. semiconductor raw material to the gaseous high-dissociation pressure component in the hermetic vessel. The carbon impurity concn. in the atmosphere in the hermetic vessel is increased in this way and the carbon impurity concn. in the single crystal of the high-dissociation pressure compd. semiconductor is controlled to an adequate value with good accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体レ−ザ用あるい
は半導体基板用として有用なヒ化ガリウム(GaAs)
等の高解離圧化合物半導体単結晶の製造方法に関するも
のである。
[Industrial Application Field] The present invention relates to gallium arsenide (GaAs) useful for semiconductor lasers or semiconductor substrates.
The present invention relates to a method for producing a high dissociation pressure compound semiconductor single crystal such as the following.

【0002】0002

【従来の技術】従来、GaAsやInP等の高解離圧化
合物半導体単結晶(以下、単に単結晶と略称する)を育
成する場合には、化合物からの高解離圧成分(As,P
等)の飛散を防止するとともに、単結晶の組成を制御す
る目的で、結晶成長温度における結晶の解離圧と平衡す
る高解離圧成分ガス雰囲気中で結晶成長を行う方法(以
下、蒸気圧制御引上法と称する)が採られている。
[Prior Art] Conventionally, when growing a high dissociation pressure compound semiconductor single crystal (hereinafter simply referred to as a single crystal) such as GaAs or InP, high dissociation pressure components (As, P
A method of growing crystals in a high dissociation pressure component gas atmosphere that is in equilibrium with the dissociation pressure of the crystal at the crystal growth temperature (hereinafter referred to as vapor pressure control trigger), in order to prevent the scattering of (referred to as the above law) has been adopted.

【0003】図3は、上記の蒸気圧制御引上法において
用いられる単結晶引上装置の一例である。この単結晶引
上装置1では、上部容器2と下部容器3から構成され分
割・密封可能な気密容器4が外部容器5内に配置されて
おり、上部容器2と下部容器3の接合部にはシール材6
が介装されている。
FIG. 3 shows an example of a single crystal pulling apparatus used in the above vapor pressure controlled pulling method. In this single crystal pulling apparatus 1, an airtight container 4, which is composed of an upper container 2 and a lower container 3 and can be divided and sealed, is placed inside an outer container 5. Seal material 6
is interposed.

【0004】下部容器3は、押上げ下軸7に連結され、
応力緩衝装置8により適正応力で上部容器2に圧接され
ている。また、該下部容器3の底部3aにはサセプタ9
の下軸9aが挿通されており、該サセプタ9上にはルツ
ボ10が載置されている。
The lower container 3 is connected to a lower push-up shaft 7,
It is pressed against the upper container 2 with an appropriate stress by a stress buffering device 8. Further, a susceptor 9 is provided at the bottom 3a of the lower container 3.
A lower shaft 9a of the susceptor 9 is inserted therethrough, and a crucible 10 is placed on the susceptor 9.

【0005】一方、上部容器2には、ヒータ11を備え
た蒸気圧制御部12が設けられており、また、この上部
容器2の上部中央には、引上軸13がその下端部13a
がルツボ10の略直上に位置するように挿通されている
。更に、この上部容器2には、ルツボ10の略直上に視
野を有する、石英製またはサファイア製の透過性の観察
窓14が気密容器4内に一端面14aを露出させて挿通
されている。また、引上軸13及びサセプタ9の下軸9
aの気密容器4への挿通部には、B2O3等からなる液
体シール材15を保持する軸シール部16が設けられて
いる。
On the other hand, the upper container 2 is provided with a vapor pressure control section 12 equipped with a heater 11, and in the center of the upper part of the upper container 2, a pulling shaft 13 is connected to its lower end 13a.
is inserted so as to be positioned substantially directly above the crucible 10. Further, a transparent observation window 14 made of quartz or sapphire and having a visual field substantially directly above the crucible 10 is inserted into the upper container 2 into the airtight container 4 with one end surface 14a exposed. In addition, the pulling shaft 13 and the lower shaft 9 of the susceptor 9
A shaft seal portion 16 that holds a liquid sealing material 15 made of B2O3 or the like is provided at the insertion portion a into the airtight container 4.

【0006】そして、上部容器2の周囲には上部ヒータ
17が、また、下部容器3の周囲には下部ヒータ18,
19が設けられており、上部ヒータ17及び下部ヒータ
18,19により気密容器4が加熱され所定の温度に保
持される。
[0006] An upper heater 17 is provided around the upper container 2, and a lower heater 18 is provided around the lower container 3.
19 is provided, and the airtight container 4 is heated and maintained at a predetermined temperature by the upper heater 17 and lower heaters 18 and 19.

【0007】次に、上記の単結晶引上装置1によりGa
AsやInP等の単結晶を作製する方法についてGaA
sを例にとり説明する。まず、下部容器3の底部3aに
As原料を、ルツボ10内にGa原料を、引上軸13の
下端部13aにGaAsの種結晶Sを、それぞれ配置し
、外部容器5内を排気して真空状態にした後、押上げ下
軸7を押し上げて下部容器3を上部容器2に圧接し、気
密容器4内を密封する。
Next, using the single crystal pulling apparatus 1 described above, Ga
About the method of producing single crystals such as As and InP
This will be explained using s as an example. First, an As raw material is placed in the bottom 3a of the lower container 3, a Ga raw material is placed in the crucible 10, and a GaAs seed crystal S is placed in the lower end 13a of the pulling shaft 13, and the inside of the outer container 5 is evacuated to create a vacuum. After this, the lower push-up shaft 7 is pushed up to bring the lower container 3 into pressure contact with the upper container 2, and the inside of the airtight container 4 is sealed.

【0008】その後、上部ヒータ17及び下部ヒータ1
8,19により気密容器4を加熱し、下部容器3の底部
3aを550〜650℃に、またルツボ10をGaAs
の融点1238℃以上の温度、例えば約1300℃に保
持すると、気密容器4内のAsガスの蒸気圧が高まり、
該Asガスとルツボ10内のGaとが反応し、GaAs
の原料融液Mが合成される。なお、この合成がなされる
間中は、外部容器5内にArガス等の不活性ガスを導入
し、最終的な圧力を高々数気圧に押さえることで気密容
器4内外の圧力の均衡を保つ。
After that, the upper heater 17 and the lower heater 1
8 and 19 to heat the airtight container 4, the bottom 3a of the lower container 3 to 550 to 650°C, and the crucible 10 to GaAs.
When the temperature is maintained at a temperature higher than the melting point of 1238°C, for example about 1300°C, the vapor pressure of the As gas in the airtight container 4 increases,
The As gas and Ga in the crucible 10 react, and GaAs
A raw material melt M is synthesized. During this synthesis, an inert gas such as Ar gas is introduced into the outer container 5 to keep the final pressure at most several atmospheres, thereby maintaining a balance between the pressures inside and outside the airtight container 4.

【0009】このようにしてGaAsの原料融液Mを合
成した後、引上軸13を降下させてその下端部13aに
取り付けられた種結晶Sを原料融液Mに浸漬し、観察窓
14から結晶の成長状態を観察しつつ、引上軸13を回
転させながら引き上げて、単結晶Cを成長させる。また
、この時には、蒸気圧制御部12の温度を気密容器4の
内部において最も低い一定温度に保持し、ここにAsガ
スを凝結させることにより、気密容器4内のAsガスの
蒸気圧を制御する。
After synthesizing the GaAs raw material melt M in this manner, the pulling shaft 13 is lowered, and the seed crystal S attached to the lower end 13a is immersed in the raw material melt M, and the seed crystal S is immersed in the raw material melt M through the observation window 14. While observing the state of crystal growth, the single crystal C is grown by pulling up while rotating the pulling shaft 13. Also, at this time, the temperature of the vapor pressure control unit 12 is maintained at the lowest constant temperature inside the airtight container 4, and the As gas is condensed there, thereby controlling the vapor pressure of the As gas inside the airtight container 4. .

【0010】上記の単結晶引上装置1では、気密容器4
の分割及び再使用が可能、As原料とGa原料の配置場
所が異なるためにAs原料は昇華により高純度化可能、
大口径の単結晶インゴットの製造が可能等の利点を有す
る。
In the single crystal pulling apparatus 1 described above, the airtight container 4
can be divided and reused; As the As raw material and Ga raw material are placed in different locations, the As raw material can be purified by sublimation;
It has advantages such as being able to manufacture large diameter single crystal ingots.

【0011】[0011]

【発明が解決しようとする課題】ところで、上記の蒸気
圧制御引上法では、例えば、As原料が昇華する際に該
As原料に含まれる炭素不純物も同時に除去されてしま
い、前記単結晶C中の炭素不純物濃度が低くなりすぎて
しまうという欠点があった。
[Problems to be Solved by the Invention] However, in the above-mentioned vapor pressure controlled pulling method, for example, when the As raw material is sublimated, carbon impurities contained in the As raw material are also removed at the same time. The disadvantage was that the carbon impurity concentration of the carbon impurities was too low.

【0012】その理由は、As原料とGa原料を同時に
ルツボ内に置くLEC法の場合では、原料の炭素不純物
がそのまま融液中に入る他、ヒータや保温材の主成分で
あるカーボン部材が単結晶引上装置内に微量存在する酸
素や水分、特にB2O3中の水分により酸化されて炭素
汚染源になることが知られているが、上記の方法では、
気密容器4は炭素以外の高純度でガス不透過性の材料で
構成され、原料合成から成長過程に至るまでの間、原料
融液Mは気密容器4の外部に配置されるヒータや保温材
と隔離されているために、炭素不純物の取り込みが極め
て少ないためである。
[0012] The reason for this is that in the case of the LEC method in which As raw materials and Ga raw materials are placed in a crucible at the same time, carbon impurities in the raw materials enter the melt as they are, and the carbon components that are the main components of heaters and heat insulating materials are It is known that trace amounts of oxygen and moisture present in the crystal pulling apparatus, especially moisture in B2O3, can be oxidized and become a source of carbon pollution, but in the above method,
The airtight container 4 is made of a high-purity, gas-impermeable material other than carbon, and from raw material synthesis to the growth process, the raw material melt M is connected to a heater or heat insulating material placed outside the airtight container 4. This is because the incorporation of carbon impurities is extremely small due to the isolation.

【0013】上記のLEC法においては、炭素汚染の問
題は極めて深刻であり、これまでにもその減少と制御に
幾つかの方法が提案され開示されている。
[0013] In the above-mentioned LEC method, the problem of carbon pollution is extremely serious, and several methods have been proposed and disclosed for reducing and controlling it.

【0014】例えば、特開昭62ー30700号公報で
は、引上げ操作中に装置内の雰囲気ガスを部分的に放出
したり新規にガスを補給したりして、該装置内のCO濃
度を1000ppm以下に制御している。また、特開平
1ー192793号公報では、CO及び/またはCO2
ガスをArガス等の不活性ガス中に0.01〜0.1%
混入するとともにB2O3中の水分濃度を100〜50
0ppmに制御している。また、特開平2ー13779
2号公報では、引上げ機チャンバー内部に加圧した不活
性ガスを循環するとともにその循環の間に精製装置によ
りチャンバー内部から発生する炭素不純物ガスを除去す
ることにより、結晶中の炭素濃度を制御している。
For example, in Japanese Patent Application Laid-Open No. 62-30700, the atmospheric gas in the device is partially released or new gas is replenished during the pulling operation to reduce the CO concentration in the device to 1000 ppm or less. is controlled. Furthermore, in Japanese Patent Application Laid-open No. 1-192793, CO and/or CO2
0.01-0.1% gas in inert gas such as Ar gas
At the same time as mixing, the water concentration in B2O3 is reduced to 100 to 50.
It is controlled at 0 ppm. Also, JP-A-2-13779
In Publication No. 2, the carbon concentration in the crystal is controlled by circulating pressurized inert gas inside the puller chamber and removing carbon impurity gas generated from inside the chamber using a purifier during the circulation. ing.

【0015】LEC法においては、B2O3中に含まれ
る水分は原料融液中の炭素を酸化して脱炭素剤として働
く一方、酸化性ガスとして炉内カーボン部材を酸化して
カーボン酸化物ガスを発生し、カーボン取り込みの方向
に働き、またカーボン取り込みにおける拡散障壁層とし
て働く。これらの反応は平衡に至る方向に進むから雰囲
気中のカーボン酸化物ガス濃度と原料融液中のカーボン
濃度により結晶内へのカーボン取り込みは一様ではなく
、結晶固化と共に減少したり増加したりする。
In the LEC method, the water contained in B2O3 oxidizes carbon in the raw material melt and acts as a decarbonizing agent, while at the same time oxidizing the carbon members in the furnace as an oxidizing gas to generate carbon oxide gas. It acts in the direction of carbon uptake, and also acts as a diffusion barrier layer in carbon uptake. Since these reactions proceed in the direction of reaching equilibrium, carbon incorporation into the crystal is not uniform depending on the carbon oxide gas concentration in the atmosphere and the carbon concentration in the raw material melt, and may decrease or increase as the crystal solidifies. .

【0016】上記の蒸気圧制御引上法では、LEC法と
多くの点で異なっており、カーボンの取り込みのメカニ
ズムが未解明であることから、上記の公知技術を当ては
めることができない。
The above-mentioned vapor pressure controlled pulling method differs from the LEC method in many respects, and the mechanism of carbon uptake has not been elucidated, so the above-mentioned known techniques cannot be applied to it.

【0017】本発明は、上記の事情に鑑みてなされたも
ので、単結晶中の炭素不純物濃度を高精度で制御するこ
とができる単結晶の製造方法を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for producing a single crystal that allows the concentration of carbon impurities in the single crystal to be controlled with high precision.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な単結晶の製造方法を採用した。す
なわち、分割・密封可能な気密容器内の高解離圧成分ガ
スの圧力を制御しつつ、前記気密容器内のルツボに貯留
された高解離圧化合物半導体融液より半導体単結晶を引
き上げる単結晶の製造方法において、前記気密容器内の
高解離圧成分ガスに、一酸化炭素、二酸化炭素、炭化水
素ガスからなる群から選択された少なくとも1種を高解
離圧化合物半導体原料1kg当り1.5×10−6モル
以下添加することを特徴としている。
[Means for Solving the Problems] In order to solve the above problems, the present invention employs the following single crystal manufacturing method. That is, manufacturing a single crystal by pulling a semiconductor single crystal from a high dissociation pressure compound semiconductor melt stored in a crucible in the airtight container while controlling the pressure of a high dissociation pressure component gas in an airtight container that can be divided and sealed. In the method, at least one selected from the group consisting of carbon monoxide, carbon dioxide, and hydrocarbon gas is added to the high dissociation pressure component gas in the airtight container at a rate of 1.5 x 10 - per 1 kg of the high dissociation pressure compound semiconductor raw material. It is characterized in that it is added in an amount of 6 moles or less.

【0019】[0019]

【作用】GaAs等の単結晶C中の炭素不純物は多すぎ
ると熱変成の原因となり、反対に少なすぎるとIC用基
板等に必要な半絶縁性を得ることができなかったり、基
板面内の電気的特性が不均一になる等の不具合が生じる
こととなる。これらの問題はともに半絶縁性のためには
結晶内のSi,S,Te等のドナー不純物の総量より、
C,Zn等のアクセプター不純物の総量の方が多く、そ
の差分を深いドナー準位で補償しているところから生ず
る問題である。したがって、炭素不純物濃度はドナー不
純物濃度に応じて適切に制御する必要がある。
[Function] Too much carbon impurity in single crystal C such as GaAs causes thermal transformation, and conversely, too little carbon impurity makes it impossible to obtain the semi-insulating properties required for IC substrates, etc. This may cause problems such as non-uniform electrical characteristics. Both of these problems are due to the total amount of donor impurities such as Si, S, and Te in the crystal for semi-insulating properties.
This problem arises because the total amount of acceptor impurities such as C and Zn is larger, and the difference is compensated for by a deep donor level. Therefore, the carbon impurity concentration needs to be appropriately controlled depending on the donor impurity concentration.

【0020】本発明の単結晶の製造方法では、前記気密
容器内の高解離圧成分ガスに、一酸化炭素、二酸化炭素
、炭化水素ガスからなる群から選択された少なくとも1
種を高解離圧化合物半導体原料1kg当り1.5×10
−6モル以下添加することにより、気密容器内の雰囲気
中の炭素不純物濃度を高め、単結晶中の炭素不純物濃度
を適切に制御する。
In the method for producing a single crystal of the present invention, at least one gas selected from the group consisting of carbon monoxide, carbon dioxide, and hydrocarbon gas is added to the high dissociation pressure component gas in the airtight container.
1.5 x 10 seeds per 1 kg of high dissociation pressure compound semiconductor raw material
By adding -6 mol or less, the carbon impurity concentration in the atmosphere within the airtight container is increased, and the carbon impurity concentration in the single crystal is appropriately controlled.

【0021】炭化水素ガスを使用する利点は、分解して
酸素を生成することがない。酸素はGaAs中に取り込
まれて深い準位を形成することと、気密容器材料を酸化
して寿命を縮めることがない。
The advantage of using hydrocarbon gas is that it does not decompose to produce oxygen. Oxygen is not incorporated into GaAs to form a deep level, and does not oxidize the airtight container material and shorten its life.

【0022】[0022]

【実施例】以下、本発明の単結晶の製造方法の一実施例
について図3を参照して説明する。まず、下部容器3の
底部3aにAs原料を4300g、ルツボ10内にGa
原料を3850g入れ、さらに、引上軸13の下端部1
3aにGaAsの種結晶Sを取り付け、外部容器5内を
真空排気した。
EXAMPLE An example of the method for producing a single crystal according to the present invention will be described below with reference to FIG. First, 4300g of As raw material was placed in the bottom 3a of the lower container 3, and Ga was placed in the crucible 10.
Add 3850g of raw material, and then add 3850g of raw material to the lower end 1 of the
A GaAs seed crystal S was attached to 3a, and the inside of the outer container 5 was evacuated.

【0023】次に、COガスを2000ppmに希釈し
たArガスを気密容器4容積におけるCOモル数にして
1.2×10−5モルだけ導入した後、押上げ下軸7を
押し上げて下部容器3を上部容器2に圧接し、気密容器
4内を密封した。なお、COガス添加量は、室温におけ
る圧力に換算して、外部容器5に取り付けたピラニゲ−
ジ(図示せず)にて決定した。
Next, after introducing Ar gas diluted with CO gas to 2000 ppm in an amount of 1.2 x 10-5 moles of CO in the volume of the airtight container 4, the lower push-up shaft 7 is pushed up to lower the lower container 3. was pressed against the upper container 2, and the inside of the airtight container 4 was sealed. The amount of CO gas added is calculated in terms of pressure at room temperature.
(not shown).

【0024】その後、上部ヒータ17及び下部ヒータ1
8,19により気密容器4を加熱し、下部容器3の底部
3aを550〜650℃に、またルツボ10を約130
0℃に保持すると、気密容器4内のAsガスの蒸気圧が
高まり、該Asガスとルツボ10内のGaとが反応し、
約8000gのGaAsの原料融液Mが合成された。な
お、この合成の最中は、外部容器5内にArガス等の不
活性ガスを導入し、最終的な圧力を高々数気圧に押さえ
ることで気密容器4内外の圧力の均衡を保持した。
After that, the upper heater 17 and the lower heater 1
8 and 19, the bottom 3a of the lower container 3 is heated to 550 to 650°C, and the crucible 10 is heated to about 130°C.
When maintained at 0° C., the vapor pressure of the As gas in the airtight container 4 increases, and the As gas reacts with Ga in the crucible 10.
About 8000 g of GaAs raw material melt M was synthesized. During this synthesis, an inert gas such as Ar gas was introduced into the outer container 5 to keep the final pressure at most several atmospheres, thereby maintaining the balance between the pressures inside and outside the airtight container 4.

【0025】GaAsの原料融液Mを合成した後、原料
融液Mを所定の時間約1300℃に保持した後温度を除
々に下ろすとともに引上軸13を降下させてその下端部
13aに取り付けられた種結晶Sを原料融液Mに浸漬し
、引上軸13を回転させながら引き上げて、4インチ径
の単結晶Cを成長させた。この間、蒸気圧制御部12の
温度を気密容器4の内部において最も低い一定温度、例
えば615℃に保持し、ここにAsガスを凝結させるこ
とにより、気密容器4内のAsガスの蒸気圧を制御した
After synthesizing the GaAs raw material melt M, the raw material melt M is held at about 1300° C. for a predetermined time, and then the temperature is gradually lowered, and the pulling shaft 13 is lowered and attached to the lower end 13a. The seed crystal S was immersed in the raw material melt M and pulled up while rotating the pulling shaft 13 to grow a single crystal C with a diameter of 4 inches. During this time, the temperature of the vapor pressure control unit 12 is maintained at the lowest constant temperature inside the airtight container 4, for example 615° C., and the vapor pressure of the As gas inside the airtight container 4 is controlled by condensing the As gas there. did.

【0026】図1はこの様にして得られたGaAs単結
晶の肩下直下の部分のカーボン濃度をFTIR法で測定
し、種付けまでの放置時間に対しプロットしたものであ
る。図1から明らかな様に、カーボン濃度は放置時間と
ともに急激に増加し飽和する傾向を示している。
FIG. 1 shows the carbon concentration in the portion directly below the shoulder of the GaAs single crystal obtained in this manner, measured by the FTIR method, and plotted against the standing time until seeding. As is clear from FIG. 1, the carbon concentration shows a tendency to rapidly increase and become saturated with the standing time.

【0027】この方法では、放置時間が短い場合は結晶
成長の途中で原料融液がカーボンを吸収するので、単結
晶のシード側とテイル側ではカーボン濃度に大きな不均
一が生じる。しかし、50時間放置することによりカー
ボン濃度が飽和すると、シード側とテイル側のカーボン
濃度の差は10%程度に納まる。したがって、この状態
では、結晶中に含まれるカーボン濃度(3.8×101
5cm−3)は、始めに入れたCOガス中のCが全てG
aAs中に取り込まれるとしたカーボン濃度(4.8×
1015cm−3)にほぼ等しくなる。即ち、十分長時
間放置した後の原料融液はCOをほとんど全て分解し取
り込んでしまうと考えてよい。
In this method, if the standing time is short, the raw material melt absorbs carbon during crystal growth, resulting in large non-uniformity in carbon concentration between the seed side and the tail side of the single crystal. However, when the carbon concentration becomes saturated by leaving it for 50 hours, the difference in carbon concentration between the seed side and the tail side falls within about 10%. Therefore, in this state, the carbon concentration (3.8×101
5cm-3), all the C in the CO gas initially introduced is G.
The carbon concentration assumed to be incorporated into aAs (4.8×
1015 cm-3). That is, it can be considered that the raw material melt after being left for a sufficiently long time decomposes and incorporates almost all of the CO.

【0028】図2はCOの気密容器中に密封するモル数
を変えて同様の実験を行い50時間放置後、結晶成長に
より得られたGaAs単結晶から肩下直下の部分を切り
出し、カーボン濃度を測定し気密容器中に密封したCO
モル数に対しプロットしたものである。COモル数を変
えても略同一時間でカーボンの取り込みが飽和すると考
えられるが、図2から飽和カーボン濃度は気密容器中に
密封したCOモル数に対し一様な変化を示すことが明ら
かとなった。
FIG. 2 shows a similar experiment in which the number of moles sealed in an airtight CO container was changed, and after leaving it for 50 hours, a portion just below the shoulder was cut out from the GaAs single crystal obtained by crystal growth, and the carbon concentration was reduced. CO measured and sealed in an airtight container
It is plotted against the number of moles. Even if the number of moles of CO is changed, it is thought that carbon uptake will be saturated in approximately the same amount of time, but from Figure 2 it is clear that the saturated carbon concentration shows a uniform change with the number of moles of CO sealed in an airtight container. Ta.

【0029】また、図2には同様の実験をCO2ガス、
CH4ガス、C2H6ガスそれぞれに対して行った結果
についてもプロットしてあるが、各分圧に対しほぼ同様
のカ−ボン濃度依存性を示すことがわかる。この場合、
上記のC2H6ガスの様に1分子中に2個以上の炭素原
子を含む炭化水素ガスを用いる場合には、該炭化水素ガ
スのモル数を上記のCO,CO2,CH4ガス等より減
少させることができ、ほぼ同様のカ−ボン濃度を得るこ
とができる。いずれのガスに対しても、平衡状態では原
料融液中にほとんど炭素を取り込んでしまうことを示し
ているが、これは、液体封止剤を用いるLEC法との大
きな相違である。
FIG. 2 also shows a similar experiment using CO2 gas,
The results obtained for CH4 gas and C2H6 gas are also plotted, and it can be seen that almost the same dependence on carbon concentration is shown for each partial pressure. in this case,
When using a hydrocarbon gas containing two or more carbon atoms in one molecule, such as the above C2H6 gas, it is possible to reduce the number of moles of the hydrocarbon gas compared to the above CO, CO2, CH4 gas, etc. Almost the same carbon concentration can be obtained. For any gas, it is shown that almost all carbon is incorporated into the raw material melt in an equilibrium state, but this is a big difference from the LEC method using a liquid sealant.

【0030】以上の実験結果から、原料GaAs重量に
対し必要なカーボン濃度を室温における気密容器4内の
COモル数、さらにはCO分圧に換算することにより、
カーボン濃度を精度よく制御した単結晶を得ることがで
きる。
From the above experimental results, by converting the carbon concentration required for the weight of raw material GaAs into the number of moles of CO in the airtight container 4 at room temperature, and furthermore into the partial pressure of CO,
A single crystal with precisely controlled carbon concentration can be obtained.

【0031】以上説明した様に、上記一実施例の単結晶
の製造方法によれば、気密容器4内にCO,CO2,C
H4,C2H6を希釈したArガスを室温での気密容器
4容積におけるCO,CO2,CH4,C2H6それぞ
れのガスのモル数にしてGaAs原料1kg当り1.5
×10−6モルだけ導入すると、気密容器4内の雰囲気
中の炭素不純物濃度を高めることができ、単結晶C中の
炭素不純物濃度を4×1015cm−3以下の適切な値
に制御することができる。したがって、単結晶C中の炭
素不純物濃度を高精度で制御することができる単結晶の
製造方法を提供することが可能になる。
As explained above, according to the single crystal manufacturing method of the above embodiment, CO, CO2, C
The Ar gas diluted with H4 and C2H6 is converted to the number of moles of each gas of CO, CO2, CH4, and C2H6 in 4 volumes of an airtight container at room temperature, which is 1.5 per kg of GaAs raw material.
When only ×10−6 moles are introduced, the concentration of carbon impurities in the atmosphere inside the airtight container 4 can be increased, and the concentration of carbon impurities in the single crystal C can be controlled to an appropriate value of 4×1015 cm−3 or less. can. Therefore, it is possible to provide a method for manufacturing a single crystal in which the concentration of carbon impurities in the single crystal C can be controlled with high precision.

【0032】[0032]

【発明の効果】以上説明した様に、本発明の単結晶の製
造方法によれば、分割・密封可能な気密容器内の高解離
圧成分ガスの圧力を制御しつつ、前記気密容器内のルツ
ボに貯留された高解離圧化合物半導体融液より半導体単
結晶を引き上げる単結晶の製造方法において、前記気密
容器内の高解離圧成分ガスに、一酸化炭素、二酸化炭素
、炭化水素ガスからなる群から選択された少なくとも1
種を高解離圧化合物半導体原料1kg当り1.5×10
−6モル以下添加することによって、気密容器内の雰囲
気中の炭素不純物濃度を高めることができ、単結晶中の
炭素不純物濃度を適切に制御することができる。したが
って、単結晶中の炭素不純物濃度を高精度で制御するこ
とができる単結晶の製造方法を提供することが可能にな
る。
As explained above, according to the method for producing a single crystal of the present invention, while controlling the pressure of the high dissociation pressure component gas in the airtight container that can be divided and sealed, the crucible in the airtight container can be controlled. In the single crystal manufacturing method of pulling a semiconductor single crystal from a high dissociation pressure compound semiconductor melt stored in at least one selected
1.5 x 10 seeds per 1 kg of high dissociation pressure compound semiconductor raw material
By adding -6 moles or less, the concentration of carbon impurities in the atmosphere within the airtight container can be increased, and the concentration of carbon impurities in the single crystal can be appropriately controlled. Therefore, it is possible to provide a method for producing a single crystal that can control the carbon impurity concentration in the single crystal with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の単結晶の製造方法により作成された単
結晶のカーボン濃度と放置時間との関係を示す図(気密
容器中に1.2×10−5モルのCOを導入した場合、
GaAs原料は8kg)である。
FIG. 1 is a diagram showing the relationship between the carbon concentration and standing time of a single crystal produced by the method for producing a single crystal of the present invention (when 1.2 × 10-5 mol of CO is introduced into an airtight container,
The GaAs raw material was 8 kg).

【図2】本発明の単結晶の製造方法により作成された単
結晶のカーボン濃度とCO,CO2,CH4,C2H6
の気密容器内モル数との関係を示す図(GaAs原料は
8kg)である。
[Figure 2] Carbon concentration and CO, CO2, CH4, C2H6 of a single crystal produced by the single crystal production method of the present invention
FIG. 2 is a diagram showing the relationship between the number of moles in the airtight container and the number of moles in the airtight container (GaAs raw material is 8 kg).

【図3】従来の単結晶引上装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of a conventional single crystal pulling apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  分割・密封可能な気密容器内の高解離
圧成分ガスの圧力を制御しつつ、前記気密容器内のルツ
ボに貯留された高解離圧化合物半導体融液より半導体単
結晶を引き上げる高解離圧化合物半導体単結晶の製造方
法において、前記気密容器内の高解離圧成分ガスに、一
酸化炭素、二酸化炭素、炭化水素ガスからなる群から選
択された少なくとも1種を高解離圧化合物半導体原料1
kg当り1.5×10−6モル以下添加することを特徴
とする高解離圧化合物半導体単結晶の製造方法。
1. A method for raising a semiconductor single crystal from a high dissociation pressure compound semiconductor melt stored in a crucible in the airtight container while controlling the pressure of a high dissociation pressure component gas in an airtight container that can be divided and sealed. In the method for producing a dissociation pressure compound semiconductor single crystal, at least one selected from the group consisting of carbon monoxide, carbon dioxide, and hydrocarbon gas is added to the high dissociation pressure component gas in the airtight container as a high dissociation pressure compound semiconductor raw material. 1
A method for producing a high dissociation pressure compound semiconductor single crystal, the method comprising adding 1.5×10 −6 mol or less per kg.
JP9169091A 1991-03-29 1991-03-29 Production of single crystal of high-dissociation pressure compound semiconductor Withdrawn JPH04305086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169091A JPH04305086A (en) 1991-03-29 1991-03-29 Production of single crystal of high-dissociation pressure compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169091A JPH04305086A (en) 1991-03-29 1991-03-29 Production of single crystal of high-dissociation pressure compound semiconductor

Publications (1)

Publication Number Publication Date
JPH04305086A true JPH04305086A (en) 1992-10-28

Family

ID=14033504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169091A Withdrawn JPH04305086A (en) 1991-03-29 1991-03-29 Production of single crystal of high-dissociation pressure compound semiconductor

Country Status (1)

Country Link
JP (1) JPH04305086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172098A (en) * 1992-12-07 1994-06-21 Hitachi Cable Ltd Production of gaas single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172098A (en) * 1992-12-07 1994-06-21 Hitachi Cable Ltd Production of gaas single crystal

Similar Documents

Publication Publication Date Title
US6273948B1 (en) Method of fabrication of highly resistive GaN bulk crystals
US7097707B2 (en) GaN boule grown from liquid melt using GaN seed wafers
USRE42279E1 (en) Method of preparing a compound semiconductor crystal
Guggenheim Growth of Single‐Crystal Calcium Fluoride with Rare‐Earth Impurities
US5211801A (en) Method for manufacturing single-crystal silicon carbide
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPH04305086A (en) Production of single crystal of high-dissociation pressure compound semiconductor
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
ITMI992423A1 (en) INDIO PHOSPHIDE DIRECT SYNTHESIS PROCEDURE
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPS6230700A (en) Compound semiconductor single crystal and production thereof
JPH06172098A (en) Production of gaas single crystal
JP2710288B2 (en) Graphite heating element for single crystal manufacturing equipment
JPH1112086A (en) Production of chemical semiconductor single crystal and gallium arsenide single crystal
JPH0616493A (en) Method for growing gallium arsenide single crystal
JPH0459690A (en) Device for lifting single crystal of compound semiconductor having high dissociation pressure
RU1429601C (en) Method of obtaining scintillation material
JPH0930887A (en) Production of carbon-containing gallium-arsen crystal
CN116791207A (en) Vapor phase transport method for growing nitride by taking flux alloy as source material
JPH0615439B2 (en) &lt;III&gt;-&lt;V&gt; Group compound semiconductor single crystal manufacturing method
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPH0446097A (en) Doping method for growing single crystal of compound semiconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514